

JN-AN-1180 (v1.0) 20-Dec-2012 © NXP B.V. 2012 1

Application Note: JN-AN-1180
802.15.4 Home Sensor Demonstration for JN516x

This Application Note accompanies the source code (and associated files) of the
Home Sensor Demonstration application for IEEE 802.15.4 networks that use the NXP
JN5168 wireless microcontroller. Here, we introduce this example application and
direct you to the relevant documentation that describes the application more fully.

1 Application Overview
The 802.15.4 Home Sensor Demonstration application is intended as an aid to
understanding how an application can be built on top of the IEEE 802.15.4 stack on a
JN51xx device and how to use the boards of an NXP evaluation kit fitted with these devices.

The demonstration uses a carrier board with an LCD Expansion board fitted (controller
node), and a number of carrier boards with sensor expansion boards (sensor nodes) from
the evaluation kit. The sensor nodes measure temperature and humidity, and periodically
send these measurements to the controller node through a beacon mechanism. The
controller node displays the received data on its built-in LCD panel.

In this application, the controller node acts as the PAN Co-ordinator and the sensor nodes
act as End Devices. Separate code is provided for the Co-ordinator and End Devices.

This Application Note:

• provides a high-level view of the application in terms of its hardware components and
operation

• outlines the application design in terms of the software used, and the use of callbacks
and interrupts

• describes how to build the application and download it to the hardware

• describes the application code, including the functions used

You will also need to refer to the source code that is zipped up with this Application Note:
AN1180_154_HomeSensorCoord.c for the Co-ordinator (controller node) and
AN1180_154_HomeSensorEndD.c for the End Devices (sensor node).

2 Compatibility
The software provided with this Application Note has been tested with the following NXP kits
and SDK versions:

Product Type Part Number Version Supported Chips Supported Protocols
Evaluation Kit JN516x-EK001 - JN5168, JN5164 802.15.4
SDK Libraries JN-SW-4065

JN-SW-4063
- JN5168 802.15.4

SDK Toolchain JN-SW-4041 v1.1 JN5148, JN5168 -

 802.15.4 Home Sensor Demonstration for JN516x

2 © NXP B.V. 2012 JN-AN-1180 (v1.0) 20-Dec-2012

3 Operational Features
The Home Sensor Demonstration application is intended as an aid to understanding how an
application can be built on top of the IEEE 802.15.4 stack, and how to use the sensors and
LCD panel of an NXP evaluation kit.

3.1 Hardware Components
The 802.15.4 Home Sensor Demonstration should be prepared from the JN516x-EK001
Evaluation Kit components to include:

• One controller node with an LCD panel and four control buttons, comprising a Carrier
Board and LCD Expansion Board

• Three sensor nodes, each with a temperature sensor, humidity sensor and light
sensor, one control button and two LEDs, comprising a Carrier Board and
Lighting/Sensor Expansion Board

The 802.15.4 Home Sensor Demonstration allows the boards to emulate a home sensor and
control system. This software is provided in the Application Note JN-AN-1050, which is
available from www.nxp.com/jennic/support. Refer to Section 5 for details of how to build this
application and download it to the evaluation kit boards.

The controller enables each sensor node to be monitored, and allows alarms to be set for
temperature and light levels on the sensor nodes. The controller can be set to operate on a
specific channel to avoid interference on busy frequencies, and the sensor nodes
automatically scan for the controller and synchronise with it.

 Note: In this IEEE 802.15.4 application, the controller node
acts as the PAN Co-ordinator and the sensor nodes are End
Devices.

3.2 Operating Instructions
This section describes the buttons and screens used in the operation of the controller and
sensor nodes.

3.2.1 Controller Node
The central controller (which acts as the PAN Co-ordinator) has several modes:

• Introductory splash screen, with channel selection

• Network display

• Individual node display

• Individual node control

The modes are accessed by pressing buttons on the controller, with the hierarchy of screens
shown below.

http://www.nxp.com/jennic/support

802.15.4 Home Sensor Demonstration for JN516x

JN-AN-1180 (v1.0) 20-Dec-2012 © NXP B.V. 2012 3

3.2.1.1 Button Conventions
The switches on the controller node are used to navigate around a menu system, and
change their function depending on which screen is being shown. On all screens, the
function of a particular switch is displayed on the bottom of the LCD panel above the switch
position.

Introductory/
channel select

screen

Network screen

Node 1 display
screen

Node 2 display
screen

Node x display
screen

Node 1 control
screen

Node 2 control
screen

Node x control
screen

'Node' key

'Node' key'Node' key 'Node' key

'Done' key

'Done' key

'Control' key

'Done' key 'Done' key

'Control' key 'Control' key

Start

Press left-most and right-most button
simultaneously from any screen

Miscellaneous
setup screen

'Ch x' key

'Done' key

Figure 1: Controller Screen Flow Diagram

 802.15.4 Home Sensor Demonstration for JN516x

4 © NXP B.V. 2012 JN-AN-1180 (v1.0) 20-Dec-2012

3.2.1.2 ‘Introductory’ Screen
The ‘Introductory’ screen allows the operating channel to be set. Press ‘+’ or ‘-‘ to adjust the
channel number up or down. When the value reaches the top or bottom of the range (11 to
26), it wraps around. The initial value is 18.

