
Jenie API
User Guide

JN-UG-3042
Revision 1.8

17 March 2010

Jenie API
User Guide

 Jennic

2 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Contents

About this Manual 7
Organisation 7
Conventions 8
Acronyms and Abbreviations 8
Related Documents 8
Feedback Address 9

1. Fundamental Concepts 11
1.1 Wireless Operation 12

1.1.1 Radio Communication 12
1.1.2 Battery Power 13

1.2 Network Communications 13
1.3 Network and Node Types 14

1.3.1 Star Topology 15
1.3.2 Tree Topology 16

1.4 Network Identitification and Isolation 18
1.4.1 Identification 18
1.4.2 Isolation 19

1.5 Node Addressing 20
1.6 Software Architecture 20
1.7 Services 21

1.7.1 Service Profile 23
1.7.2 Service Discovery 23

1.8 Bindings 24
1.9 Network Formation 26
1.10 Data Transfer 27
1.11 Routing 29

1.11.1 Neighbour and Routing Tables 29
1.11.2 Routing Process on a Node 29

1.12 Configurable Protocol Operations 30
1.12.1 Message Acknowledgements 30
1.12.2 Data Polling (End Device only) 30
1.12.3 Auto-ping 31
JN-UG-3042 v1.8 © Jennic 2010 3

Contents Jennic

2. What is Jenie? 33

2.1 Jenie Architecture 33
2.2 Jenie Functionality 35

2.2.1 Core Functionality 35
2.2.2 Hardware Functionality 36

2.3 Forms of Jenie 36
2.4 Jenie API 37
2.5 Installing Jenie 38

3. Application Tasks 39
3.1 Starting the Network (Co-ordinator only) 40
3.2 Starting Other Nodes (Routers and End Devices) 41
3.3 Configuring the Radio Transmitter 43
3.4 Configuring Security 43
3.5 Discovering Services 44

3.5.1 Registering Services 44
3.5.2 Requesting Services 45

3.6 Binding Services 46
3.7 Transferring Data 46

3.7.1 Sending and Receiving Data using Addresses 47
3.7.2 Sending and Receiving Data using Bound Services 47
3.7.3 Receiving Data for an End Device 47

3.8 Obtaining Signal Strength Measurements 49
3.9 Entering and Leaving Sleep Mode (End Devices only) 50

3.9.1 Sleep Mode with Memory Held 51
3.9.2 Sleep Mode without Memory Held 51

3.10 Saving and Restoring Context Data 52
3.10.1 Network Context 52
3.10.2 Application Context 53

3.11 Leaving the Network 55

4. Working with the Jenie API 57
4.1 Jenie Application Templates 58

4.1.1 Pre-requisites 58
4.1.2 Supplied Files 58

4.2 Code Descriptions 59
4.2.1 Co-ordinator Code 60
4.2.2 Router Code 61
4.2.3 End Device Code 62
4 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
4.3 Building Your Application 63
4.3.1 Building Code using Makefiles 63
4.3.2 Building Code using Eclipse (JN5148 only) 64
4.3.3 Building Code using Code::Blocks (JN5139 only) 65

4.4 Downloading Code to Nodes 68

5. Controlling Hardware Peripherals 69
5.1 ADC 70
5.2 DACs 72
5.3 Comparators 73
5.4 Digital I/O 75
5.5 Timers 76

5.5.1 Timer/PWM Mode 78
5.5.2 Delta-Sigma Mode (NRZ and RTZ) 79
5.5.3 Capture Mode 80

5.6 Wake Timers 82
5.7 Serial Peripheral Interface (SPI) 84
5.8 Serial Interface (2-wire) 86
5.9 Intelligent Peripheral (IP) Interface 87

6. Advanced Issues in Network Operation 89
6.1 Identifying the Network 89
6.2 Sending Messages 90

6.2.1 Timing Issues in Data Sends 90
6.2.2 Re-tries in Data Sends 91
6.2.3 End-to-End Acknowledgements for Data Sends 92

6.3 Routing 93
6.3.1 Neighbour Tables and Routing Tables 93
6.3.2 Stale Route Purging 94
6.3.3 Automatic Route Importation 95

6.4 Losing a Parent Node (Orphaning) 96
6.4.1 Detecting Orphaning 96
6.4.2 Re-joining the Network 97

6.5 Losing a Child Node 97
6.5.1 End Device Children 97
6.5.2 Router Children 99

6.6 Auto-polling (End Device only) 100
6.7 Beacon Calming 100
6.8 Packet Loss 101

6.8.1 Packet Collisions 101
6.8.2 Minimising Packet Loss 102
6.8.3 Route Updates 104
JN-UG-3042 v1.8 © Jennic 2010 5

Contents Jennic

6.9 Network Self-Healing 104

6.9.1 Automatic Recovery 104
6.9.2 Network Recovery 105

6.10 Key Performance Parameters 106
6.10.1 Broadcast TTL (Time To Live) 106
6.10.2 Automatic Recovery Threshold 106
6.10.3 Ping Period 107
6.10.4 End Device Poll Period 108
6.10.5 End Device Scan Sleep Period 108

Appendices 109
A. Hardware and Memory Usage 109

A.1 Hardware Resources 109
A.2 Memory Resources 109

B. Glossary 111
6 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
About this Manual
This manual provides an introduction to Jenie - Jennic’s proprietary interface that
enables simplified and streamlined development of wireless network applications for
the Jennic JN5139 and JN5148 wireless microcontrollers. In particular, this manual
describes the Jenie Application Programming Interface (API). Little or no previous
knowledge of wireless networks is assumed - all relevant concepts are covered by this
manual.

Organisation
This manual consists of 6 chapters and 2 appendices, as follows:

Chapter 1 provides a background in essential wireless network concepts, as
well as those specific to Jenie.
Chapter 2 introduces Jenie in terms of its architecture, functionality and
available forms.
Chapter 3 describes how to use the Jenie API to incorporate the network tasks
into your wireless network application.
Chapter 4 describes the essential features of applications that use the Jenie
API, as well as how to build and download these applications.
Chapter 5 describes the control of JN5139/JN5148 hardware peripherals using
dedicated Jenie API functions.
Chapter 6 addresses a number of advanced issues relating to wireless network
application design using Jenie - this chapter therefore supplements Chapter 3.
The Appendices provide information on the JN5139/JN5148 hardware and
memory needed by Jenie, and a glossary of the main terms used in Jenie-
based wireless networks.

Note: This manual provides high-level descriptions of
the Jenie API and related wireless network concepts.
For detailed descriptions of the Jenie API functions that
can be used in application code, refer to the Jenie API
Reference Manual (JN-RM-2035).

Tip: Reference is made in this manual to the software
levels that underlie Jenie and the wireless network
application: JenNet and IEEE 802.15.4. In order to
develop applications using Jenie, you should not need
knowledge of these lower software levels beyond the
information provided in this manual. However, if you do
require more information, refer to the Jennic User Guide
for the relevant protocol (see Related Documents).
JN-UG-3042 v1.8 © Jennic 2010 7

About this Manual Jennic

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations
API Application Programming Interface

JenNet Jennic Network

LQI Link Quality Indication

MAC Media Access Control

PAN Personal Area Network

UART Universal Asynchronous Receiver Transmitter

Related Documents
[1] Wireless Network Deployment Guidelines (JN-AN-1059)

[2] Jenie Application Templates Application Note (JN-AN-1061)

[3] Jenie Tutorial Application Note (JN-AN-1085)

[4] Jenie API Reference Manual (JN-RM-2035)

[5] JenNet Stack User Guide (JN-UG-3041)

[6] IEEE 802.15.4 Wireless Networks User Guide (JN-UG-3024)

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
8 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Feedback Address
If you wish to comment on this manual, or any other Jennic user documentation,
please provide your feedback by writing to us (quoting the manual reference number
and version) at the following postal address or e-mail address:

Applications
Jennic Ltd
Furnival Street
Sheffield S1 4QT
United Kingdom

doc@jennic.com
JN-UG-3042 v1.8 © Jennic 2010 9

About this Manual Jennic
10 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
1. Fundamental Concepts
The Jenie software from Jennic provides an easy-to-use, high-level interface for
developing wireless network applications for the Jennic JN5139 and JN5148 wireless
microcontrollers. Jenie simplifies and streamlines application development, therefore
reducing development costs and time-to-market.

Jenie provides a software interface used in application programs to interact easily and
efficiently with the lower level software that implements network operations (such as
network initialisation, formation and communication). This is illustrated in Figure 1
below.

This chapter describes essential wireless network concepts before Jenie is presented
in more detail in the remainder of this manual. These concepts should provide a
sufficient foundation for developing simple wireless network applications using Jenie.

Jenie allows applications to be built on top of Jennic’s proprietary JenNet protocol. The
software structure is further detailed in Chapter 2.

Figure 1: Jenie in Simple Wireless Network
JN-UG-3042 v1.8 © Jennic 2010 11

Chapter 1
Fundamental Concepts

 Jennic
1.1 Wireless Operation
The idea of a wireless network is to use radio links to replace the cables that connect
the nodes of a traditional network - thus, the nodes exchange data via radio
communications. However, cable replacement may be extended to include the power
cabling for certain nodes. These issues are expanded on in the sub-sections below.

1.1.1 Radio Communication
Jenie is designed to run on Jennic’s wireless microcontrollers, featuring integrated
radio transceivers which operate in the 2400-MHz radio frequency (RF) band. This
band is available for unlicensed use in most geographical areas (check your local
radio communication regulations). The basic characteristics of this RF band are as
follows:

Thus, this RF band is split into 16 channels. It is possible to automatically select the
best channel (that with least detected activity) at system start-up.

The range of a radio transmission is dependent on the operating environment (inside
or outside a building), the Jennic module (carrying the wireless microcontroller) and
the type of antenna used. Using a JN5139 or JN5148 standard module fitted with an
external dipole antenna, a range of 1 km can typically be achieved in an open area.
Inside a building, this can be reduced due to absorption, reflection, diffraction and
standing wave effects caused by walls and other solid objects. High-power modules
can achieve a factor of five greater than this.

Tip: In order to develop applications using Jenie, you
should not need knowledge of JenNet beyond the
information provided in this manual. However, if you do
require more information, refer to the JenNet Stack User
Guide (JN-UG-3041), available from the Support area of
the Jennic web site (www.jennic.com/support).

Frequency Range 2405 to 2480 MHz

Channel Numbers 11-26 (16 channels)

Data Rate 250 kbps

Tip: For guidance on the deployment of radio devices,
refer to the Jennic Application Note “Wireless Network
Deployment Guidelines” (JN-AN-1059).
12 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
1.1.2 Battery Power
One of the objectives of the wireless network protocols is the reduction of power
cabling by allowing the autonomy of certain nodes through battery power and even
solar power. This brings the advantages of easier and cheaper network installation,
more flexible siting of nodes and relocation of nodes.

Low-capacity batteries are often used and their use is optimised by restricting the time
for which energy is required. To this end, data is transmitted infrequently (perhaps
once per hour or even per week), with the device reverting to low-power sleep mode
the rest of the time. However, not all network devices can be battery-powered, since
some node types must be switched on all the time (see Section 1.3).

1.2 Network Communications
The basic operation in a network is to transfer data from one node to another. The data
is sourced from an input (possibly a switch or a sensor) on the originating node. This
data is communicated to another node which can interpret and use the data in a
meaningful way.

In the simplest form of this communication, the data is transmitted directly from the
source node to the destination node. However, if the two nodes are far apart or in a
difficult environment, direct communication may not be possible. In this case, it may
be possible to send the data to another node within range, which then passes it on to
another node, and so on until the desired destination node is reached - that is, to use
one or more intermediate nodes as stepping stones.

The process of receiving data destined for another node and passing it on is known
as routing. The application running on the routing node is not aware that the data is
being routed, as the process is completely automatic and transparent to the
application. Routing is described further in Section 1.11.

Figure 2: Routing between Network Nodes

Node 1

Node 2 Node 3

Node 4Desired route

Actual route
JN-UG-3042 v1.8 © Jennic 2010 13

Chapter 1
Fundamental Concepts

 Jennic

1.3 Network and Node Types

A wireless network can be made up from nodes of three types:

Co-ordinator
Router
End Device

These node types and their roles are summarised in Table 1 below. Note that every
wireless network must have a Co-ordinator.

The application on each node configures that node as a Co-ordinator, Router or End
Device. The application on the Co-ordinator can also pre-configure the desired radio
channel for the network (or enable an automated search for the best channel).

A wireless network that uses Jenie can have either of two topologies, which determine
how the nodes are linked and how messages propagate through the network. These
topologies are Star and Tree, and are presented in the sub-sections below (in fact, the
Star topology is a special case of the Tree topology).

Node Type Role

Co-ordinator The Co-ordinator is an essential node and plays a fundamental role
at system initialisation, during which its tasks are:
• Selects the radio channel to be used by the network
• Starts the network
• Allows other nodes to connect to it (that is, to join the network)
In addition to running applications, the Co-ordinator may provide
message routing, security management and other services.

Router In addition to running applications, the main tasks of a Router are:
• Relays messages from one node to another (routing)
• Allows other nodes to connect to it (that is, to join the network)
A Router must remain active and therefore cannot sleep.

End Device The main tasks of an End Device at the network level are sending
and receiving messages. An End Device cannot have children. It
can often be battery-powered and, when not transmitting or receiv-
ing, can sleep in order to conserve power.

Table 1: Node Types and Their Roles
14 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
1.3.1 Star Topology
This is the simplest and most limited of the possible topologies.

A Star topology consists of a Co-ordinator and a set of End Devices. Each End Device
can communicate only with the Co-ordinator. Therefore, to send a message from one
End Device to another, the message must be sent via the Co-ordinator, which relays
the message to the destination.

The Star topology is illustrated in the figure below.

A disadvantage of this topology is that there is no alternative route if the RF link fails
between the Co-ordinator and the source or target device. In addition, the Co-
ordinator can be a bottleneck and cause congestion.

Note: A Router can be used in place of an End Device
in a Star network, but the message relay functionality of
the Router will not be used - only its application will be
relevant.

Figure 3: Star Topology

End Device

Co-ordinator

Router
End Device

End Device

End Device

End Device

Router
JN-UG-3042 v1.8 © Jennic 2010 15

Chapter 1
Fundamental Concepts

 Jennic

1.3.2 Tree Topology

A Tree topology consists of a Co-ordinator, Routers and End Devices.

The Co-ordinator is linked to a set of Routers and End Devices - its children. A Router
may then be linked to more Routers and End Devices - its children. This can continue
to a number of levels.

This hierarchy can be visualised as a tree structure with the Co-ordinator at the top,
as illustrated in the figure below.

Note that:

The Co-ordinator and Routers can have children, and can therefore be parents.
End Devices cannot have children, and therefore cannot be parents.

Note: A Router can be used in place of an End Device
in a Tree network, but the message relay functionality of
the Router will not be used - only its application will be
relevant.

Figure 4: Tree Topology

End Device

Co-ordinator

RouterRouter

Router

End Device

End Device

Router
Router

End Device

End Device

End Device Router
16 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
The communication rules in a Tree topology are:

A child can only directly communicate with its parent and with its own children
(if any).
A parent can only directly communicate with its children and with its own
parent.
In sending a message from one node to another, the message must travel from
the source node up the tree to the nearest common ancestor and then down
the tree to the destination node.

A disadvantage of this topology is that there is no alternative route if a necessary link
fails. However, the JenNet network protocol provides the facility to automatically repair
failed routes.

Note: It is important when designing and deploying a
Tree network that all nodes are within range of Routers,
so that reliable communication can occur.
JN-UG-3042 v1.8 © Jennic 2010 17

Chapter 1
Fundamental Concepts

 Jennic

1.4 Network Identitification and Isolation

This section describes how a Jenie wireless network can be uniquely identified and
isolated from other wireless networks operating in the same space, thus allowing
networks to function without interfering with each other.

1.4.1 Identification
Wireless networks must be uniquely identified so that there is no confusion between
neighbouring networks. Jenie networks are individually identified using two values:

Network Application ID: This is a 32-bit value which is pre-determined by the
system developer. It is the value used throughout the application to identify the
network. It may correspond to a particular product from a manufacturer, such
as an intruder alarm system. Therefore, the Network Application ID is common
to all networks based on the same product and, in this sense, is not truely
unique.
PAN (Personal Area Network) ID: This is a 16-bit value which must be unique
to the network. It is pre-set by the system developer, but the Co-ordinator
“listens” for the PAN IDs of any neighbouring networks to check that the
specified PAN ID is unique. If it is not unique, the Co-ordinator automatically
increments the PAN ID until a unique value is found. Once set, the PAN ID is
used at a low level in network messages, but is not used in the application.

The detailed implementation of these identifiers is described in Section 6.1.
Information on operating multiple networks with duplicate identifiers is provided below.

Duplicate Network Application IDs
The Network Application ID provides the only fixed way of identifying your Jenie
network in your application. It should be assigned a random value. However, there is
no mechanism to ensure that the Network Application ID is unique. While it is
improbable that two independent Jenie networks deployed in the same space will
have the same Network Application ID, this remains a possibility, particularly if the
networks are based on the same product (e.g. intruder alarms from the same
manufacturer) - see Section 6.1 for more information.

For a large commissioned system, it may be possible to set the Network Application
ID manually during deployment, to avoid the Network Application IDs of other Jenie
networks operating in the neighbourhood, where these IDs are obtained using a site
survey tool.

Networks with duplicate Network Application IDs operating in the same space should
not be a problem, provided that their PAN IDs are unique (see below) or the networks
are adequately isolated (see Section 1.4.2).
18 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Duplicate PAN IDs
The default PAN ID that is pre-set by the system developer cannot be guaranteed to
uniquely identify a network and may be dynamically changed by the Co-ordinator at
start-up in order to avoid the PAN IDs of other networks. Even with this dynamic
setting, it is still possible to obtain separate networks with the same PAN ID operating
in the same radio space, particularly if the networks run the same application (in which
case, the networks will have the same default PAN ID and Network Application ID).
This may occur in the following circumstances:

The Co-ordinators of these networks were powered up simultaneously and
selected the same PAN ID.
Branches of separate networks with the same PAN ID (initially operating in
different radio spaces) grow and eventually meet.

If this occurs, the radio traffic in one network may be received and propagated through
the other network sharing the PAN ID, resulting in network instability.

A useful way of avoiding PAN ID clashes between networks based on the same
product (running the same application) is to generate the default PAN ID using part of
the Co-ordinator's MAC address. Since MAC addresses are globally unique, this
reduces the likelihood of conflicting PAN IDs.

Networks with duplicate PAN IDs operating in the same space should not be a
problem if the networks are adequately isolated, as described in Section 1.4.2.

1.4.2 Isolation
It is normally practicable for a Jenie wireless network to be uniquely identified within
its operating environment using its Network Application ID and PAN ID (described in
Section 1.4.1). However, it is possible to operate networks with the same Network
Application ID and PAN ID in the same neighbourhood without conflict. This is
achieved by carefully managing radio channels and/or using encryption, as described
below.

Radio Channels
Networks can be operated in separate radio channels to avoid contention. However,
using this method to isolate networks means that moving channels to avoid a busy,
congested channel may prove more difficult.

Encryption
For systems that extend over large areas (for example, street lighting), the use of
encryption can be used to ensure that a network is isolated from third party networks.
With this security feature enabled, nodes without the correct key will be unable to join
a network, even if configured with a matching Network Application ID.
JN-UG-3042 v1.8 © Jennic 2010 19

Chapter 1
Fundamental Concepts

 Jennic

1.5 Node Addressing

The basic way of referring to a node in a network is by means of a numeric address.
In Jenie, the 64-bit IEEE or MAC address is used. This is a unique 64-bit value
assigned to a device at the time of manufacture and is fixed for the lifetime of the
device. It therefore provides a unique ID for the device. It is also sometimes called the
extended address. JenNet uses it as the network address of the node.

1.6 Software Architecture
The software that runs on each node of a wireless network is organised into three
basic levels forming the software stack illustrated and described below.

These basic levels are described below (from top to bottom):

Application level: Contains the user-developed application that runs on the
node. This software gives the device its functionality - the application is mainly
concerned with converting input into digital data and/or digital data into output.
Network Protocol level: Provides the network functionality, as well as the glue
between the application and the Physical/Data Link level (below). It consists of
stack layers concerned with network structure, routing and security.
Physical/Data Link level: This level consists of two separate layers - the
Physical layer and the Data Link layer:

The Data Link layer is responsible for assembling, delivering and
decomposing messages.
The Physical layer is concerned with the interface to the physical
transmission medium (radio, in this case).

The above software architecture is described in more detail in Section 2.1.

Figure 5: Basic Software Architecture

Physical/Data Link level

Network Protocol level

Application level
20 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
1.7 Services
“Service” is a term used in Jenie to refer to a node property that can provide and/or
receive data - it can correspond to a feature, function or capability of the node.
Examples of services are:

Temperature sensor
Light level sensor
Keypad data entry
LCD output

An individual node can support up to 32 separate services. Each service available in
a network is identified by an ID number, between 1 and 32 (inclusive). The Service IDs
are represented by bit positions in the network’s Service Profile - see Section 1.7.1.

Two services must be compatible in order to communicate with each other - that is,
one service must provide meaningful data for the other service to interpret. For
example:

A temperature sensor and a heating controller are compatible services
A temperature sensor and a garage door controller are not compatible services

The concept of compatible services is illustrated in the lighting control example in
Figure 6 below. Here, a number of services provide data to a “lighting controller”
service, which is connected to a lamp. These services are:

A “light on/off” service on a light switch node
A “light on/off” service on a dimmer switch node
A “light level” service on the same dimmer switch node

Note: It is the responsibility of the user application to
determine whether services are compatible.
JN-UG-3042 v1.8 © Jennic 2010 21

Chapter 1
Fundamental Concepts

 Jennic

Figure 6: Example Lighting Control System

Supported Services: 0x00000006

Supported Services: 0x00000001Supported Services: 0x00000002

Lighting
Control Node

Light Switch
Node

Dimmer Switch
Node

Service 3

Light Level

Service 2

Light On/Off

Service 2

Light On/Off

Service 1

Lighting Controller

Service Profile: 0x00000007

Bit 0: Lighting Controller
Bit 1: Light On/Off
Bit 2: Light Level
22 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
1.7.1 Service Profile
A network has a Service Profile which summarises all the services available in the
network. This is a 32-bit value that is pre-determined by the system developer.

The Service Profile incorporates a list of all the available services in the system and
their corresponding Service IDs. It is a 32-bit number in which each bit position
corresponds to a specific service, where ‘1’ signifies supported and ‘0’ signifies
unsupported. The bit positions correspond to the Service IDs as follows: bit 0
represents Service 1, bit 1 represents Service 2..... bit 31 represents Service 32.

The concept of the Service Profile is illustrated in Figure 6 above, where the Service
Profile is expressed as the hexadecimal value 0x00000007.

1.7.2 Service Discovery
Services allow a node to determine with which other nodes it could possibly
communicate. For example, a heating control node may be interested in nodes with a
temperature sensor (one service) or a switch (another service).

The application on a node can specify to Jenie which services it supports. An
application can also request all nodes that support a particular service. Jenie will then
reply with the address of each appropriate node, without additional effort by the
application. This process is called “service discovery” and is described in more detail
in Section 3.5.

Note: Service discovery is an essential step as the only
way for a node to obtain the addresses of the remote
nodes that provide the services it requires.
JN-UG-3042 v1.8 © Jennic 2010 23

Chapter 1
Fundamental Concepts

 Jennic

1.8 Bindings

As described in Section 1.7, a "service" on one node may need to communicate with
a particular service on another node. For example, a heating controller may need to
take its temperature input from a temperature sensor on a remote node.

Normally for each communication, the address of the target node must be specified.
Alternatively, service "binding" can be used which, once set up, allows communication
between two services to be performed without the need to specify an address.

Binding associates a service on one node with a service on another node. It is
analogous to wiring a cable between a sensor and an input on a control unit. Thus,
sending data from a service on the local node will automatically route the message to
the associated service on the remote node (see example of data transfer using binding
in Section 1.10).

The binding of services is illustrated in the lighting control system of Figure 6 above.

Jenie maintains a set of bindings on each node, containing the following information:

Source service: The service from which data is sent on the local node
Destination service: The service to receive the data on the remote node
Destination node: The address of the remote node

Example Bindings
As a further example, consider the case of an intruder alarm consisting of four nodes
- a control unit, two motion sensors and an alarm box (featuring a siren and light).
Seven services are defined in this example system, as described in the table below.

The particular services on each node are shown in Figure 7 below, which also shows
the bindings between services on different nodes.

Service Name Description

1 Zone 1 Trigger This service receives indications of sensors being triggered in Zone 1 and acts
on this to sound the alarm, after a delay (Zone 1 being the entry/exit zone, so
requiring a delay to allow the user to disable the alarm before it sounds)

2 Zone 2 Trigger This service receives indications of sensors being triggered in Zone 2 and acts
on this to sound the alarm immediately.

3 Tamper Trigger This service receives indications of the tamper indication being triggered on any
connected node, and notifies the user.

4 Alarm Control This service is used to control the alarm box, starting or stopping the siren and
light.

5 Tamper Output This service sends an indication if the node has been tampered with.

6 Trigger Output This service sends an indication if the sensor detects an intruder.

7 Alarm Control This service receives commands and uses them to control the siren and light.

Table 2: Services in Example Intruder Alarm System
24 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
The bindings in the above system are summarised in the table below.

Figure 7: Bindings in Example System

Source
Node

Source
Service

Destination
Node

Destination
Service

1 4 4 7

2 5 1 3

2 6 1 2

3 5 1 3

3 6 1 1

4 5 1 3

Table 3: Binding Relationships in Example System

Node 1
(Control unit)

Service 1 (Zone 1)

Service 2 (Zone 2)

Service 3 (Tamper)

Node 2
(Motion sensor)

Service 5 (Tamper)

Service 6 (Trigger)

Node 4
(Alarm box)

Service 5 (Tamper)

Service 7 (Alarm control)

Service 4 (Alarm control)

Node 3
(Motion sensor)

Service 5 (Tamper)

Service 6 (Trigger)
JN-UG-3042 v1.8 © Jennic 2010 25

Chapter 1
Fundamental Concepts

 Jennic

1.9 Network Formation

The creation of a Jenie wireless network starts with the Co-ordinator.

The procedure for starting and forming the network is then as follows:

On Co-ordinator
1. Radio Channel Selected: The Co-ordinator selects a specified radio channel

or searches for a suitable channel (usually the one which has least activity).
This search can be limited to those channels known to be usable - for
example, avoiding frequencies where it is known a wireless LAN is operating.

2. PAN ID Allocated: The Co-ordinator assigns a unique 16-bit PAN ID to the
network. A PAN ID is pre-set by the system developer, but the Co-ordinator
“listens” for the PAN IDs of any neighbouring networks to check that the
specified PAN ID is unique - if it is not, the Co-ordinator increments the PAN ID
until a unique value is found.

3. Network Application ID Obtained: The Co-ordinator obtains the 32-bit
Network Application ID from the local application.

4. Network Ready for Joining: The Co-ordinator now ‘listens’ for requests from
other nodes (Routers and End Devices) to join the network.

On Other Devices
1. Required Network Found: A node (Router or End Device) wishing to join the

network first scans the available channels to find operating networks. To
identify which network it should join, the node uses the Network Application ID
specified in its application.

2. Best Parent Selected: Initially, the Co-ordinator will be the only potential
parent of a new node. However, once the network has partially formed, the
device may be able to 'see' the Co-ordinator and one or more Routers from
the network. In this case, it uses the following criteria, in the given order of
precedence, to choose its parent:
a) Depth in tree (preference given to parent highest up the tree)
b) Number of children (preference given to parent with fewest children)
c) Signal strength (preference given to parent with strongest signal)

3. Join Request Sent: The node then sends a message to the selected parent
(Co-ordinator or Router), asking to join the network. The selected parent
determines whether it is can allow the device to join. If this is the case, it
accepts the join request. If no parent is found, the joining node searches again
(although an End Device will sleep before restarting the search).

Note: A Jenie network uses the Network Application ID
(see Section 1.4) to bring nodes together to form the
network. Therefore, the user applications of all nodes of
the network must be programmed with the same
Network Application ID.
26 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
1.10 Data Transfer
Data passed between nodes can contain any kind of information, as is it not
interpreted by Jenie. There are two ways of referring to nodes, depending on whether
service binding is being used:

Using Addresses: Data is sent to a particular node using the address of that
node (the address obtained from the discovery stage - see Section 1.7.2). It is
also possible to perform a broadcast to all Router nodes in the network.
Using Binding: Data is sent from a service on the local node to one or more
other services on remote nodes. The destination or destinations are
determined by the binding relationships defined by the application - no
addresses are needed (except when setting up the binding). For example, if
Service 2 on the local node is bound to Service 4 on a remote node and
Service 5 on another remote node, specifying Service 2 as the source service
will automatically assume destination Services 4 and 5 on the relevant nodes -
see Figure 8 below. For information on binding, refer to Section 1.8.

When data is received by a node, the address of the data source and the service (if
applicable) are passed up to the application, together with the data itself.