When the desired channel has been selected, press ‘Done’ for the channel to be
programmed into the hardware and to move to the Network screen. Alternatively, press
‘Ch x’ to go to the Miscellaneous Settings screen.

The introductory screen can be returned to at any time by pressing the leftmost and
rightmost keys at the same time.

3.2.1.3 ‘Miscellaneous Settings’ Screen
The ‘Miscellaneous Settings‘ screen is for non-standard configuration of the system. The
options are as follows:

Name Possible values Default
Local node off, on off
Four nodes off, on on

The currently selected item is highlighted by the text for that item being inverted. To move
between the two options, the ‘Select’ button should be pressed. To alter a value for the
selected option, the ‘+’ and ‘-‘ buttons can be used.

It is possible to associate up to four sensor nodes with the controller, and all displayed nodes
will be sensor nodes.

Note: ‘Local node’ allows the controller node to be counted as a sensor node. However, this
is not used in this demo.

In addition to the above options, this screen shows the version numbers for the 802.15.4
Stack API and Integrated Peripherals API.

After all settings have been completed, press ‘Done’ to move to the Network screen.

3.2.1.4 ‘Network’ Screen
The ‘Network’ screen shows the current value and trend graph for one sensor type and for
all sensor nodes simultaneously. It is possible to choose the sensor type to display by
pressing the ‘Temp’, ‘Humidity’ or ‘Light’ button - the currently selected sensor type is
indicated by the corresponding button label being inverted.

In addition to the value and graph, any triggered alarms are displayed with the text ‘High’ or
‘Low’ in the space under the room name. If no alarms have been triggered, this space is
used to display the link quality value for that sensor node and the number of expected
frames that have been missed. This information will not be displayed for the local node, as it
is not applicable.

 Note: Link quality gives a broad indication of the quality of the
communication. The value is between 0 (for a very bad
connection) and 255 (for an ideal connection). The value is
affected by both the number of errors seen and the signal
strength (which depends on the environment and the
proximity of the devices).

802.15.4 Home Sensor Demonstration for JN516x

JN-AN-1180 (v1.0) 20-Dec-2012 © NXP B.V. 2012 5

To select a ‘Node Display’ screen, the ‘Node’ button should be pressed. If there are no
nodes (i.e. ‘Local node’ has been set to ‘off’ on the controller node and no sensor nodes
have yet associated), the ‘Node’ button has no effect.

3.2.1.5 ‘Node Display’ Screen
The ‘Node Display’ screen shows the current value and trend graph for all sensor types
simultaneously for one sensor node at a time. The format is the same as for the ‘Network’
screen, described above. The ‘Node Display’ screen also displays the link quality and
number of frames that have been missed.

To select another sensor node, the ‘Node’ button should be pressed. When the final sensor
node is displayed, pressing the ‘Node’ button again causes the ‘Network’ screen to appear.

Pressing the ‘Control’ button causes the ‘Node Control’ screen associated with the currently
displayed sensor node to appear (see below).

Pressing ‘On’ or ‘Off’ controls the remote switch at the sensor node, as described in Section
3.2.2.2, unless the node is the central controller itself, in which case this option has no effect.

3.2.1.6 ‘Node Control’ Screen
The ‘Node Control’ screen allows alarms and a remote switch to be set for a sensor node.
The currently selected item is highlighted by the text for that item being inverted. To move
from one item to the next, the ‘Select’ button should be pressed. When the last item has
been selected, a subsequent press of the ‘Select’ button causes the first item to be selected
again.

To alter a numeric value, the ‘+’ and ‘-‘ buttons can be used. When the value reaches the
top or bottom of the range, it wraps around via an ‘off’ setting.

When all items are satisfactory, the ‘Done’ button should be pressed to return to the ‘Node
Display’ screen associated with the sensor node.

3.2.2 Sensor Node
A sensor node comprises a Carrier Board and Lighting/Sensor Expansion Board. It uses the
white LED cluster on the expansion board, and temperature/humidity and light sensors.

A sensor node can be in one of two modes: synchronising or operating.

3.2.2.1 Synchronising Mode
When a sensor node is switched on, it automatically enters synchronising mode. It will also
return to this mode if it loses synchronisation with the controller.

1. First the sensor node performs a channel scan. It repeatedly tries until it finds the
channel on which the controller is operating.

2. The board then synchronises with the controller and associates with it. Again, this will
be repeated until successful. During initial association, the sensor node is assigned a
role by the controller. The roles are given in the order in which each board associates,
in the order Hall, Bedroom, Lounge and Bathroom.