Note: A Router or Co-ordinator can be configured to
have a time-period during which joins are allowed. The
join period may be initiated by a user action, such as
pressing a button. An infinite join period can be set, so
that child nodes can join the parent node at any time.
JN-UG-3042 v1.8 © Jennic 2010 27

Chapter 1
Fundamental Concepts

 Jennic
Figure 8: Data Transfer using Binding

Service 4

Node A

Service 2

Node B

Service 4

Node C

Service 5

Node A

Service 2

Node B

Service 4

Service 2 on Node A
is bound to Service 4 on Node B

Node A

Service 2

Node C

Service 5

Service 2 on Node A
is bound to Service 5 on Node C

Data is transferred from Service 2 on Node A
to its bound services on remote nodes
28 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
1.11 Routing
A message sent from one node to another in a wireless network usually needs to pass
through one or more intermediate nodes before reaching its final destination. The role
of passing a message on (without processing its contents) is known as routing.

In a star network, all messages are routed by the Co-ordinator.
In a tree network, unless a message is passed directly between parent and
child (in either direction), the message must be routed by one or more routing
nodes - that is, Routers and possibly the Co-ordinator (if the message reaches
the top of the tree).

A message contains two IEEE/MAC addresses for routing purposes - the address of
the destination node and the address of the “next hop” node. The latter is modified by
the routing node as the message propagates through the network, and becomes the
same as the destination address for the final hop.

1.11.1 Neighbour and Routing Tables
The routing mechanism requires routing information to be stored in the Routers and
Co-ordinator. This information includes node addresses and is stored on the node in
two tables:

Neighbour table: Contains entries for all immediate children as well as the
node’s parent.
Routing table: Contains entries for all descendant nodes (lower in the tree)
that are not immediate children.

Together, these tables give a Router knowledge of all descendant nodes in the tree
and give the Co-ordinator knowledge of all nodes in the network. These tables are
assembled automatically by the stack as the network is initialised and formed.

1.11.2 Routing Process on a Node
On receiving a message, a Router node implements the following routing process:

1. The Router first checks the final destination address to determine whether the
message was intended for itself and, if this is the case, processes the
contents of the message.

2. If the above check failed, the Router checks its Neighbour table to determine
whether the message is destined for one of its immediate children and, if this
is the case, passes the message to the relevant child node.

3. If the previous check failed, the Router checks its Routing table to determine
whether the message is destined for one its other descendants and, if this is
the case, passes the message to the relevant intermediate child (Router).

4. If the previous check failed, the Router passes the message up the tree to its
parent for further routing.

For the Co-ordinator, the routing mechanism is similar except the message cannot be
passed up the tree.
JN-UG-3042 v1.8 © Jennic 2010 29

Chapter 1
Fundamental Concepts

 Jennic

1.12 Configurable Protocol Operations

This section describes a number of network protocol tasks:

Message Acknowledgements (Section 1.12.1)
Data Polling (Section 1.12.2)
Auto-ping (Section 1.12.3)

Although these tasks are automatic during network operation, you may need to
configure them when initialising the network in your application code.

1.12.1 Message Acknowledgements
When a message is sent from one node to another node, on receipt of the message
the destination node can be requested to send an acknowledgement back to the
source node to indicate that the message has been successfully received. Thus, if no
acknowledgement is received, the source node can assume that the original message
did not reach its destination and can attempt to re-send the message.

Acknowledgements can be enabled or disabled for an individual message
transmission.

1.12.2 Data Polling (End Device only)
An End Device can sleep for a good proportion of the time in order to conserve power.
Therefore, when data arrives for the End Device from another node, it may not be
possible to deliver the data immediately, since the destination node may be in sleep
mode. Consequently, the parent of the destination node buffers the data until the End
Device is out of sleep mode and ready to receive data. It is the responsibility of the
End Device to poll its parent to check whether there is pending data waiting to be
delivered.

Note: Acknowledgements are end-to-end, meaning that
they are sent by the final destination node to the source
node, and not by intermediate nodes along the route.

Caution: Pending data is buffered in the parent for a
maximum of 7 seconds and then, if uncollected, is
discarded. Failure by an End Device to poll for pending
data within this time limit can lead to orphaning
(rejection by its parent).
30 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
1.12.3 Auto-ping
A node may lose its parent and be unaware of this loss, particularly if data exchanges
with its parent are infrequent. In Jenie, an auto-ping mechanism (enabled by default)
is employed to periodically verify that the parent node is still present. On each ping,
the node sends a message to its parent:

If the parent is still present and accepts the node as its child, it sends a
response.
Otherwise, one of two error situations may exist:

If the parent is not present, no response is sent. If a certain number (five,
by default - see Section 6.4.1) of consecutive pings are unacknowledged
in this way, the child considers its parent to be lost and the child must
attempt to re-join the network.
If the parent is present but has dis-owned the child, an "Unknown-Node"
message is sent back. In this case, the child must attempt to re-join the
network.

An End Device has additional auto-ping requirements, described below.

End Device Pinging
An End Device can sleep, which must be taken into account when it pings its parent.
A ping can be sent from the End Device to the parent just before the End Device enters
sleep (for more details of this timing, see Communication Timeout in Section 6.5.1).
The response to this ping will be buffered by the parent for later collection by the End
Device (as described in Section 1.12.2). Therefore, to ensure that the auto-ping
feature works correctly, an End Device must operate as follows:

1. The End Device wakes from sleep and then performs any processing that is
necessary before it can return to sleep. If no data packets are transmitted to
its parent during this time, an auto-ping packet may be generated just before
the device re-enters sleep mode (depending on the ping interval - again, see
Section 6.5.1).

2. In order to obtain the response to a ping, the End Device must wake again
and then poll its parent for any pending data within 7 seconds of sending the
ping (see Section 1.12.2). Failure to poll the parent within this time will cause
the ping response to be discarded and may lead to the eventual orphaning of
the End Device (depending on the presence of other traffic between the two
devices).

Note: In a busy network, pinging is not essential since
the loss of a parent will be noticed through failed data
communications. To avoid unnecessary traffic in such
networks, when data is received from the parent node,
the countdown to the next ping is cancelled.
JN-UG-3042 v1.8 © Jennic 2010 31

Chapter 1
Fundamental Concepts

 Jennic
32 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
2. What is Jenie?
Jenie provides an easy-to-use interface which allows a user application to interact with
the Network level (JenNet) and Physical/Data Link level (IEEE 802.15.4) of the
wireless network software stack. Jenie functions/commands are used in the
application code to:

pass instructions and/or data down to the underlying software stack
handle events received from the underlying software stack

The location of Jenie in the software stack is illustrated in Figure 9 below.

2.1 Jenie Architecture
As described in Section 1.6, the software that runs on each node of a wireless network
is organised in levels ranging from high-level functions/commands, used directly by
the application, down to the lowest level software that interacts with the node’s radio
transceiver. The specific implementation of the software stack levels in a Jenie
network is illustrated and described below.

Figure 9: Detailed Software Architecture in Jenie

IEEE 802.15.4 MAC layer

JenNet

IEEE 802.15.4 PHY layer

Jenie

User Application

Service X Service Y Service Z

Physical/Data Link level

Network level

Application level
JN-UG-3042 v1.8 © Jennic 2010 33

Chapter 2
What is Jenie?

 Jennic

The above diagram shows (from top to bottom):

Application Level
This includes the user application that makes use of services provided by the node.

The user application interacts with the network through Jenie, which provides an easy-
to-use interface used by the application code.

Network Level
This is the network layer that is implemented using the JenNet protocol. It handles
network addressing and routing by invoking actions in the MAC layer (below). Its tasks
include:

Starting the network
Adding devices to and removing them from the network
Routing messages to their intended destinations
Applying security to outgoing messages

The network level interacts with the services in the Application layer through Jenie.

Physical/Data Link Level
This is provided by the IEEE 802.15.4 standard. This level consists of two separate
layers - the Physical layer and the Data Link layer:

Data Link layer: This is provided by the IEEE 802.15.4 MAC (Media Access
Control) layer. It is responsible for message delivery, as well as for assembling
data packets or frames to be transmitted and for decomposing received frames
(all are MAC frames).
Physical layer: This is provided by the IEEE 802.15.4 PHY layer. It is
concerned with the interface to the physical transmission medium, exchanging
data bits with this medium, as well as exchanging data bits with the layer above
(the Data Link layer).

Tip: In order to develop wireless network applications
using Jenie, no knowledge of the underlying JenNet
network protocol is normally required. However, if you
do require more information on JenNet, refer to the
JenNet Stack User Guide (JN-UG-3041).

Tip: In order to develop wireless network applications
using Jenie, no knowledge of IEEE 802.15.4 is required.
However, if you do require more information on IEEE
802.15.4, refer to the Jennic IEEE 802.15.4 Wireless
Network User Guide (JN-UG-3024).
34 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
2.2 Jenie Functionality
Jenie provides core functionality for managing network and system tasks, as well as
functionality for interfacing with the hardware peripherals on the JN5139/JN5148
wireless microcontroller. These two functional areas are outlined below.

2.2.1 Core Functionality
Jenie provides functionality for implementing network management, data transfer and
system tasks, as follows.

Network Management Tasks
The network management functionality provided by Jenie is largely concerned with
starting and forming the wireless network. These management tasks include:

configure and initialise the network
start a device as a Co-ordinator, Router or End Device
determine whether a Router or Co-ordinator is accepting join requests
advertise local node services and seek remote node services
establish bindings between local and remote node services
handle stack management events

Data Transfer Tasks
The data transfer functionality provided by Jenie is concerned with sending and
receiving data. These tasks include:

send data to a remote node or broadcast data to all Router nodes
send data to a bound service on a remote node
handle stack data events

System Tasks
The system functionality provided by Jenie is largely concerned with implementing
sleep mode, controlling the radio transmitter and dealing with hardware events. These
tasks include:

configure and start sleep mode
configure, start and stop the radio transmitter
obtain the version number of a component on the node (this task verifies that
the node is operating)
handle hardware events

Note that ‘doze mode’ of the JN5139/JN5148 device is not supported by Jenie.
JN-UG-3042 v1.8 © Jennic 2010 35

Chapter 2
What is Jenie?

 Jennic

2.2.2 Hardware Functionality

Jenie also includes functionality for interacting with the integrated peripherals of the
JN5139/JN5148 wireless microcontroller. These peripherals include:

Analogue resources: ADC, DACs, comparators
Digital I/O (DIOs)
UARTs
Timers
Wake timers
Serial Peripheral Interface (SPI)
2-Wire Serial Interface (SI)
Intelligent Peripheral (IP) interface

For further information on controlling the on-chip peripherals, refer to Chapter 5.

2.3 Forms of Jenie
Jenie is available in two forms:

Jenie API: This Application Programming Interface (API) comprises high-level
functions that can be incorporated in an application running on a Jennic
JN5139/JN5148 wireless microcontroller.
AT-Jenie: This interface comprises serial commands that can be sent to a
Jennic JN5139 wireless microcontroller from an application possibly running on
a separate processor.

This User Guide describes the Jenie API, which is introduced further in the next
section.

Note: This Jenie hardware functionality is provided for
Jennic customers who are maintaining Jenie
applications for the JN5139 device or migrating Jenie
applications from the JN5139 to the JN5148 device. Any
new Jenie application development for the JN5139 or
JN5148 device should instead use the Integrated
Peripherals API, which is described in the Integrated
Peripherals API Reference Manual (JN-RM-2001).

Tip: AT-Jenie provides an easy alternative to the Jenie
API for application developers who do not wish to
incorporate the Jenie function calls directly in their code.
Note that AT-Jenie is currently available only for the
JN5139 device.
36 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
2.4 Jenie API
The Jenie API is an optimised Application Programming Interface providing a simple,
easy-to-use yet powerful set of C functions designed to streamline application
development for wireless networks. The API functions are used directly in application
code to be run on the Jennic JN5139/JN5148 wireless microcontroller. This is
illustrated in Figure 10 below.

Jenie functionality is outlined in Section 2.2. The Jenie API functions are described in
the Jenie API Reference Manual (JN-RM-2035).

Figure 10: Application using Jenie API

Network Node

JN5139/JN5148

Jenie API

User Application
Calls Jenie API functions

JenNet

IEEE 802.15.4

Transmits/receives
radio communications
JN-UG-3042 v1.8 © Jennic 2010 37

Chapter 2
What is Jenie?

 Jennic

2.5 Installing Jenie

Jenie is provided as part of the Jennic Software Developer’s Kits (SDKs), available
from the Support area of the Jennic web site (www.jennic.com/support). Separate
SDKs are provided for the JN5139 and JN5148 devices.

The SDK Libraries installer (JN-SW-4030 for JN5139, JN-SW-4040 for JN5148)
includes the following software components:

AT-Jenie Command Parser (JN-SW-4030 only)
Jenie API
JenNet protocol software
IEEE 802.15.4 protocol software
Integrated Peripherals API
Board API

Note that you will only need the command parser if you wish to use the AT-Jenie serial
command set (on the JN5139 device).

In addition, a set of development tools is provided in the SDK Toolchain installer
(JN-SW-4031 for JN5139, JN-SW-4041 for JN5148), which includes:

Cygwin CLI
Code::Blocks IDE (JN-SW-4031 only) or Eclipse IDE (JN-SW-4041 only)
JN51xx compiler
JN51xx Flash programmer

You will need the JN51xx compiler and JN51xx Flash programmer, and either the
Cygwin CLI or the relevant IDE (depending on your chosen development
environment).

Caution: You must install the SDK Toolchain before
installing the SDK Libraries. Full installation instructions
for the SDK are provided in the relevant Jennic SDK
Installation Guide (JN-UG-3035 for the JN5139 SDK,
JN-UG-3064 for the JN5148 SDK).

Note: It is possible to install the Jennic SDKs for the
JN5139 and JN5148 devices on the same PC
(JN-SW-4030 and JN-SW-4031 for JN5139,
JN-SW-4040 and JN-SW-4041 for JN5148).
38 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
3. Application Tasks
This chapter describes the main tasks that you may perform using the Jenie API in
your applications.

You must create a separate application for each node type in your wireless network:
Co-ordinator, Router, End Device. The tasks required depend on the node type.

The tasks that you must program are presented here in approximately the order they
are likely to occur in the application code, and are as follows (where a task is specific
to a particular node type, this is indicated in the task description in this chapter):

Starting the network (by creating a Co-ordinator)
Starting other nodes and allowing devices to join the network
Configuring the radio transmitter on a node
Configuring security for data transfer
Registering and requesting services (service discovery)
Binding services
Sending and receiving data
Entering and leaving sleep mode (for an End Device)
Saving and restoring context data
Leaving the network

Throughout the task descriptions, references are made to the relevant functions from
the Jenie API. Full details of the Jenie API functions are provided in the Jenie API
Reference Manual (JN-RM-2035).

The Jenie API functions are divided into “application to stack” functions and “stack to
application” (or “callback”) functions. For further information, refer to Section 4.2.

Note: Low-level tasks for a particular node type are
handled automatically by the network level software
(JenNet). Therefore, once you have specified the type of
node in the application code, you need not be
concerned with the detailed tasks for that node.