 The first sensor node to associate will be assigned ‘Hall’, the second ‘Bedroom’, and so
on.

3. After a first successful association, the controller remembers the role it assigned to a
particular sensor node. Therefore, if that sensor node loses the communication link and
has to re-associate, it will be assigned the same role again.

4. Once associated, the sensor node moves into operating mode.

 802.15.4 Home Sensor Demonstration for JN516x

6 © NXP B.V. 2012 JN-AN-1180 (v1.0) 20-Dec-2012

3.2.2.2 Operating Mode
While in operating mode, the sensor node responds to every beacon from the controller by
sending back a frame containing the sensor values. The controller can then display this
information.

The White LED cluster is controlled by the remote switch setting on the ‘Node Control’
screen on the controller (see Section 3.2.1.6). The RGB LED is set to a steady state
depending on the light level at the sensor node and the setting of the low light level alarm
from the ‘Node Control’ screen on the controller (see Section 3.2.1.6). The RGB LED is
illuminated when the light level drops below the low alarm level and the alarm is set.

Note that each sensor is only read once per second in operating mode, and not at all if
communication with the controller is lost.

4 Application Design
This section describes architectural and certain operational aspects of the demonstration
application.

4.1 Software Architecture
An application sits above the 802.15.4 stack, which in turn sits directly above the baseband
hardware. The stack is provided with defined entry points to request 802.15.4 actions, and to
initialise and register callbacks to the application.

The Integrated Peripherals API and Board API sit logically to the side of the 802.15.4 stack
and are independent of it.

This is illustrated in the diagrams in the next section.

4.2 Context, Interrupts and Callbacks
Any call into the stack through an API entry point is performed in the application task
context.

Many of the possible 802.15.4 requests cause the stack to initiate activities that will continue
after the call has returned, such as a request to transmit a frame. In such cases, the stack
will acquire processor time by responding to interrupts from the hardware. To avoid the need
for a multi-tasking operating system, the stack will then work for as long as necessary in the
interrupt context.

When information must be sent to the application, because of a previous request or due to
an indication from the stack or hardware, the appropriate callback function is used. It must
be remembered that the callback is still in the interrupt context and any activity performed by
the application within the callback must be kept as short as possible.

All interrupts are generated by hardware. An interrupt handler in software decides whether to
pass each interrupt to the 802.15.4 stack or to the peripheral hardware drivers, and these in
turn either process the interrupt themselves or pass it up to the application via one of the
registered callbacks.

802.15.4 Home Sensor Demonstration for JN516x

JN-AN-1180 (v1.0) 20-Dec-2012 © NXP B.V. 2012 7

Hardware

IEEE 802.15.4
Stack Layers

802.15.4
Stack API

Peripheral
Hardware Drivers

Integrated
Peripherals API Board API

Interrupt
Handler

Application

Interrupts

MCPS
request/confirm

MLME
request/confirm Command/response Command/response

Command

PHY
interrupt

Baseband
interrupt

Timer
interrupt

UART
interrupt

Register access Register access

Figure 2: API Usage
The Integrated Peripherals API is described in the JN516x Integrated Peripherals API User
Guide (JN-UG-3087).

The 802.15.4 Stack API is fully described in the 802.15.4 Stack API Reference Manual
(JN-RM-2002).

The Board API is described in LPRF Board API Reference Manual (JN-RM-2003).

Alternatively, the optional Application Queue API can be used to handle interrupts for the
application. This is illustrated in the diagram below. The Application Queue API is described
in the Application Queue API Reference Manual (JN-RM-2025).

Hardware

IEEE 802.15.4
Stack Layers

802.15.4
Stack API

Peripheral
Hardware Drivers

Integrated
Peripherals API Board API

Interrupt
Handler

Application
Queue API

Application

Interrupts

Hardware
interrupt
callbacks

MCPS/MLME
callbacks

Queue poll
request/response

MCPS
request/confirm

MLME
request/confirm Command/response Command/response

Command

PHY
interrupt

Baseband
interrupt

Timer
interrupt

UART
interrupt

Register access Register access

Figure 3: API Usage including Application Queue API

 802.15.4 Home Sensor Demonstration for JN516x

8 © NXP B.V. 2012 JN-AN-1180 (v1.0) 20-Dec-2012

5 Unpacking, Building and Loading the Application
This section describes how to unpack, build and load the demonstration application.

It is assumed that you have installed one of the NXP JN516x SDKs on your PC – that is,
JN-SW-4041 and any one of: JN-SW-4065, JN-SW-4064, JN-SW-4062, JN-SW-4060.

The above installers are available from www.nxp.com/jennic/support. When installing an
SDK, follow the instructions provided in the SDK Installation and User Guide (JN-UG-3064),
also available from the above web address.

5.1 Unpacking the Application Note
In order to build the supplied software, first unzip this Application Note (JN-AN-1180) into

<JN516x_SDK_ROOT>\Application
where <JN516x_SDK_ROOT> is the path into which the JN516x SDK was installed (by
default, this is C:\Jennic). The Application directory is automatically created when you
install the SDK.

All files are then located in the directory

SDK\Application\JN-AN-1080-802-15-4-Home-Sensor-Demo

The files that are specific to the two device types (Co-ordinator and End Device) are
contained in two separate sub-directories:

• AN1080_154_HomeSensorCoord

• AN1080_154_HomeSensorEndD
each having Source and Build sub-directories.

5.2 Building and Loading the Application
This section describes how to build the demonstration application and load the resulting
binary files into the JN516x-EK001 Evaluation Kit boards. You will need to build the
applications for the different device types (Co-ordinator, End Device) separately:
AN1080_154_HomeSensorCoord.c and AN1080_154_HomeSensorEndD.c.

The demonstration software can be built for the NXP JN5168 and JN5164 wireless
microcontrollers.

The binary files produced in the build process are output to directories which depend on the
build method, as indicated in the sub-sections that follow.

• To build using makefiles, refer to Section 5.2.1.

• To build using the Eclipse IDE, refer to Section 5.2.2.

http://www.nxp.com/jennic/support

802.15.4 Home Sensor Demonstration for JN516x

JN-AN-1180 (v1.0) 20-Dec-2012 © NXP B.V. 2012 9

5.2.1 Using Makefiles
This section describes how to use the supplied makefiles to build the demonstration
application.

The application for each node type (Co-ordinator, End Device) has its own Build directory,
which contains the makefiles for the application.

To build an application and load it into a JN516x board, follow the instructions below:

1. Ensure that the project directory is located in

<JN516x_SDK_ROOT>\Application

 where <JN516x_SDK_ROOT> is the path into which the JN516x SDK was installed.

2. Navigate to the Build directory for the application to be built and follow the instructions
below for your chip type:

 For JN5168:
 At the command prompt, enter:
 make clean all

 Note that for the JN5168, you can alternatively enter the above command from the top
level of the project directory, which will build the binaries for both the applications.

 For JN5164:
 At the command prompt, enter:
 make JENNIC_CHIP=JN5164 clean all

 In all the above cases, the binary file will be created in the Build directory, the resulting
filename indicating the chip type (5168 or 5164) for which the application was built.

3. Load the resulting binary file into the board. To do this, use the NXP JN51xx Flash
Programmer, described in the JN51xx Flash Programmer User Guide (JN-UG-3007).

5.2.2 Using Eclipse
This section describes how to use the Eclipse IDE to build the demonstration application.

To build the application and load it into JN516x boards, follow the instructions below:

1. Ensure that the project directory is located in

<JN516x_SDK_ROOT>\Application
 where <JN516x_SDK_ROOT> is the path into which the JN516x SDK was installed.

2. Start the Eclipse platform and import the relevant project files (.project and .cproject)
as follows:

a) In Eclipse, follow the menu path File>Import to display the Import dialogue box.

b) In the dialogue box, expand General, select Existing Projects into Workspace
and click Next.

c) Enable Select root directory, browse to the NXP Application directory and click
OK.

d) In the Projects box, select the project to be imported and click Finish.

3. Build an application. To do this, ensure that the project is highlighted in the left panel of

Eclipse and use the drop-down list associated with the hammer icon in the Eclipse

 802.15.4 Home Sensor Demonstration for JN516x

10 © NXP B.V. 2012 JN-AN-1180 (v1.0) 20-Dec-2012

toolbar to select the relevant build configuration – once selected, the application will
automatically build. Repeat this to build the other application.

 The binary files will be created in the relevant Build directories for the applications.

4. Load the resulting binary files into the boards. You can do this using the NXP JN51xx
Flash Programmer, which can be launched from within Eclipse or used directly (and is
described in the JN51xx Flash Programmer User Guide (JN-UG-3007)).

6 Code Description
This section provides details of the code used in the demonstration application. This should
help you understand the code sufficiently to adapt the application.

6.1 Overview
The demonstration system consists of a Co-ordinator (the controller node) and several End
Devices (the sensor nodes). The general structure of the code in each is the same, with an
initialisation followed by a main loop. In the main loop, interrupts are used extensively to
synchronise operation, which allows the device to put the CPU to sleep for long periods
while nothing is happening.

The Co-ordinator sends out regular beacons containing a beacon payload of 8 bytes. The
first byte of the beacon payload contains a specific value so that the End Devices can use
this to verify that the Co-ordinator is running the demonstration. As each End Device
associates with the Co-ordinator, it is given a short address with which to identify itself. In
addition, the keys are only checked 20 times per second - this avoids the need for any key
de-bounce software algorithm, without giving a perceived operating delay.