Tip: Further guidance to application development using
Jenie is provided through application templates,
described in Chapter 4. You are strongly advised to use
these templates.
JN-UG-3042 v1.8 © Jennic 2010 39

Chapter 3
Application Tasks

 Jennic

3.1 Starting the Network (Co-ordinator only)

The first step in creating a wireless network is to start and initialise the device that is
to act as the network Co-ordinator. Thus, this task is only performed in the application
that runs on the device which has been chosen as the Co-ordinator.

The network is first configured using the vJenie_CbConfigureNetwork() callback
function, which acts as the entry point for the application code. This function allows
network parameters to be set, including those listed in the table below (for full network
parameter definitions, refer to the Jenie API Reference Manual (JN-RM-2035)).

Parameter settings that are not relevant to the Co-ordinator will be ignored.

Network Parameter Description

gJenie_PanID PAN ID: 16-bit value used to identify network - should not
not clash with PAN IDs of neighbouring networks, but will be
modified by the Co-ordinator if it does.

gJenie_NetworkApplicationID Network Application ID: 32-bit value used to identify network.

gJenie_Channel Channel: 2.4-GHz radio channel to use, or auto-channel
selection (default: auto-channel selection).

gJenie_ScanChannels Scan Channels: Bitmap of set of 2.4-GHz channels to scan
(bit x represents channel x), if auto-channel selection enabled
(default: all channels).

gJenie_MaxChildren Maximum Children: Maximum number of children that the Co-
ordinator can have (default: 10).

gJenie_MaxSleepingChildren Maximum Sleeping Children: Maximum number of children that
can be End Devices (default: 8). The remaining child slots are
then reserved exclusively for Routers, although any number of
child slots can be used for Routers.

gJenie_RoutingEnabled Routing Capability: Must be used to enable the routing capability
of the Co-ordinator.

gJenie_RoutingTableSize Routing Table Size: Maximum number of entries in Routing table
on Co-ordinator.

gJenie_RoutingTableSpace Routing Table: Pointer to Routing table.

gJenie_RouterPingPeriod Router Ping Period: Period for auto-pings generated by any
Router children (default: 5 seconds).

gJenie_EndDeviceChildActivity
Timeout

End Device Child Activity Timeout: Timeout for
communications (data polling excluded) from End Device child,
used to determine whether child has been lost..

gJenie_RecoverFromJpdm Recover Network Context: Option to recover network context
data from external non-volatile memory during a cold start
following power loss to on-chip memory (data previously saved).

gJenie_RecoverChildren
FromJpdm

Recover Child/Neighbour Table: Option to recover child/
neighbour table when context data is recovered from non-volatile
memory (see gJenie_RecoverFromJpdm).
40 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Further guidance on using some of the global parameters is provided in Appendix A.

The Co-ordinator, and therefore the network, is then started by calling the function
eJenie_Start(). Within this function, you must specify that the device to be started is
the Co-ordinator.

Once the Co-ordinator has been started as described above, it is ready to accept join
requests from other devices (see Section 3.2) and the network will then grow.

3.2 Starting Other Nodes (Routers and End Devices)
Once the network has been started through the Co-ordinator, as described in Section
3.1, other devices can join the network. The tasks described in this section can be
performed in applications to be run on Routers and End Devices.

The device (Router or End Device) is first configured using the callback function
vJenie_CbConfigureNetwork(), which acts as the entry point for the application
code. This function allows network parameters to be set, including those listed in the
table below (for full network parameter definitions, refer to the Jenie API Reference
Manual (JN-RM-2035)).

Note: The function eJenie_Start() is normally called
within the callback function vJenie_CbInit(), which must
be defined in your application code.

Note: The Co-ordinator is configured, by default, to
permit other nodes to join it. If at any time you wish to
disable joinings, use the eJenie_SetPermitJoin()
function.

Network Parameter Description

gJenie_NetworkApplicationID Network Application ID: Identifies the network to join.

gJenie_ScanChannels Scan Channels: Bitmap of set of 2.4-GHz channels to scan
when searching for a parent (bit x represents channel x).

gJenie_MaxChildren Maximum Children: Maximum number of children that a Router
can have (default: 10).

gJenie_MaxSleepingChildren Maximum Sleeping Children: Maximum number of children
that can be End Devices (default: 8). The remaining child slots
are then reserved exclusively for Routers, although any number
of child slots can be used for Routers.

gJenie_MaxFailedPkts Failed Communications: Number of failed communications
before node considers its parent or child to be lost (default: 5).

gJenie_RoutingEnabled Routing Capability: Used to enable the routing capability of a
Router (must be disabled for an End Device).
JN-UG-3042 v1.8 © Jennic 2010 41

Chapter 3
Application Tasks

 Jennic
Parameter settings that are not relevant to Routers or End Devices will be ignored.

Further guidance on using some of the global parameters is provided in Appendix A.
The device is then started by calling the function eJenie_Start(). Within this function,
you must specify that the device is to be started as a Router or an End Device.

Once the device has been started, it will transmit beacon requests to search for a
parent in the network with a particular Network Application ID. All potential parent
nodes (Routers and the Co-ordinator), which are in range, receive this request and
respond with beacons describing their ability to accept children. Given two or more
responses from different potential parents, a joining device will select the parent
according to the set of criteria described in Section 1.9. If the device fails to find a
parent, it will search again. After nine failed attempts, it will generate a stack reset
event (E_JENIE_STACK_RESET) before repeating the scan process once again (this
event provides the application with an opportunity to undertake any outstanding
actions). Also note that after each failed attempt to find a parent, an End Device will
sleep (for the period gJenie_EndDeviceScanSleep) before the next attempt.

gJenie_RoutingTableSize Routing Table Size: Maximum number of entries in Routing
table on Router.

gJenie_RoutingTableSpace Routing Table: Pointer to Routing table for Router.

gJenie_RouterPingPeriod Router Ping Period: Period for auto-pings generated by a
Router (default: 5 seconds).

gJenie_EndDevicePingInterval End Device Ping Interval: Number of sleep cycles between
auto-pings of an End Device to its parent (default: 1).

gJenie_EndDeviceScanSleep End Device Scan Sleep: Amount of time following a failed scan
that an End Device waits (sleeps) before starting another scan
(default: 10 seconds). Avoid settings less than 1 second for large
networks.

gJenie_EndDevicePollPeriod End Device Poll Period: Time between auto-poll data requests
sent from an End Device (while awake) to its parent
(default: 5 seconds).

gJenie_EndDeviceChildActivity
Timeout

End Device Child Activity Timeout: Timeout for
communications (data polling excluded) from End Device child,
used by Router to determine whether child has been lost.

gJenie_RecoverFromJpdm Recover Network Context: Option to recover network context
data from external non-volatile memory during a cold start
following power loss to on-chip memory (data previously saved).

gJenie_RecoverChidren
FromJpdm

Recover Child/Neighbour Table: Option on a Router to recover
child/neighbour table when context data is recovered from non-
volatile memory (see gJenie_RecoverFromJpdm).

Note: The function eJenie_Start() is normally called
within the callback function vJenie_CbInit(), which must
be defined in your application code.

Network Parameter Description
42 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
3.3 Configuring the Radio Transmitter
The radio transmission power of the JN5139/JN5148 wireless microcontroller can be
set using the Jenie API function eJenie_RadioPower(). The power levels for JN5139/
JN5148-based modules can be set as multiples of 6 dBm in the following ranges:

Standard modules: -30 to 0 dBm (default: 0 dBm)
High-power modules: -12 to +18 dBm (default: 18 dBm)

The power level can be set in these ranges but should normally be left at the default
value. Note that ‘boost mode’ of the JN5139 device is not supported by Jenie.

The above function can also be used to switch the radio transmitter off and on.

3.4 Configuring Security
Data sent between network nodes can be optionally encrypted and decrypted for
secure communications using the AES (Advanced Encryption Standard) CCM*
algorithm. This encryption/decryption is based on a security key (a value) that can be
defined by the user. Thus, when data is sent from one node to another, it is encrypted
by the originating node using a security key and the destination node decrypts the data
using this same key. The security measures also include data integrity using a MIC
(Message Integrity Code) and replay attack prevention using a nonce. For more
information on security, refer to the JenNet Stack User Guide (JN-UG-3041).

Security is enabled and the security key is specified using the function
eJenie_SetSecurityKey(). This function is called separately for each destination
node - on each call, the security key and 64-bit IEEE/MAC address of the remote node
are specified.

Security in communications with a particular node can also be disabled using the
function eJenie_SetSecurityKey().

Note: A Router is configured, by default, to permit other
nodes to join it. If at any time you wish to disable
joinings, use the eJenie_SetPermitJoin() function.

Caution: In the current release of Jenie, the same
security key is used for communication with all nodes. It
is not possible to use different keys for different node
pairs. Therefore, eJenie_SetSecurityKey() only needs
to be called once for communication with the whole
network.
JN-UG-3042 v1.8 © Jennic 2010 43

Chapter 3
Application Tasks

 Jennic

3.5 Discovering Services

A node of a Jenie network can support up to 32 services, where a service is a feature,
function or capability of the node (for example, the support of keypad input). In setting
up a Jenie network, “service discovery” must be implemented to find the services
available and which nodes provide them. Service discovery is implemented in two
stages:

1. Each node must make the rest of the network aware of the services it has to
offer by “registering” these services.

2. Each node must find out which other nodes provide services that are
compatible with its own (services that can communicate, such as temperature
sensor and heating control) - it does this by “requesting” services.

The above two stages are described in more detail below.

3.5.1 Registering Services
Each node must first register its services with the network - that is, advertise the
services it has to offer.

The services of an individual node are defined in a 32-bit value based on the Service
Profile of the network (see Section 1.7). Each bit position represents a specific service,
‘1’ indicating that the service is supported and ‘0’ indicating that it is not supported by
the node. This 32-bit value is defined in the header of the application.

Registering the services of a node makes them available to other nodes. In the case
of a Router and the Co-ordinator, this list of registered services is held locally.
However, for an End Device, the list is registered with its parent node. Thus, a Router
or the Co-ordinator holds lists of services supported by all its child nodes.

Services are registered using the Jenie API function eJenie_RegisterServices(). The
behaviour following this call is dependent on the node type:

Co-ordinator or Router: In this case, the services are registered locally and
the function call is able to return immediately with success or failure.
End Device: In this case, the services must be registered with the parent node
and the function call returns with deferred status, since this takes time. Once
the services have been registered with the parent, this is indicated by means of
an E_JENIE_REG_SVC_RSP response (management stack event) received
using the callback function vJenie_CbStackMgmtEvent().

Note: Service discovery is a useful technique in
allowing the discovery of node addresses as well as
node capabilities.
44 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
3.5.2 Requesting Services
A node must determine with which other nodes it can potentially communicate - to
allow communication, the remote node must provide one or more services compatible
with the service(s) of the local node.

To determine the compatible nodes, the local node sends out a service request
containing a list of those services which are of interest. This is done using the Jenie
API function eJenie_RequestServices(). The requested services are specified
through a 32-bit value (based on the network’s Service Profile) in which the 1s indicate
the required services. This function call returns immediately and the results from
individual nodes are returned later as E_JENIE_SVC_REQ_RSP responses
(management stack events), received via the callback function
vJenie_CbStackMgmtEvent().
These responses contain the 64-bit IEEE/MAC address of the relevant remote node
and a 32-bit value detailing the services supported by the node (where 1s indicate the
supported services). The application can then determine with which node(s) it should
communicate.

When an End Device is added to the network, it will take time to register the new
node’s services with its parent, following a call to eJenie_RegisterServices(). If a
remote node requests services using eJenie_RequestServices() before this
registration has completed, no results will be returned for the services of the new End
Device. Therefore, if the remote node is particularly interested in the services of this
End Device, it may be necessary to re-request services until an
E_JENIE_SVC_REQ_RSP response is received containing the relevant IEEE/MAC
address. One approach is to implement a timeout on the requesting node from the
moment that eJenie_RequestServices() was called - if no response from the relevant
End Device has been received within the timeout period then
eJenie_RequestServices() should be called again.
JN-UG-3042 v1.8 © Jennic 2010 45

Chapter 3
Application Tasks

 Jennic

3.6 Binding Services

In Jenie applications, communication between nodes can be simplified by binding
services. Thus, a service on one node can be bound to a compatible service on
another node to facilitate easy communication - for bound services, all future
communications between the services will not need to specify node addresses.

The Jenie API function eJenie_BindService() is used to bind a service to another
service on a remote node. The following information must be specified:

local service
remote node’s address
remote service

The last two items could have been obtained from an E_JENIE_SVC_REQ_RSP
event received as the result of a service request (see Section 3.5.2). Once a service
binding has been created, messages can be sent from the local service to the remote
service as described in Section 3.7.2.

You can bind a service to multiple remote services - this requires separate calls to
eJenie_BindService().
If you later wish to unbind two services, use the function eJenie_UnBindService().

3.7 Transferring Data
Once the network has been set up, messages can be exchanged between nodes.
Data should be sent between two nodes only if the application on the destination node
is capable of interpreting the received data (for example, for temperature data, the
target node contains a heating controller).

There are two ways of sending data from one node to another - the basic method uses
node addresses and the alternative method uses bound services, as described in the
sub-sections below.

In all cases, data sent to an End Device will be buffered on its parent node until the
End Device polls its parent for data - for more details, refer to Section 3.7.3. Also note

Note: Service binding is not a requirement for nodes to
communicate. You can implement communication
between nodes without service binding, in which case
you will need to use node addresses.

Note: “Service discovery” (described in Section 3.5) can
be used to establish which nodes are capable of
communicating with each other. Service discovery will
also give you the node addresses.
46 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
that when an End Device wakes from sleep without memory held, data must not be
transmitted by the End Device until the node is back in the network - see Section 3.9.2.

3.7.1 Sending and Receiving Data using Addresses
Data can be sent to a remote node using the Jenie API function eJenie_SendData().
This method requires you to specify the 64-bit IEEE/MAC address of the target node.

The sent data arrives at the target node through an E_JENIE_DATA event, received
via the callback function vJenie_CbStackDataEvent().

3.7.2 Sending and Receiving Data using Bound Services
Data can be sent from a service to one or more bound services using the Jenie API
function eJenie_SendDataToBoundService(). This method assumes the source and
destination services have been bound as described in Section 3.6. It is not necessary
to use the target node address. The local service (from which the data originates) is
specified and the destination is then the remote service(s) to which the local service
has been previously bound.

The sent data arrives at the target node through an E_JENIE_DATA_TO_SERVICE
event, received via the callback function vJenie_CbStackDataEvent().

3.7.3 Receiving Data for an End Device
Data sent to an End Device is buffered on its parent, in case the End Device is
sleeping when the data arrives. It is the responsibility of the End Device to collect any
pending data from its parent. It should do this regularly and always on waking from
sleep when data is expected, since a build-up of unclaimed data for the End Device
on its parent will eventually cause the End Device to be orphaned by its parent (see
Section 6.5).

Polling of the parent can be conducted manually or automatically, as described below.

Tip: A node can send data to the Co-ordinator by
specifying a target address of zero.

Tip: It is also possible to implement data broadcasts to
all Router nodes using eJenie_SendData().

Caution: Pending data is buffered on the parent for up
to 7 seconds before the data is discarded. Therefore,
polling should be performed at least once every
7 seconds, otherwise data may be lost and the End
Device may eventually be orphaned.
JN-UG-3042 v1.8 © Jennic 2010 47

Chapter 3
Application Tasks

 Jennic

Manual Polling

The End Device can manually poll its parent for data using eJenie_PollParent()
(in which case, auto-polling should be disabled - see Auto-Polling below). Following
this function call, an E_JENIE_POLL_CMPLT event is generated on the End Device.

If there is pending data for the End Device, this event contains a status value of
E_JENIE_POLL_DATA_READY and is followed by an E_JENIE_DATA event
containing the data. However, this data event will only contain one data message. If
there are multiple pending data messages for the End Device, they must be collected
by repeated calls to eJenie_PollParent() until there is no further pending data,
indicated when the event E_JENIE_POLL_CMPLT contains a status value of
E_JENIE_POLL_NO_DATA.

Auto-Polling
By default, an End Device is configured to automatically poll its parent on a periodic
basis. The default polling period is 5 seconds, but this can be changed on the End
Device through the global variable gJenie_EndDevicePollPeriod, which can also be
used to disable auto-polling (by setting a polling period of 0).

Note that with auto-polling enabled, an End Device will automatically poll its parent on
waking from sleep, irrespective of the polling period set.

If there is pending data for the End Device, data will be received by the End Device
immediately following the auto-poll - the response from the parent will result in an
E_JENIE_POLL_DATA_READY event on the End Device, followed by an
E_JENIE_DATA event containing the data. However, only one data message will be
delivered on each auto-poll. In order to collect any other pending data messages
(particularly before going to sleep), the application could then perform repeated
manual polls using the eJenie_PollParent() function until there is no more pending
data (see Manual Polling above).

Auto-polling and gJenie_EndDevicePollPeriod are also described in Section 6.6.

Tip: In your End Device code, you should call
eJenie_PollParent() repeatedly until the
E_JENIE_POLL_NO_DATA status is obtained,
indicating that there is no more data for the End Device.

Note: The E_JENIE_POLL_CMPLT event is also
generated if no response is received from the parent. In
this case, the event also contains a status value of
E_JENIE_POLL_NO_DATA.
48 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
3.8 Obtaining Signal Strength Measurements
The apparent radio signal strength of a received data packet is measured by the
receiving node and this information can be accessed by the application. The signal
strength is measured in terms of a Link Quality Indication (LQI) value, which is an
integer in the range 0-255 where 255 represents the strongest signal.

This information can be obtained from the stack in one of two ways:

From Neighbour tables: Details of every direct descendant of a routing node
(Router or Co-ordinator) are stored in the Neighbour table on the node. These
details include the strength (LQI value) of the last received packet from the
neighbour. Jenie functions are provided to access the contents of a Neighbour
table on the local node:

u8Jenie_GetNeighbourTableSize() can first be used to obtain the
number of entries in the Neighbour table.
eJenie_GetNeighbourTableEntry() can then be used to obtain the
information from an individual table entry - this information is placed in a
structure of type tsJenie_NeighbourEntry, which includes an element
u8LinkQuality containing an LQI value.

From last packet received: You can use the JenNet function
u8Api_GetLastPktLqi() to obtain the LQI value of the last packet received by
the local node. A description of this function can be found in the JenNet
appendix of the Jenie API Reference Manual (JN-RM-2035).

The relationships between the LQI value and the detected power, P, in dBm for the
JN5139 and JN5148 devices are approximately given by the formulae below.

For the JN5139 device:
P = (LQI - 305)/3

For the JN5148 device:
P = (7 x LQI - 1970)/20

The above formulae are valid for 0 ≤ LQI ≤ 255.

Caution: The relationships saturate at the LQI values of
0 and 255, and so power measurements obtained from
these extreme LQI values are not reliable (the power
obtained from an LQI value of 0 can only be considered
as the maximum possible power detected, while the
power obtained from an LQI value of 255 can only be
considered as the minimum possible power detected).
JN-UG-3042 v1.8 © Jennic 2010 49

Chapter 3
Application Tasks

 Jennic

3.9 Entering and Leaving Sleep Mode (End Devices only)

When using battery-powered nodes (or nodes with other autonomous power sources,
such as solar power), it is desirable to conserve power as much as possible. This
maximises battery life and consequently reduces maintenance work involving battery
replacement. One way of doing this is to put the node into a low-power sleep mode
during periods when the node does not need to be active (for example, between data
transmissions). Since Routers and the Co-ordinator need to be constantly active for
routing and joining purposes, only End Devices can be put into sleep mode.

Jenie provides the functionality to put an End Device into sleep mode and bring it out
again. Sleep mode is entered using the function eJenie_Sleep(). There may be a
delay between calling this function and the start of the sleep period, since the node
must first finish performing any tasks that remain to be completed. The device can be
put to sleep for a fixed time-period which is pre-configured using the function
eJenie_SetSleepPeriod() - this function only needs to be called once, since the
configured period applies to all subsequent calls to eJenie_Sleep(). As an example,
if the End Device is expected to transmit data once every 30 seconds, the sleep
duration should be set to a value less than 30 seconds. This method uses a wake timer
to wake the device from sleep and requires the on-chip 32-kHz oscillator to be running
during sleep - this is configured through the call to eJenie_Sleep(). Alternatively, the
device can be woken by a hardware event deriving from the on-chip comparators or
DIOs, but this method does not require the oscillator to be running.

Sleep mode can be entered with or without preserving the contents of on-chip RAM
(maintaining this volatile memory during sleep will consume more power). Again, the
required option is configured through the function eJenie_Sleep(). The cases of sleep
with memory held and sleep without memory held are described in the sub-sections
below.

Caution: If you set a sleep duration greater than
7 seconds using eJenie_SetSleepPeriod(), avoid
sending data to this End Device while it is asleep (while
it is not polling its parent for data). This will prevent the
End Device from being orphaned by its parent.

Note 1: The function eJenie_Sleep() must only be
called from within the main application task, represented
by the callback function vJenie_CbMain(). It must not
be called from any other callback function.

Note 2: The function eJenie_Sleep() should not be
called while the node is attempting to join a network, as
the stack controls sleep during this time - that is,
between starting/resetting the stack and the event
E_JENIE_NETWORK_UP.
50 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
3.9.1 Sleep Mode with Memory Held
Sleep mode with memory held is specified when the function eJenie_Sleep() is called
to enter sleep mode. On-chip RAM will remain powered during sleep and therefore
context data will be preserved. This allows the node to easily resume network
operation when it exits sleep mode.

When the node wakes from sleep with memory held, the stack calls the user-defined
callback function vJenie_CbInit() which should initiate a “warm restart”. The device
does not re-join the network immediately but remains in the idle state until
eJenie_Start() is called. The device then restarts as a network node using the context
data held in on-chip RAM.

3.9.2 Sleep Mode without Memory Held
Sleep mode without memory held is specified when the function eJenie_Sleep() is
called to enter sleep mode. In this case, on-chip RAM is powered down during sleep
and context data held in this volatile memory must be saved to external non-volatile
memory (e.g. Flash) before calling eJenie_Sleep(). This data can be saved using the
function vJPDM_SaveContext().
When the node wakes from sleep without memory held, the stack calls the user-
defined callback function vJenie_CbInit() which should initiate a “cold restart”. This
callback function must call the function eJPDM_RestoreContext() to retrieve the
application context data stored in non-volatile memory before entering sleep. The
network context data will be retrieved automatically, provided the global variable
gJenie_RecoverFromJpdm has been set. The device does not re-join the network
immediately but remains in the idle state until eJenie_Start() is called. The device
then restarts as a network node using the context data that has been re-loaded into
on-chip RAM.

Note: Before using vJPDM_SaveContext() and
eJPDM_RestoreContext(), you should refer to Section
3.10 on saving and restoring context data.

Caution: After waking from sleep without memory held,
you must wait for the E_JENIE_NETWORK_UP event
before attempting to transmit data. Failure to do this will
result in the ‘send data’ function returning the error code
E_JENIE_ERR_STACK_BUSY.
JN-UG-3042 v1.8 © Jennic 2010 51

Chapter 3
Application Tasks

 Jennic

3.10 Saving and Restoring Context Data

Context data, which describes the current state of the network and application, is held
in on-chip memory. If the chip enters a period when its memory is not powered (such
as a power failure or sleep mode without memory held), this data will be lost and the
node must re-start from scratch when power is resumed. However, Jenie provides the
facility to save a copy of this context data to external non-volatile memory (e.g. Flash)
so that after power loss, node operation can resume from where it left off. This section
describes the steps to take in your code in order to use this feature.

Two Jenie API functions are provided for this purpose:

vJPDM_SaveContext(): This function saves both network and application
context to non-volatile memory.
eJPDM_RestoreContext(): This function is used to recover application context
from non-volatile memory (network context can be recovered automatically).
The first time this function is called (after a cold start), it is used to set up a
memory buffer in which application context data will subsequently be stored.

The cases of saving/restoring network and application context data are dealt with
separately in the sub-sections below.

In addition, the function vJPDM_EraseAllContext() is provided, which erases all
context data stored in non-volatile memory. This function is used in reverting back to
the default context data. You should immediately follow this function call with a
software reset, by calling vJPI_SwReset(), to ensure that the current context data is
lost (and not re-saved) and the default context data is restored to non-volatile memory.

For full details of all functions, macros and parameters, refer to the Jenie API
Reference Manual (JN-RM-2035).

3.10.1 Network Context
In order to save network context data to external non-volatile memory, it is first
necessary to set the global variable gJenie_RecoverFromJpdm to TRUE when the
callback function vJenie_CbConfigureNetwork() is called. The network context can
then be saved at any time using the function vJPDM_SaveContext().
Subsequently, whenever the application starts the stack using the function
eJenie_Start(), the saved network context will automatically be copied back into
memory and the stack will be returned to its state from when vJPDM_SaveContext()
was last called.

Note: If this feature is not enabled using the parameter
gJenie_RecoverFromJpdm, the stack will always re-
start from scratch. In this case, the application must then
re-establish any service bindings that existed. However,
you will still be able to save and restore application
context, as described in Section 3.10.2.
52 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
In addition to gJenie_RecoverFromJpdm, the following global variables are used in
conjunction with this feature and can be set from vJenie_CbConfigureNetwork():

gJpdmSector: Sector of Flash memory to use (default: Sector 3)
gJpdmSectorSize: Size of sector to use (default: 32 Kbytes)
gJpdmFlashType: Type of Flash memory used (default: auto-detect)
gJpdmFlashFuncTable: Pointer to function table for custom Flash device
(default: NULL)

The last two parameters above allow you to use a range of Flash devices as external
non-volatile memory.

A further global variable, gJenie_RecoverChildrenFromJpdm, can be used to enable/
disable the recovery of a Router’s or Co-ordinator’s child/neighbour table among its
context data (this option is enabled, by default).

If enabled, the parent node will be able to remember its child nodes and quickly
resume its role in the network following a power loss. However, problems will
occur if any of its children have in the meantime rejoined the network via other
parent nodes.
If disabled, the parent will lose all knowledge of its previous children and will
dis-own them when it rejoins the network. Therefore, the children will all need
to rejoin the network and it does not matter if some of them have already
rejoined via new parents during the power loss.

3.10.2 Application Context
In order to save application context to external non-volatile memory, you must include
a call to the function eJPDM_RestoreContext() within the initialisation callback
function vJenie_CbInit():

The first time application is run, there is no saved application data to restore
and the eJPDM_RestoreContext() function registers a buffer in on-chip
memory in which to store application data. The buffer is set up using the macro
JPDM_DECLARE_BUFFER_DESCRIPTION.
When the application is subsequently re-started, eJPDM_RestoreContext()
will recover application context data from external non-volatile memory,
previously stored using the function vJPDM_SaveContext(). The recovered
data is stored in the buffer set up using the macro
JPDM_DECLARE_BUFFER_DESCRIPTION.

The function eJPDM_RestoreContext() must always be called for a cold start. The
use of this function is illustrated in the code fragment below.
JN-UG-3042 v1.8 © Jennic 2010 53

Chapter 3
Application Tasks

 Jennic
struct sMyAppData

{

 //... data here
};

PRIVATE sMyAppData sData;

PRIVATE tsJPDM_BufferDescription sMyBufferDescriptor =

JPDM_DECLARE_BUFFER_DESCRIPTION("MyAppData", &sData, sizeof(sData));

PUBLIC void vJenie_CbInit(bool_t bWarmStart)

{

 //...

 if(!bWarmStart)

 {
 eJPDM_RestoreContext(&sMyBufferDescriptor);

 }

 //...

}

Note: You can save/restore application context
irrespective of whether you save/restore network
context (described in Section 3.10.1). If both save/
restore operations are enabled, a single call to the
function vJPDM_SaveContext() will save both network
and application context to external non-volatile memory.
54 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
3.11 Leaving the Network
A node may leave the network under the control of the application (e.g. when an End
Device is temporarily removed to replace its batteries) or under the control of the stack
(e.g. when the parent suffers a power interruption). This section describes leaving the
network from the points-of-view of the leaving node and its parent.

On the Leaving Node
A node can leave the network by calling the function eJenie_Leave() in its application
code (this function call could, for example, be linked to a button press on the node).
This dis-associates the node from its parent and stops the stack on the node. The
node will then remain out of the network until the function eJenie_Start() is called,
when the stack will be re-started and the node will attempt to find another parent.

Alternatively, a node may leave the network automatically under the control of the
stack (normally in situations where the node considers its parent to be lost). In this
case, the node will automatically try to re-join the network without calling
eJenie_Start(). This case is linked to the global variables described in Section 6.4 -
refer to this section for more information.

In either of the above cases, when a node leaves the network, the event
E_JENIE_STACK_RESET is generated on the node.

On the Parent Node
The way a parent node detects the loss of a child node depends on whether the child
is an End Device or a Router, and is linked to the global variables described in Section
6.5 - refer to this section for more information.

When a child node leaves the network, the event E_JENIE_CHILD_LEAVE is
generated on the parent node.
JN-UG-3042 v1.8 © Jennic 2010 55

Chapter 3
Application Tasks

 Jennic
56 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
4. Working with the Jenie API
This chapter describes application development using the Jenie API, based on the
Jenie application templates available from Jennic. It also describes how to build your
applications and download them to the target nodes.