As each End Device is switched on, it scans all channels and, after detecting any beacons,
checks that the Co-ordinator is the one that it is looking for. It then performs a
synchronisation and association. Once association is complete, the End Device enters a
regular loop of reading its sensors and sending out a frame containing the sensor data. As
the beacons from the Co-ordinator contain a payload, the End Device receives an MLME
indication from the stack whenever a beacon arrives. This is used to trigger the next read of
the sensors.

6.2 Co-ordinator
The Co-ordinator code (for the controller node) is contained in the file
AN1080_154_HomeSensorCoord.c in the directory:

AN1080_154_HomeSensorCoord\Source

6.2.1 Overview
The general operation of the Co-ordinator is described in Section 3.2.1. It goes through a
series of states that reflect which screen is being shown at any time, as indicated below.

802.15.4 Home Sensor Demonstration for JN516x

JN-AN-1180 (v1.0) 20-Dec-2012 © NXP B.V. 2012 11

Set channel Additional
Setup

Network view

Node view Node control
view

Start

For each screen, there are associated functions in the code to create the screen, update the
screen and handle any button presses.

Upon being started, the first action of the application is the initialisation of the hardware,
stack and application variables. Once this has completed, the first screen is shown and the
main control loop is entered. This loop runs for the duration of the demonstration.

The main loop iterates 20 times per second, driven by events from a wake-up timer.
Although the device is not sent to sleep between events, the application does put the CPU
itself into doze mode whenever possible. The buttons are checked once per iteration of the
loop, which avoids the need for any key de-bounce software algorithm, without adding any
perceived operating delay. Any MLME or MCPS events are processed as they occur,
handling association requests and received frames from End Devices.

Before first entering the Network view, the application sends an MLME request to the stack
to start transmitting regular beacons. In addition, when showing the Network view, Node
view or Node control view, there is a simple state machine to co-ordinate the reading of
sensors and the updates of the graphs and values displayed on the LCD panel. The screen
is updated once per second unless user activity causes a change to the displayed
information. The state machine runs from the same 20-Hz timer as the rest of the main loop,
and the states are shown below.

 Note: Although beacons are transmitted at a similar rate, the
generation of beacons is performed by the stack and, once
started, is completely independent of the application.

 802.15.4 Home Sensor Demonstration for JN516x

12 © NXP B.V. 2012 JN-AN-1180 (v1.0) 20-Dec-2012

Update
graphs and

LCD

Start read of
temperature

No action

Read
temperature

Start read of
humidity No action

Read
humidity

Read light
level

No actionNo action
No action

(x12)

By reading the sensors some time after the read was initiated, the result is guaranteed to be
ready so that no CPU effort is wasted in polling for the result.

6.2.2 Function Descriptions
The function descriptions in this section are intended to demonstrate how to create an
802.15.4 application using the NXP Application Programming Interfaces (APIs). As such,
some functions are not mentioned as they are not directly relevant to this goal.

AppColdStart()
This function is the main entry point for the application, called after the ROM-resident boot
loader has finished. It calls the initialisation function vInitSystem(), then uses a continuous
loop to initialise the Co-ordinator and run the main loop. The main loop sets a timer,
processes the state machine, processes any key presses and then waits for any MLME or
MCPS confirmations/indications, or a hardware interrupt. The hardware interrupt is certain to
occur, since the timer was set at the start of the loop. Once this interrupt fires, the loop re-
starts.

AppWarmStart()
This function is required as the main entry point for the application after a warm start (i.e. the
CPU has been powered down then restarted, with the RAM contents retained). This mode is
not used in the demonstration application, so this function is included just to call
AppColdStart() as a fail safe mechanism.

802.15.4 Home Sensor Demonstration for JN516x

JN-AN-1180 (v1.0) 20-Dec-2012 © NXP B.V. 2012 13

InitSystem()
This function calls the Application Queue API initialisation function, which in turn calls the
802.15.4 Stack API initialisation. The API is initialised without any callbacks. It also calls the
Integrated Peripherals API initialisation function and the board initialisation functions (LCD,
light sensor, humidity and temperature sensor).

The 802.15.4 PIB is written to, setting the PAN ID and short address for the device. These
are determined at compile-time.

The wake-up timer used for the 20-Hz pulses is calibrated and then enabled here, but not
started.