Caution: The Jenie API functions must not be called
from interrupt context (for example, from within a user-
defined callback function). Instead, the application
should set a flag to indicate that the call should be made
later, outside of interrupt context.
JN-UG-3042 v1.8 © Jennic 2010 57

Chapter 4
Working with the Jenie API

 Jennic

4.1 Jenie Application Templates

The Jenie application templates provide a basis for your own application development
for a wireless network. These templates are supplied in the Application Note Jenie
Application Templates (JN-AN-1061), available under Application Notes in the
Support area of the Jennic web site (www.jennic.com/support).

Separate skeleton code is provided for each node type: Co-ordinator, Router, End
Device. You can modify the supplied code to adapt it to your own application needs.

4.1.1 Pre-requisites
The supplied application templates assume the following:

The network topology will be a Tree.
You have one device which will act as the Co-ordinator.
You have at least one other device (each to act as a Router or an End Device).
You will use pre-determined values for the PAN ID and Network Application ID.

4.1.2 Supplied Files
Three C source files are provided, one for each node type:

AN1061_JN_Coord.c for the Co-ordinator
AN1061_JN_Router.c for a Router
AN1061_JN_EndD.c for an End Device

For each of the above applications, files are provided for building the binaries:

Makefiles
Code::Blocks project files (.cbp) for the JN5139 device
Eclipse project files (.project and .cproject) for the JN5148 device

Tip: You will also find the Application Note Jenie Tutorial
(JN-AN-1085) very useful. This takes a step-by-step
approach to developing a wireless network application
using the Jenie API and JenNet networking protocol.
58 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
4.2 Code Descriptions
This section describes the supplied application source code at function level - this is
for a cold start. The code includes two types of function:

“Application to stack” functions that are called in the application to interact with
the software stack through Jenie. These functions are defined in the Jenie API.
“Stack to application” functions that are called by the software stack through
Jenie to interact with the application - these are referred to as “callback”
functions. Their prototypes are included in the Jenie API but you must define
their content in your application code.

The general structure of the application code is illustrated in Figure 11. The sub-
sections which follow describe the code for the Co-ordinator, Router and End Device.

Figure 11: Application Code Overview

User Application Jenie
(to/from stack)

vJenie_CbConfigureNetwork()

Return

vJenie_CbInit()

eJenie_Start()

Return from eJenie_Start()

Initialises stack
parameters

Further initialisation

Start-up Tasks

Main Task
vJenie_CbMain()

Return
Processing

loop

Event Handling

vJenie_CbStackMgmtEvent()

Return

vJenie_CbStackDataEvent()

Return

vJenie_CbHwEvent()

Return

Deals with stack
management events

Deals with stack
data events

Deals with
hardware events

Return from vJenie_CbInit()
JN-UG-3042 v1.8 © Jennic 2010 59

Chapter 4
Working with the Jenie API

 Jennic
4.2.1 Co-ordinator Code
The Co-ordinator application, AN1061_JN_Coord.c, is structured as illustrated in
Figure 11 and described below:

1. The entry point from Jenie into the Co-ordinator application is the callback
function vJenie_CbConfigureNetwork(), which is used for a cold start (at
system start-up or reset). This function can be used to initialise stack
parameters, including:

PAN ID (16-bit value)
Network Application ID (32-bit value)
Radio frequency channel for network
Maximum number of children (for the Co-ordinator)
Routing functionality (enable for Co-ordinator)
Routing table size
Array for Routing table

2. Jenie then calls the callback function vJenie_CbInit(), specifying a cold start.
This function performs any further initialisation and then calls the function
eJenie_Start(), which starts the Co-ordinator (and therefore the network).

3. Once the Co-ordinator has been initialised and started, Jenie calls the
callback function vJenie_CbMain(), which is the main application task. This
function must define any processing that is to be performed by the application.
vJenie_CbMain() is called repeatedly by Jenie, but between calls Jenie may
generate events which are sent to the application. The application must define
callback functions that can be invoked by Jenie to deal with these events:

vJenie_CbStackMgmtEvent() - this function deals with stack
management events (for example, a service request response received
from a remote node).
vJenie_CbStackDataEvent() - this function deals with stack data events
(for example, a message containing data received from a remote node or a
response to one of the local node’s own messages).
vJenie_CbHwEvent() - this function deals with hardware events from the
JN5139/JN5148 wireless microcontroller or carrier board.

Once the appropriate function has dealt with the event, control is returned to
Jenie which continues to call vJenie_CbMain().

Note: The code for a warm start is similar to the above
code (for a cold start) except the network configuration
callback function vJenie_CbConfigureNetwork() is not
required.
60 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
4.2.2 Router Code
The Router application, AN1061_JN_Router.c, is structured as illustrated in
Figure 11 and described below (the overall structure is very similar to that of the Co-
ordinator code).

1. The entry point from Jenie into the Router application is the callback function
vJenie_CbConfigureNetwork(), which is used for a cold start (at system
start-up or reset). This function can be used to initialise stack parameters,
including:

Network Application ID of network to join
Maximum number of children (for the Router)
Routing functionality (enable for Router)
Routing table size
Array for Routing table

2. Jenie then calls the callback function vJenie_CbInit(), specifying a cold start.
This function performs any further initialisation and then calls the function
eJenie_Start(), which starts the Router (which will then attempt to join the
network).

3. Once the Router has been initialised and started, Jenie calls the callback
function vJenie_CbMain(), which is the main application task. This function
must define any processing that is to be performed by the application.
vJenie_CbMain() is called repeatedly by Jenie, but between calls Jenie may
generate events which are sent to the application. The application must define
callback functions that can be invoked by Jenie to deal with these events:

vJenie_CbStackMgmtEvent() - this function deals with stack
management events (for example, a service request response received
from a remote node).
vJenie_CbStackDataEvent() - this function deals with stack data events
(for example, a message containing data received from a remote node or a
response to one of the local node’s own messages).
vJenie_CbHwEvent() - this function deals with hardware events from the
JN5139/JN5148 wireless microcontroller or carrier board.

Once the appropriate function has dealt with the event, control is returned to
Jenie which continues to call vJenie_CbMain().
JN-UG-3042 v1.8 © Jennic 2010 61

Chapter 4
Working with the Jenie API

 Jennic

4.2.3 End Device Code

The End Device application, AN1061_JN_EndD.c, is structured as illustrated in
Figure 11 and described below (the overall structure is very similar to that of the Co-
ordinator and Router code):

1. The entry point from Jenie into the End Device application is the callback
function vJenie_CbConfigureNetwork(), which is used for a cold start (at
system start-up or reset). This function can be used to initialise stack
parameters, including:

Network Application ID of the network to join
Routing functionality (disable for End Device)

2. Jenie then calls the callback function vJenie_CbInit(), specifying a cold start.
This function performs any further initialisation and then calls the function
eJenie_Start(), which starts the End Device (which will then attempt to join
the network).
While attempting to join the network, an End Device may sleep between scans
and therefore go through a number of warm re-starts following the sleep
periods.

3. Once the End Device has been initialised and started, Jenie calls the callback
function vJenie_CbMain(), which is the main application task. This function
must define any processing that is to be performed by the application. This
includes putting the node into sleep mode, if required, using the function
eJenie_Sleep().
vJenie_CbMain() is called repeatedly by Jenie, but between calls Jenie may
generate events which are sent to the application. The application must define
callback functions that can be invoked by Jenie to deal with these events:

vJenie_CbStackMgmtEvent() - this function deals with stack
management events.
vJenie_CbStackDataEvent() - this function deals with stack data events
(for example, a message containing data received from a remote node or a
response to one of the local node’s own messages).
vJenie_CbHwEvent() - this function deals with hardware events from the
JN5139/JN5148 wireless microcontroller or carrier board.

Once the appropriate function has dealt with the event, control is returned to
Jenie which continues to call vJenie_CbMain().
62 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
4.3 Building Your Application
Once you have created your source files (for example, Coordinator.c, Router.c and
EndDevice.c), you must build the executables on a PC or workstation before
downloading them to the relevant devices. There are two possible methods of building
the applications, depending on your development environment:

Makefiles (for CLI users)
IDE (Eclipse for JN5148 users, Code::Blocks for JN5139 users)

These are described in the subsections below.

For all build methods, your project directory must be located in:

<JENNIC_SDK_ROOT>\cygwin\jennic\SDK\Application for JN5139
<JENNIC_SDK_ROOT>\Application for JN5148

where <JENNIC_SDK_ROOT> is the path into which the Jennic SDK was installed.

Note that the Jenie library file with which an application is linked depends on the node
type, as follows:

The Co-ordinator and Router applications are both linked to the library file
Jenie_TreeCRLib.a.
The End Device application is linked to the library file Jenie_TreeEDLib.a.

The relevant library file must be included in the makefile or project file, as appropriate.

4.3.1 Building Code using Makefiles
This section describes how to build your application code using a makefile.

You should base your makefiles on the examples supplied by Jennic in the Application
Note Jenie Application Templates (JN-AN-1061). There is a makefile for each node
type, located in the Build sub-directory for the corresponding application. For
example, the Co-ordinator makefiles are located in:

...\JN-AN-1061-Jenie-Application-Template\AN1061_JN_Coord\Build

Different makefiles are provided for JN5139 and JN5148 - a JN5148 makefile is simply
called Makefile and a JN5139 makefile is called Makefile_JN5139.mk.

Build your code as follows:

1. Navigate to the Build directory for the application to be built and follow the
instructions below for your chip type:
For JN5139:
At the command prompt, enter:
make -f Makefile_JN5139.mk clean all

For JN5148:
At the command prompt, enter:
make clean all
JN-UG-3042 v1.8 © Jennic 2010 63

Chapter 4
Working with the Jenie API

 Jennic
In all the above cases, the binary file will be created in the relevant Build
directory, the resulting filename indicating both the chip type (JN5139 or
JN5148) and networking stack (JN for Jenie) for which the application was
built.

2. Load the resulting binary file into the board. To do this, use the Jennic JN51xx
Flash Programmer, described in the JN51xx Flash Programmer User Guide
(JN-UG-3007).

4.3.2 Building Code using Eclipse (JN5148 only)
This section provides information on building application code for the JN5148 device
using the Eclipse IDE.

The build process in Eclipse uses the following files:

A makefile for each application
Eclipse project files (.project and .cproject), where each file covers all the
applications in the project

Examples of these files are provided in the Application Note Jenie Application
Templates (JN-AN-1061). The project files are located in the top level of the project
directory (JN-AN-1061-Jenie-Application-Template). The makefile for an application is
simply called Makefile and is located in the application’s Build sub-directory - for
example, for the Co-ordinator:

...\JN-AN-1061-Jenie-Application-Template\AN1061_JN_Coord\Build

For further instructions on creating and building a project in Eclipse, refer to the
Eclipse IDE User Guide (JN-UG-3063).

Tip: For the JN5148 device, you can alternatively enter
the above command from the top level of the project
directory, which will build the binaries for all applications.

Caution: You must use the version of Eclipse provided
by Jennic. This is described in the Eclipse IDE User
Guide (JN-UG-3063).
64 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
4.3.3 Building Code using Code::Blocks (JN5139 only)
This section describes how to build application code for the JN5139 device using the
Code::Blocks IDE.

You will need a Code::Blocks project file for each source file - for example,
5139_JN_Coord.cbp, 5139_JN_Router.cbp and 5139_JN_EndD.cbp. Here, the
prefix indicates the target chip.

You can base your project files on the examples supplied by Jennic in the Application
Note Jenie Application Templates (JN-AN-1061). The Code::Blocks project files are
located in the directory:

...\JN-AN-1061-Jenie-Application-Template\CodeBlocksProject

A project file is provided for each node type (Co-ordinator, Router, End Device).

Follow the procedure below (you will need to do this for each application).

Step 1 Start Code::Blocks and open the project to be built by following the menu path
File > Open.

Step 2 In the Open file screen, choose the project file for the application to be built
(e.g. 5139_JN_Coord.cbp).

Caution: You must use the version of Code::Blocks
provided by Jennic. This is described in the Jennic
Code::Blocks IDE User Guide (JN-UG-3028).
JN-UG-3042 v1.8 © Jennic 2010 65

Chapter 4
Working with the Jenie API

 Jennic

Step 3 To display the source code, navigate to the required source file under the Projects

tab of the left pane and double-click on the filename.

Step 4 Select the required build type, Debug or Release, by following the menu path
Build>Select target.

If you are building for debug purposes, select Debug.
If you are building for a final release, select Release.

Alternatively, you can make this choice using the Build target drop-down list in the
Code::Blocks toolbar.

Note: Code that is built with the Debug setting will only
run in debug mode on the local PC (and will not run on
the JN5139 wireless microcontroller).
66 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Step 5 To compile the application, click on the Build button (circled in red below) in the
toolbar of Code::Blocks. To see the build log, click on the Build log tab in the bottom
pane of the Code::Blocks window.

Tip: Compile and link errors (if any) are displayed in the
Build log pane.
JN-UG-3042 v1.8 © Jennic 2010 67

Chapter 4
Working with the Jenie API

 Jennic

4.4 Downloading Code to Nodes

Once you have built your application for the JN5139/JN5148 microcontroller, there are
two possible ways of downloading your binary file to the target device:

If you are using the Code::Blocks IDE or Eclipse IDE provided by Jennic, you
can download your .bin file directly from the IDE - refer to the Jennic
Code::Blocks IDE User Guide (JN-UG-3028) or the Eclipse IDE User Guide
(JN-UG-3063), as appropriate.
Otherwise, you must run the Jennic JN51xx Flash Programmer to download
your .bin file - refer to the Jennic JN51xx Flash Programmer Application User
Guide (JN-UG-3007).
68 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
5. Controlling Hardware Peripherals
The Jenie API includes a set of functions that can be used to interface with on-chip
peripherals of the JN5139/JN5148 wireless microcontroller - these functions are
collectively referred to as the Jenie Peripherals Interface (JPI). The JPI can be used
to interact with the following peripherals:

Analogue resources: ADC, DACs, comparators
Digital I/O (DIOs)
UARTs
Timers
Wake timers
Serial Peripheral Interface (SPI)
2-wire Serial Interface (SI)
Intelligent Peripheral (IP) interface

This chapter outlines the use of the JPI to control the ADC, DACs, comparators, DIOs,
timers, wake timers, SPI, SI and IP interface, and also provides the essential hardware
knowledge needed to use these peripherals. The JPI functions referenced are fully
detailed in the Jenie API Reference Manual (JN-RM-2035).

For further information on the JN5139 or JN5148 integrated peripherals, refer to the
Jennic data sheet (JN-DS-JN5139 or JN-DS-JN5148) for the relevant device.

Important: The JPI library is provided for Jennic
customers who are maintaining Jenie applications for
the JN5139 device or migrating Jenie applications from
the JN5139 to the JN5148 device. Any new Jenie
application development for the JN5139 or JN5148
device should instead use the Integrated Peripherals
API, which includes extra functionality. The functions of
this API are provided in the file AppHardwareApi.h and
are described in the Integrated Peripherals API
Reference Manual (JN-RM-2001).
JN-UG-3042 v1.8 © Jennic 2010 69

Chapter 5
Controlling Hardware Peripherals

 Jennic

5.1 ADC

The JN5139/JN5148 device includes a 12-bit Analogue-to-Digital Converter (ADC) -
that is, an ADC which samples an analogue input (such as a temperature
measurement) and converts it into a 12-bit digital output.

The ADC has the following features, which are configured/controlled using the Jenie
functions indicated:

Input source: The ADC can take its input from one of six multiplexed sources,
comprising four external pins, an on-chip temperature sensor and an internal
voltage monitor. The input source is selected using the function
vJPI_AnalogueEnable().
Input voltage range: The permissible range for the analogue input voltage can
be defined relative to a reference voltage Vref, which can be sourced internally
or externally. The input voltage range can be selected as either 0-Vref or 0-2Vref
(an input voltage outside this range results in a saturated digital output). The
source of Vref is selected using the function vJPI_AnalogueConfigure(). The
analogue voltage range is selected using the vJPI_AnalogueEnable()
function.
Clock: The clock input for the ADC is provided by the 16-MHz on-chip clock,
which is divided down. The target frequency is selected using the function
vJPI_AnalogueConfigure() (this clock output is shared with the DACs).
Currently, the only target frequency suitable for the ADC is 500 kHz.
Sampling interval: The sampling interval determines the time over which the
ADC will sample the analogue input before performing the conversion - in fact,
the sampling occurs over three times this interval (see Figure 12). This interval
can be set as a multiple of the ADC clock cycle (2, 4, 6 or 8), where this multiple
is selected using the function vJPI_AnalogueConfigure(). Normally, it should
be set to 2 - for details, refer to the Jennic data sheet for the relevant device.
Conversion mode: The ADC can be configured to perform a single
analogue-to-digital conversion (single-shot mode) or repeated conversions
(continuous mode). The conversion mode is selected using the function
vJPI_AnalogueEnable(). In either case, the total time to complete an
individual conversion is given by (3 x sampling interval) + (14 x clock period).
This is illustrated in Figure 12. In the case of continuous conversion, after this
time the next conversion will start, and this will continue indefinitely until
stopped using the vJPI_AnalogueDisable() function.

Note: The functions vJPI_AnalogueConfigure() and
vJPI_AnalogueEnable(), referred to below, are used to
configure all the analogue peripherals (ADC and DACs).
The function vJPI_AnalogueConfigure() is used to
configure properties that apply to all the analogue
peripherals. The function vJPI_AnalogueEnable() can
be used to configure any one of the analogue
peripherals, the target device (e.g. ADC) being specified
as a parameter.
70 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Interrupt: Interrupts can be enabled such that an interrupt is generated after
each individual conversion. This is particularly useful for ADC continuous
conversion. Interrupts can be enabled/disabled using the function
vJPI_AnalogueConfigure().
Regulator: In order to minimise the amount of digital noise in the ADC, the
device is powered (along with the DACs) from a separate regulator, sourced
from the analogue supply VDD1. The regulator, and therefore power, can be
enabled/disabled using the function vJPI_AnalogueConfigure().

Once the ADC has been configured using the functions vJPI_AnalogueConfigure()
and vJPI_AnalogueEnable(), you can start conversion using the function
vJPI_AnalogueStartSample() - the ADC will perform either a single conversion or
repeated conversions, depending on its configured mode (single shot or continuous).
The 12-bit output of the latest sample can be read from the ADC using the function
u16JPI_AnalogueAdcRead() (if interrupts are enabled, this read operation may be
performed after receiving an interrupt from the ADC). The ADC can be disabled using
the function vJPI_AnalogueDisable().

Figure 12: ADC Sampling

3 x
sampling
interval

14 x
clock
period

ADC captures
analogue input
during this time

ADC uses this time to
perform the conversion
JN-UG-3042 v1.8 © Jennic 2010 71

Chapter 5
Controlling Hardware Peripherals

 Jennic

5.2 DACs

The JN5139/JN5148 device includes two Digital-to-Analogue Converters (DACs),
denoted DAC1 and DAC2. These are 11-bit DACs on the JN5139 device and 12-bit
DACs on the JN5148 device. Each DAC can take a digital input of up to 11/12 bits and,
from it, produce an analogue output as a proportional voltage on a dedicated pin
(DAC1 or DAC2, as appropriate).

Each DAC has the following features, which are configured/controlled using the Jenie
functions indicated.

Output voltage range: The maximum range for the analogue output voltage
can be defined relative to a reference voltage Vref, which can be sourced
internally or externally. The output voltage range can be selected as either
0-Vref or 0-2Vref. The source of Vref is selected using the function
vJPI_AnalogueConfigure(). The analogue voltage range is selected using the
function vJPI_AnalogueEnable().
Clock: The clock input for the DAC is provided by the 16-MHz on-chip clock,
which is divided down. The target frequency is selected using the function
vJPI_AnalogueConfigure() (this clock output is shared with the other DAC
and ADC). Note that to make use of the full 11-bit or 12-bit input resolution of
the DAC, the target frequency should be set to 250 kHz.
Sampling period: The sampling period can be set as a multiple of the DAC
clock cycle (2, 4, 6 or 8) and determines the conversion period of the DAC - that
is, the time delay between submitting a digital value to the DAC and obtaining
the converted analogue value on the output pin. The conversion period is given
by (3 x sampling interval) + (14 x clock period), as for the ADC. The sampling
period multiple is selected using the function vJPI_AnalogueConfigure() (this
value is shared with the other DAC and ADC).

Note: On the JN5139 device, only one DAC can be
used at any one time, since the two DACs share
resources. If both DACs are to be used concurrently,
they can be multiplexed.

Note: The functions vJPI_AnalogueConfigure() and
vJPI_AnalogueEnable(), referred to below, are used to
configure all the analogue peripherals (ADC and DACs).
The function vJPI_AnalogueConfigure() is used to
configure properties that apply to all the analogue
peripherals. The function vJPI_AnalogueEnable() can
be used to configure any one of the analogue
peripherals, the target device (e.g. DAC1) being
specified as a parameter.
72 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Regulator: In order to minimise the amount of digital noise in the DAC, the
device is powered (along with the other DAC and ADC) from a separate
regulator, sourced from the analogue supply VDD1. The separate regulator
(and therefore power) can be enabled/disabled using the function
vJPI_AnalogueConfigure().

In addition to the above, the function vJPI_AnalogueEnable() takes as a parameter
the first digital value to be converted - this is a 16-bit value, but only the 11/12 least
significant bits are used (all other bits are ignored). Conversion begins as soon as
vJPI_AnalogueEnable() is called for the DAC. Subsequent digital values for
conversion can be submitted to the DAC using the vJPI_AnalogueDacOutput()
function. The DAC can be disabled using the function vJPI_AnalogueDisable().

5.3 Comparators
The JN5139/JN5148 device includes two comparators, denoted COMP1 and COMP2.

A comparator can be used to compare two analogue inputs - it changes its two-state
digital output (high to low or low to high) when the difference between the inputs
changes sense (positive to negative or negative to positive). As such, it can be used
as a basis for measuring the frequency of a time-varying analogue input when
compared with a constant reference input.

Thus, each comparator has two analogue inputs. One analogue input (on the ‘positive’
pin COMP1P or COMP2P) carries the externally sourced signal that is to be compared
with a reference signal. The reference signal can be sourced internally or externally,
as follows:

externally from the ‘negative’ pin COMP1M or COMP2M
internally from the analogue output of the corresponding DAC (DAC1 or DAC2)
internally from the reference voltage Vref (the source of Vref is selected using
the function vJPI_AnalogueConfigure())

The reference signal is selected from the above options using the function
vJPI_ComparatorEnable().
The comparator has two possible states - high or low. The comparator state is
determined by the relative values of the two analogue input voltages - that is, by the
instantaneous voltages of the signal under analysis, Vsig, and the reference signal,
Vrefsig. The relationships are as follows:

Vsig > Vrefsig ⇒ high

Vsig < Vrefsig ⇒ low

or in terms of differences:

Vsig - Vrefsig > 0 ⇒ high

Vsig - Vrefsig < 0 ⇒ low

Thus, as the signal levels vary with time, when Vsig rises above Vrefsig or falls below
Vrefsig, the state of the comparator result changes. In this way, Vrefsig is used as the
threshold against which Vsig is assessed.
JN-UG-3042 v1.8 © Jennic 2010 73

Chapter 5
Controlling Hardware Peripherals

 Jennic

In reality, this method of functioning is sensitive to noise in the analogue input signals
causing spurious changes in the comparator state. This situation can be improved by
using two different thresholds:

An upper threshold, Vupper, for low-to-high transitions

A lower threshold, Vlower, for high-to-low transitions

The thresholds Vupper and Vlower are defined such that they are above and below the
reference signal voltage Vrefsig by the same amount, where this amount is called the
hysteresis voltage, Vhyst. That is:

Vupper = Vrefsig + Vhyst

Vlower = Vrefsig - Vhyst

The hysteresis voltage is selected using the vJPI_ComparatorEnable() function. It
can be set to 0, 5, 10 or 20 mV. The selected hysteresis level should be larger than
the noise level in the input signal.

The comparator two-threshold mechanism is illustrated in Figure 13 below for the
case when the reference signal voltage Vrefsig is constant.

As well as configuring a specified comparator, the vJPI_ComparatorEnable() also
starts the comparator. The current state of the comparator (high or low) can be
obtained at any time using the function bJPI_ComparatorStatus(). This returns a
boolean value - FALSE corresponds to low and TRUE corresponds to high. The
comparator can be stopped using the vJPI_ComparatorDisable() function.

Figure 13: Upper and Lower Thresholds of Comparator

Vsig

t

Vupper

Vlower

Vrefsig
2Vhyst

⇒

⇒

Comparator state:
Low to High

Comparator state:
High to Low
74 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
The comparators allow an interrupt to be generated on either a low-to-high or high-to-
low transition. Interrupts can only be produced on transitions in one direction (and not
both directions). The function vJPI_ComparatorIntEnable() is used to both enable/
disable comparator interrupts and select the direction of the transitions that will trigger
the interrupts.

A comparator interrupt can be used as a signal to wake a node from sleep - this is then
referred to as a ‘wake-up interrupt’. To use this feature, interrupts must be configured
and enabled using vJPI_ComparatorIntEnable(), as described above. Note that
during sleep, the reference signal Vrefsig is taken from an external source via the
‘negative’ pin COMP1M or COMP2M. The wake-up interrupt status can be checked
using the function bJPI_ComparatorWakeStatus().

5.4 Digital I/O
The JN5139/JN5148 device includes 21 general-purpose digital input/output (DIO)
pins, denoted DIO0 to DIO20. Each pin can be individually configured as an input or
output. However, the DIO pins are shared with on-chip peripherals and are not
available when the corresponding peripherals are enabled. From reset, all peripherals
are disabled and the DIOs are configured as inputs.

The DIOs can be individually configured as inputs and outputs using the function
vJPI_DioSetDirection(). The DIOs configured as outputs can then be individually set
to on (high) and off (low) status using the function vJPI_DioSetOutput(). The status
of all the DIOs configured as inputs can be obtained using the function
u32JPI_DioReadInput().
Each DIO has an associated pull-up resistor. The purpose of the ‘pull-up’ is to prevent
the state of the pin from ‘floating’ when there is no external load connected to the DIO
- that is, when enabled, the pull-up ties the pin to the high (on) state in the absence of
an external load (or in the presence a weak external load). The pull-ups for all the DIOs
can be enabled/disabled using the function vJPI_DioSetPullup() - by default, all pull-
ups are enabled.

The DIOs can be used to wake the node from sleep. Any DIO pin configured as an
input can be used for wake-up - a change of state of the DIO will trigger the wake
signal. However, first the wake signal must be enabled on the relevant DIO and the
transition (low-to-high or high-to-low) that will trigger the wake signal must also be
selected. DIO wake signals are configured and enabled/disabled using the function
vJPI_DioWake(). The wake status of the DIO pins can subsequently be obtained
using the function u32JPI_DioWakeStatus().
JN-UG-3042 v1.8 © Jennic 2010 75

Chapter 5
Controlling Hardware Peripherals

 Jennic

5.5 Timers

The JN5139 device includes 2 general-purpose timers/counters, denoted Timer 0 and
Timer 1, and the JN5148 device includes a further timer, denoted Timer 2.

Each timer requires a source clock, which is selected when the timer is enabled using
the function vJPI_TimerEnable() - the source clock options are described below.

The timers can be operated in the following modes: Timer, PWM, Delta-Sigma and
Capture. These modes are summarised in the table below, along with the functions
needed for each mode.

Caution: The tick timer, also provided by the JN5139/
JN5148 device, is reserved for Jenie use and must not
be directly used by your application.

Mode Description Functions

Timer The source clock is used to produce a pulse cycle
defined by the number of clock cycles until a pos-
itive pulse edge and until a negative pulse edge.
Interrupts can be generated on either or both
edges. The pulse cycle can be produced just
once in ‘single-shot’ mode or continuously in
‘repeat’ mode. Timer mode is described further in
Section 5.5.1.

vJPI_TimerEnable()
vJPI_TimerStart()

PWM As for Timer mode, except the Pulse Width Modu-
lated signal is output on a DIO (which depends on
the specific timer used - see Table 5 below).

vJPI_TimerEnable()
vJPI_TimerStart()

Delta-Sigma The timer is used as a low-rate DAC. The con-
verted signal is output on a DIO (which depends
on the specific timer used - see Table 5 below)
and requires simple filtering to give the analogue
signal. Delta-Sigma mode is available in two
options, NRZ and RTZ, and is described further in
Section 5.5.2.

vJPI_TimerEnable()
vJPI_TimerStart()

Capture An external input signal is sampled on every tick
of the source clock. The results of the capture
allow the period and pulse width of the sampled
signal to be calculated. Capture mode is
described further in Section 5.5.3.

vJPI_TimerEnable()
vJPI_TimerStartCapture()
u32JPI_TimerReadCapture()

Table 4: Modes of Timer Operation
76 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Before using a timer, the following parameters must be configured for the specified
timer using the function vJPI_TimerEnable():

Source Clock: Timer 0 and Timer 1 can be sourced from either an internal or
external clock, while Timer 2 (JN5148 only) is always sourced internally. If the
internal clock is used, this is the 16-MHz on-chip system clock. If an external
clock is used, this must be connected to the DIO8 pin for Timer 0 or the DIO11
pin for Timer 1 (and the DIO pins must be explicitly enabled for use by the timer
- see below). In addition to source clock selection, the function
vJPI_TimerEnable() allows you to specify whether the clock is to be inverted.
Clock Divisor: To obtain the timer frequency, the source clock frequency is
divided by a factor 2prescale, where prescale is a user-configurable integer value
in the range 0 to 16 (note that the value 0 leaves the clock frequency
unchanged). For example, for a prescale value of 3, the 16-MHz system clock
frequency is divided by 8 to give a timer frequency of 2 MHz.
Interrupts: Each timer can be configured to generate interrupts on either or
both of the following conditions:

On the rising edge of the timer output (at end of low period)
On the falling edge of the timer output (at the end of full timer period)

External Output: The timer signal can be output externally, but this output
must be explicitly enabled. For Timer 0, the DIO10 pin is used for this purpose.
For Timer 1, the DIO13 pin is used. For Timer 2 (JN5148 only), the DIO11 pin is
used. If a DIO pin is to be used by a timer, this use must be enabled (see
below).
DIO Pins: The timers can use certain DIO pins. The relevant pins for the two
timers are summarised in the table below. Their use must be explicitly enabled.