InitCoord()
Data relating to the End Device sensor information is initialised here, as is the demonstrator
configuration.

vSetTimer()
This function uses the Integrated Peripherals API to start the wake-up timer for 1600 cycles,
approximately 1/20th of a second.

vProcessCurrentTimeBlock()
This function implements the state machine. It makes use of the Board API to access the
sensors. The values returned are truncated, with temperature from 0 to 52 degrees
centigrade, humidity from 0 to 104%, and light level as a value from 0 (dark) to 6 (light). The
limits were chosen to allow easy conversion to a 0-to-13 scale for the graphs.

vProcessKeys()
This function relays any button presses to the appropriate functions, depending on which
screen is being shown. The buttons are all ‘soft’ – that is, their function is dependent on the
screen.

vUpdateTimeBlock()
This function increments the state machine state, if the Co-ordinator is in the correct state.
When some screens are shown, the state machine is effectively disabled.

vProcessInterrupts()
Once housekeeping tasks have completed, the Co-ordinator enters a continuous loop
checking the MCPS, MLME and hardware queues for any incoming indications. Normally,
this would waste processor power, but the function causes the CPU to be first put into ‘doze’
mode. The result is that the CPU will remain unclocked until an interrupt occurs. The CPU
will then wake up from where it left off. In this case, it will jump to the interrupt handler,
process any interrupts and place any indications into the MCPS, MLME and hardware
queues in the Application Queue API. Once interrupt processing has completed, this function
is allowed to continue. It can check all of the queues and, once any processing has
completed, loop back to start the whole process again.

Once a wake-up interrupt has been detected the loop is exited and the function returns. This
allows the main loop in AppColdStart() to continue.

 802.15.4 Home Sensor Demonstration for JN516x

14 © NXP B.V. 2012 JN-AN-1180 (v1.0) 20-Dec-2012

vProcessIncomingData()
This function processes any MCPS data indications. Any other MCPS indication or
confirmation is discarded, as the application does not expect any. Also, any received frame
is discarded that does not have the correct payload length, or the pre-determined identifier
as the first byte of the payload, or a short address within the expected range.

The short address of the received frame is used to determine which End Device it came
from. This is then used as an index into an array containing the stored End Device data,
which is read from the frame payload together with a control for an LED.

vProcessIncomingMlme()
Only MLME.Associate indications are expected in this application. When such an indication
is received, the function checks whether the extended address of the requesting node is
within range. If this is the case, a short address is assigned. If the End Device has previously
associated (for instance, if it associated and subsequently went out of range), it is given the
same short address as before. If not, it is given the next available short address. A table of
extended and short addresses is maintained to support this functionality.

An association response is then created with the short address (if one has been assigned)
and a suitable response code. If an End Device has been added to the system and the
network screen is being shown, it is updated to incorporate the new node. For any other
screen type, this is not necessary.

bProcessForTimeout()
This function handles all Integrated Peripherals API indications, checking for a wake-up
timer interrupt and returning TRUE if one has been found.

vProcessUpdateBlock()
This function updates the graphs for all nodes, scaling the data to fit, and then updates the
display if the appropriate screen is being shown.

Keypresses
vProcessSetChannelKeyPress()
vProcessNetworkKeyPress()
vProcessNodeKeyPress()
vProcessNodeControlKeyPress()
vProcessSetupKeyPress()
These functions all operate in much the same way, responding to button presses to adjust
values, set data or move to another screen.

vUpdateNetworkSensor()
This function is called to refresh the ‘Network’ screen, which shows the same sensor type
from all nodes at once.

LCD screens
vBuildSetChannelScreen()
vBuildNetworkScreen()
vBuildNodeScreen()
vBuildNodeControlScreen()
vBuildSetupScreen()
These functions all demonstrate the creation of a fresh screen on the LCD, using the Board
API. Note that the font definition requires some odd characters to be used. For instance, ‘\’ is

802.15.4 Home Sensor Demonstration for JN516x

JN-AN-1180 (v1.0) 20-Dec-2012 © NXP B.V. 2012 15

used for a ‘+’ and ‘]’ is used for ‘-‘. Normally, a call to vLcdRefreshAll() would be used to put
the new display onto the LCD, but in all cases an associated update function is called
instead, which then calls vLcdRefreshAll().
Extensive use is made of vLcdWriteText(), and vBuildSetChannelScreen() also uses
svLcdWriteBitmap(), with the bitmap that is defined in NxpLogo.c.

vUpdateSetChannelScreen()
vUpdateNetworkScreen()
vLcdUpdateElement()
vUpdateNodeScreen()
vUpdateNodeControlScreen()
vUpdateSetupScreen()
These functions all update an existing LCD display while retaining what was there before.
Note that space characters are used to delete unwanted text. Since the font is proportional,
each space is only 3 pixels wide, while most characters are 5 pixels wide. It is therefore
necessary to use additional space characters to successfully erase a series of text
characters.

vDrawGraph()
This function takes an array of 32 values, in the range 0 to 13, and makes a bitmap graph
from them. This is an alternative to using a pre-defined bitmap and allows simple graphics to
be created without the complication of a line-drawing algorithm.

An array is created for the two rows of data used by each graph, and a constant array is
defined containing the values required for each value in the range 0 to 13. The array is then
filled with the appropriate data for each item in the series of values.

A structure defines the bitmap in terms of the array, as being 33 columns wide and 2
character rows high. Finally, a call to the Board API writes the bitmap to the LCD shadow
memory. A call to vLcdRefreshAll() must be made after calling this function for the bitmap
to appear on the LCD.

vStartBeacon()
This function generates an MLME request to start regular beacons. As this MLME request
returns a confirmation, this is checked for any problems and an error displayed if a problem
occurs.

vUpdateBeaconPayload()
For debugging, the beacon payload is updated with some status information once per
second. This requires two MLME-Set.Request calls, one for the payload contents, which are
passed as an array of bytes, and one for the beacon payload length. In both cases, any
confirmation is ignored, as the values provided cannot cause a failure.

vDisplayError()
This function shows an error message and then loops indefinitely. It is intended for fatal
errors such as a failure to start beacons.

Miscellaneous
vStringCopy()
vValToDec()
vAdjustAlarm()
These functions do not make use of the stack or API at all, so are not described here.

 802.15.4 Home Sensor Demonstration for JN516x

16 © NXP B.V. 2012 JN-AN-1180 (v1.0) 20-Dec-2012

 Note: The remaining functions do not add clarity to the use of
the stack or API, so are not described here.

6.3 End Device
The End Device code (for the sensor nodes) is contained in the file
AN1080_154_HomeSensorEndD.c in the directory:

AN1080_154_HomeSensorEndD\Source

6.3.1 Overview
Like the Co-ordinator code, the End Device code uses a main loop that simply processes
interrupts and indications, using these to step through a state machine to find and associate
with the Co-ordinator and then send sensor data to it. Unlike the Co-ordinator, the End
Device does not use a timer and the buttons are set to produce interrupts when they are
pressed.

The state machine is as follows:

Off

Scanning

Sync'ing

Associating

Running Transmitting Reading
sensors

Initialisation
complete

Scan complete,
beacon found

Expected
beacon seen

Association
complete

Beacon
seen

TX
complete

Sensors read

Sync lost

After initialisation, which starts the scan for the first time, all subsequent movements
between states occur as results of interrupts. The MLME processing function uses the
present state and the received indication or confirmation to decide what to do next.

Note that the Co-ordinator sends beacons with a beacon payload, so there is always an
MLME indication when they arrive. This is used to time the queuing of outgoing frames to
ensure that the End Device application only tries to send one frame for every eight beacons
(although in practice, this is only necessary for reducing power consumption). Any
additionally transmitted frames would be wasted as the Co-ordinator only updates the LCD
display once per second, whereas the beacons are transmitted by the Co-ordinator eight
times per second.

802.15.4 Home Sensor Demonstration for JN516x

JN-AN-1180 (v1.0) 20-Dec-2012 © NXP B.V. 2012 17

6.3.2 Function Descriptions
The function descriptions in this section are intended to assist in demonstrating how to build
an 802.15.4 application using the stack and APIs. As such, some functions are not
mentioned as they are not directly relevant to this goal.

AppColdStart()
This is the main entry point for the application, called after the boot loader has finished. It
calls the initialisation function vInitSystem(), then uses a continuous loop to initialise the
End Device, start a scan and then sit in the interrupt handler until a reset condition is
detected.

AppWarmStart()
This function is required as the main entry point for the application after a warm start (i.e. the
CPU has been powered down then restarted, with the RAM contents retained). This mode is
not used in the demonstration application, so this function is included just to call
AppColdStart() as a fail-safe mechanism.

vInitSystem()
This function calls the Application Queue API initialisation function, which in turn calls the
802.15.4 Stack API initialisation. The API is initialised without any callbacks. It also calls the
Integrated Peripherals API initialisation function and the board initialisation functions (LCD,
light sensor, humidity and temperature sensor).

The 802.15.4 PIB is written to, setting the PAN ID for the device, which is determined at
compile-time.

vInitEndpoint()
This function sets parameters used by the End Device.

vStartScan(), vStartSync(), vStartAssociate()
These functions demonstrate how to send a request to the stack to start an active scan,
synchronisation or association, respectively.

Starting a scan or an association can both return an error in the confirmation, so this is
checked for. The desired result is a deferred confirmation, meaning that the confirmation will
arrive via the upward queues.

vProcessInterrupts()
This is a continuous loop checking the MCPS, MLME and hardware queues for any
incoming indications. Normally this would waste processor power, but the function causes
the CPU to be first put into ‘doze’ mode. The result is that the CPU will remain unclocked
until an interrupt occurs. The CPU will then wake up from where it left off. In this case, it will
jump to the interrupt handler, process any interrupts and place any indications into the
MCPS, MLME and hardware queues. Once interrupt processing has completed, this function
is allowed to continue. It can check all of the queues and, once any processing has
completed, loop back to start the whole process again.

The only interrupt expected from the Integrated Peripherals API is when a button is pressed.
To minimise code, the cause of an Integrated Peripherals API interrupt is never checked.
The buttons are examined whenever an Integrated Peripherals API interrupt occurs, and if
the reset combination is detected the function will exit. There is no need to perform any key
de-bounce due to the nature of the functions assigned to the keys.

 802.15.4 Home Sensor Demonstration for JN516x

18 © NXP B.V. 2012 JN-AN-1180 (v1.0) 20-Dec-2012

vProcessIncomingMcps()
The only MCPS indication or confirmation that is processed is a deferred confirmation of a
previous transmission attempt. Whether it succeeded or failed is not important – the MAC
software will have attempted multiple retries automatically – so this function is just used to
trigger the reading of the sensors ready for the next beacon.

vProcessIncomingMlme()
Deferred confirmation of scan and associate are processed here, as are beacon notification
indications.

If in the scanning state and a scan confirmation arrives, there are two possibilities:

• The desired Co-ordinator was detected (identified by the PAN ID and short address
which, in this application, are pre-determined). The channel is set to that used by the
Co-ordinator and synchronisation is started.

• The desired coordinator was not detected. Try scanning again.

If in the associating state and an association confirmation arrives, there are also two
possibilities:

• The association was successful, so start using the supplied short address and enter
the ‘running’ state

• The association was not successful. Try associating again.

If a beacon notify indication is detected, there are two possibilities depending on state:

• If synchronising, this indicates that synchronisation has occurred so device can start to
associate.

• If ‘running’, a beacon has arrived so a frame should be sent back with the sensor data.

vProcessKeyPress()
This function uses the Integrated Peripherals API to determine the state of the buttons on
the module. It then uses this result to either turn the remote switch on or off (value is passed
to the Co-ordinator to control an LED) or to indicate a reset condition when both buttons are
held down.

vProcessRead()
This function reads the sensors via the Board API. The approach used is not the most
efficient, as the processor will spend a period of time polling the humidity and temperature
sensor while waiting for a result to be generated. An alternative approach would have been
to enable an interrupt when DIO 8 goes low, which is how the sensor indicates that a result
is ready to read, and to use this to start a read of the data via the vProcessInterrupts()
function.

The light sensor is better in this respect, as it performs continuous conversions, so the
processor can read a value from it immediately.

vProcessTxBlock()
This function creates an MCPS-Data.request, using the network byte order functions to
convert 16-bit values into arrays of bytes. The short address provided by the Co-ordinator is
used for the source address, and pre-determined values are used for the Co-ordinator short
address and PAN ID.

This function does not check the immediate confirmation from the call into the 802.15.4
Stack API, as there is no recovery mechanism implemented in the case of failure. Different

802.15.4 Home Sensor Demonstration for JN516x

JN-AN-1180 (v1.0) 20-Dec-2012 © NXP B.V. 2012 19

applications may want to check the confirmation if they have an action to perform in
situations where an MCPS-Data.request is likely to fail under normal operation.

vProcessRxBeacon()
This function checks that the received beacon contained the correct beacon payload,
identifying it as from the Co-ordinator of the demonstration application. The function retrieves
the contents of the payload (the LED control value and light level alarm level) for this node.
All accesses to the payload are byte accesses, so there is no need to be concerned about
byte ordering.

A call to vProcessTxBlock() is made at the end of this function in order to queue a frame for
transmission back to the Co-ordinator.

vDisplayError(), vDisplayHex(), vDebug()
These functions are optionally used to display error messages via serial port 0, using the
Integrated Peripherals API. To compile in this feature, UART0_DEBUG must be defined in
the makefile HomeSensorEndDevice.mk.

 802.15.4 Home Sensor Demonstration for JN516x

20 © NXP B.V. 2012 JN-AN-1180 (v1.0) 20-Dec-2012

Revision History
Version Notes

1.0 First release

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any
products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951

 www.nxp.com/jennic

http://www.nxp.com/jennic

	1 Application Overview
	2 Compatibility
	3 Operational Features
	3.1 Hardware Components
	3.2 Operating Instructions
	3.2.1 Controller Node
	3.2.1.1 Button Conventions
	3.2.1.2 ‘Introductory’ Screen
	3.2.1.3 ‘Miscellaneous Settings’ Screen
	3.2.1.4 ‘Network’ Screen
	3.2.1.5 ‘Node Display’ Screen
	3.2.1.6 ‘Node Control’ Screen

	3.2.2 Sensor Node
	3.2.2.1 Synchronising Mode
	3.2.2.2 Operating Mode

	4 Application Design
	4.1 Software Architecture
	4.2 Context, Interrupts and Callbacks

	5 Unpacking, Building and Loading the Application
	5.1 Unpacking the Application Note
	5.2 Building and Loading the Application
	5.2.1 Using Makefiles
	5.2.2 Using Eclipse

	6 Code Description
	6.1 Overview
	6.2 Co-ordinator
	6.2.1 Overview
	6.2.2 Function Descriptions

	6.3 End Device
	6.3.1 Overview
	6.3.2 Function Descriptions