Once a timer has been configured using the function vJPI_TimerEnable(), it is
normally started in the required mode using one of two functions:

vJPI_TimerStart() is used to start the timer in ‘Timer/PWM’ mode or ‘Delta-
Sigma’ mode - these modes are described in Section 5.5.1 and Section 5.5.2,
respectively.
vJPI_TimerStartCapture() is used to start the timer in ‘Capture’ mode - this
mode is described in .Section 5.5.3.

DIO Pins
for Timer 0

DIO Pins
for Timer 1

DIO Pins
for Timer 2 Function

8 11 - External clock input

9 12 - Capture input

10 13 11 PWM and Delta-Sigma output

Table 5: DIO Pins for Timers
JN-UG-3042 v1.8 © Jennic 2010 77

Chapter 5
Controlling Hardware Peripherals

 Jennic

5.5.1 Timer/PWM Mode

Timer mode allows a timer to produce a rectangular waveform of a specified period,
where this waveform starts low and then goes high after a specified time. These times
are specified when the timer is started using vJPI_TimerStart(), in terms of the
following parameters:

Time to rise (u16HighPeriod): This is the number of clock cycles from timer
start before the (first) low-to-high transition. An interrupt can be generated at
this transition.
Time to fall (u16LowPeriod): This is the number of clock cycles from timer
start before the (first) high-to-low transition (effectively the period of one pulse
cycle). An interrupt can be generated at this transition.

These times and the timer signal are illustrated below in Figure 14.

Within Timer mode, one of two sub-modes must be selected in the function
vJPI_TimerStart():

Single-shot mode: The timer produces a single pulse cycle (as depicted in
Figure 14) and then stops.
Repeat mode: The timer produces a train of pulses (where the repetition rate
is determined by the configured “time to fall” period - see above).

Once started, the timer can be stopped using the function vJPI_TimerStop().
PWM (Pulse Width Modulation) mode is identical to Timer mode except the produced
waveform is output on a DIO pin - DIO10 for Timer 0, DIO13 for Timer 1 and DIO11 for
Timer 2 (JN5148 only). This output can be enable in the function vJPI_TimerEnable().

Figure 14: Timer Mode Signal

Time to rise (u16HighPeriod)

Time to fall (u16LowPeriod)

LOW

HIGH
78 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
5.5.2 Delta-Sigma Mode (NRZ and RTZ)
Delta-Sigma mode allows a timer to be used as a simple low-rate DAC. This requires
the timer output to be enabled on the relevant DIO pin (DIO10 pin for Timer 0, DIO13
for Timer 1, DIO11 for Timer 2), and an RC (Resistor-Capacitor) circuit to be inserted
between this pin and Ground (see Figure 15 on page 80).

A timer is started in Delta-Sigma mode using the function vJPI_TimerStart(). The
value to be converted is digitally encoded by the timer as a pseudo-random waveform
in which:

the total number of clock cycles that make up one period of the waveform is
fixed (at 216 for NRZ and 217 for RTZ - see below)
the number of high clock cycles during one period is set to a number which is
proportional to the value to be converted
the high clock cycles are distributed randomly throughout a complete period

Thus, the capacitor will charge in proportion to the specified value such that, at the end
of the period, the voltage produced is an analogue representation of the digital value.
The voltage obtained on the capacitor depends on the value of the RC constant for the
external circuit. This requires calibration - for example, you could determine the
maximum possible voltage by measuring the voltage across the capacitor after a
conversion with the high period set to the whole pulse period.

Two Delta-Sigma mode options are available, NRZ and RTZ:

NRZ (Non Return-to-Zero): Delta-Sigma NRZ mode uses the 16-MHz system
clock and the period of the waveform is fixed at 216 clock cycles. The NRZ
option means that clock cycles are implemented without gaps between them
(see RTZ option below). You must define the number of clock cycles spent in
the high state during the pulse cycle such that this high period is proportional to
the value to be converted. This is set in the function vJPI_TimerStart(). For
example, if you wish to convert values in the range 0-100 then 216 clock cycles
would correspond to 100, and to convert the value 25 you must set the number
of high clock cycles to 214 (a quarter of the pulse cycle). For an illustration, refer
to Figure 15.
RTZ (Return-to-Zero): Delta-Sigma RTZ mode is similar to the NRZ option,
described above, except that after every clock cycle it inserts a blank (low)
clock cycle. Thus, each pulse cycle takes twice as many clock cycles - that is,
217. Note that this does not affect the required number of high clock cycles to
represent the digital value being converted. This mode doubles the conversion
period, but improves linearity if the rise and fall times of the outputs are different
from one another.

Note: For more information on ‘Delta-Sigma’ mode,
refer to the data sheet for your Jennic wireless
microcontroller. Also, refer to the Application Note Using
JN51xx Timers (JN-AN-1032), which includes the
selection of the R and C values for the RC circuit.
JN-UG-3042 v1.8 © Jennic 2010 79

Chapter 5
Controlling Hardware Peripherals

 Jennic
5.5.3 Capture Mode
In Capture mode, Timer 0 or Timer 1 can be used to measure the pulse width of an
external input (Capture mode is not available on Timer 2 of the JN5148 device). The
external signal must be provided on the DIO9 pin (Timer 0) or DIO12 pin (Timer 1).
The timer measures the number of clock cycles in the input signal from the start of
capture to the next low-to-high transition and also to next the high-to-low transition.
The number of clock cycles in the last pulse is then the difference between these
measured values (see Figure 16). The pulse width in units of time is then given by:

Pulse width (in units of time) = Number of clock cycles in pulse X Clock cycle period

A timer is started in Capture mode using the function vJPI_TimerStartCapture(). The
timer can be stopped and the most recent measurements obtained using the function
u32JPI_TimerReadCapture().

Figure 15: Delta-Sigma NRZ Mode Operation

Note: Only the measurements for the last low-to-high
and high-to-low transitions are stored and then returned
when u32JPI_TimerReadCapture() is called.
Therefore, it is important not to call this function during a
pulse, as in this case the measurements will not give
sensible results. To ensure that you obtain the capture
results after a pulse has completed, you should enable
interrupts on the falling edge when the timer is
configured using vJPI_TimerEnable().

R

C

DIO10, 11* or 13

Period
(216 clock cycles, e.g. corresponding to 100)

High periods represent value, e.g. 214 clock cycles corresponding to 25

JN5139/JN5148 Timer in Delta-Sigma Mode

Vout

* JN5148 only
80 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Figure 16: Capture Mode Operation

Clock cycles to low-to-high transition

Clock cycles to high-to-low transition

Pulse width

Timer started
in capture mode

Timer stopped
and results
obtained

Clock cycles
JN-UG-3042 v1.8 © Jennic 2010 81

Chapter 5
Controlling Hardware Peripherals

 Jennic

5.6 Wake Timers

The JN5139/JN5148 device includes two wake timers, denoted Wake Timer 0 and
Wake Timer 1. These are 32-bit timers on the JN5139 device and 35-bit timers on the
JN5148 device, but the 35-bit timers operate only as 32-bit timers with JPI library. The
wake timers can run while the device is in sleep mode (or while the CPU is running),
and are generally used to time the sleep duration and wake the device at the end of
the sleep period. A wake timer counts down from a programmed value and wakes the
device when the count reaches zero by generating an interrupt or wake-up event.

A wake timer is enabled using the functon vJPI_WakeTimerEnable(). This function
allows you to enable/disable the interrupt that is generated when the counter reaches
zero. The timer can then be started using the function vJPI_WakeTimerStart(). This
function takes as a parameter the starting value for the countdown - this value must
be specified in 32-kHz clock periods (thus, 32 corresponds to 1 millisecond). If
enabled, the wake timer interrupt is generated on reaching zero.

A wake timer can be stopped at any time using the function vJPI_WakeTimerStop()
- the counter will then remain at the value at which it was stopped and will not generate
an interrupt.

The function uint32JPI_WakeTimerRead() can be used to obtain the current value of
a wake timer. The function u8JPI_WakeTimerStatus() requests which timers are
active (note that a timer remains active after it has fired). The function
u8JPI_WakeTimerFiredStatus() requests which timers have fired (any timers that
have fired are cleared as a result of this function call).

The wake timers are driven by the JN5139/JN5148 internal 32-kHz clock. However,
this clock may run up to 30% fast or slow, depending on temperature, supply voltage
and manufacturing tolerance. For cases in which accurate timing is required, a self-
calibration facility is provided to time the 32-kHz clock against the chip’s more
accurate 16-MHz clock. This test is performed using Wake Timer 0. The result of this
calibration allows you to calculate the required number of 32-kHz clock cycles to
achieve the desired timer duration when starting a wake timer with the function
vJPI_WakeTimerStart(). The calibration is performed using the function
u32JPI_WakeTimerCalibrate(), as described below.

Caution: The wireless microcontroller can be put to
sleep using the function eJenie_Sleep(), as described
in Section 3.9. If this function is called after the function
eJenie_SetSleepPeriod() to initiate a timed sleep,
Wake Timer 0 is used and the above functions
automatically call the Wake Timer functions mentioned
below. Therefore, you must finish using Wake Timer 0
for any other purposes in your application code before
calling eJenie_SetSleepPeriod() and eJenie_Sleep().
82 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
1. Wake Timer 0 must be disabled (using vJPI_WakeTimerStop(), if required).
2. Both wake timers (0 and 1) must be cleared by calling the function

u8JPI_WakeTimerFiredStatus().
3. The calibration is started using u32JPI_WakeTimerCalibrate().

This causes Wake Timer 0 to start counting down 20 clock periods of the
internal 32-kHz clock. At the same time, a reference counter starts counting up
from zero using the 16-MHz clock.

4. When the wake timer reaches zero, u32JPI_WakeTimerCalibrate() returns
the number of 16-MHz clock cycles registered by the reference counter. Let
this value be n.

If the clock is running at 32 kHz, n = 10000
If the clock is running slower than 32 kHz, n > 10000
If the clock is running faster than 32 kHz, n < 10000

5. You can then calculate the required number of 32-kHz clock periods (for
vJPI_WakeTimerStart()) to achieve the desired timer duration. If T is the
required duration in seconds, the appropriate number of 32-kHz clock periods,
N, is given by:

For example, if a value of 9000 is obtained for n, this means that the 32-kHz
clock is running fast. Therefore, to achieve a 2-second timer duration, instead
of requiring 64000 clock periods, you will need (10000/9000) x 32000 x 2 clock
periods; that is, 71111 (rounded down).

Tip: To ensure that the device wakes in time for a
scheduled event, it is better to under-estimate the
required number of 32-kHz clock periods than to over-
estimate them.

N 10000
n

---------------⎝ ⎠
⎛ ⎞ 32000 T××=
JN-UG-3042 v1.8 © Jennic 2010 83

Chapter 5
Controlling Hardware Peripherals

 Jennic

5.7 Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI) on the JN5139/JN5148 wireless microcontroller
allows high-speed synchronous data transfers between the JN5139/JN5148 and
peripheral devices, without software intervention.

The JN5139/JN5148 device operates as the master on the SPI bus and all other
devices connected to the bus are then expected to be slave devices under the control
of the master’s CPU. The SPI supports up to five slave devices, one of which is Flash
memory, by default. If enabled, the additional slave-select lines use DIO0-DIO3.

Data transfer is full-duplex, so data is transmitted by both communicating devices at
the same time. Data to be transmitted is stored in a FIFO buffer in the device. The data
transaction size can be 8, 16 or 32 bits, and the data transfer order can be configured
as LSB (least significant bit) or MSB (most significant bit) first.

Since the data transfer is synchronous, both transmitting and receiving devices use
the same clock, provided by the SPI master. The SPI uses the 16-MHz clock, which
may be divided down to allow bit rates from 250 kbps to 16 Mbps.

The clock edge on which data is latched is determined by the SPI mode of operation
used (0, 1, 2 or 3), which is determined by two boolean parameters, clock polarity and
phase, as indicated in the table below.

An interrupt can be enabled, which is generated when the data transfer completes.

Before transferring data, the SPI master must select the slave(s) with which it wishes
to communicate. Thus, the relevant slave-select line(s) must be asserted. It is usual
for the SPI master to communicate with a single slave at a time, so not to receive data
from multiple slaves simultaneously (unless the slave devices can be inhibited from
transmitting data). An “Automatic Slave Selection” feature is provided, which only
asserts the chosen slave-select line(s) during a data transfer.

SPI Mode Polarity Phase Description

0 0 0 Data latched on rising edge of clock

1 0 1 Data latched on falling edge of clock

2 1 0 Clock inverted and data latched on falling edge of clock

3 1 1 Clock inverted and data latched on rising edge of clock

Table 6: SPI Modes of Operation
84 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
An SPI data transfer is performed using the JPI functions as follows:

1. The SPI master must first be configured using the function
vJPI_SpiConfigure(). This function allows the configuration of:

Number of extra SPI slaves (in addition to Flash memory)
Clock divisor (for 16-MHz clock)
Data transfer order (LSB first or MSB first)
Clock polarity (unchanged or inverted)
Phase (latch data on leading edge or trailing edge of clock)
Automatic Slave Selection
SPI interrupts

If SPI interrupts are enabled, a corresponding callback must be registered
using the function vJPI_SpiRegisterCallback().

2. The SPI slaves must be selected using the function vJPI_SpiSelect(). If
“Automatic Slave Selection” is off, the relevant slave-select line(s) will be
asserted immediately, otherwise the line(s) will only be asserted during a
subsequent data transfer.

3. A data transfer is implemented using one of the following functions, depending
on the transaction size:

vJPI_SpiStartTransfer8() for 8-bit data
vJPI_SpiStartTransfer16() for 16-bit data
vJPI_SpiStartTransfer32() for 32-bit data

4. The transfer is allowed to complete by waiting for a SPI interrupt (if enabled)
to indicate completion, or by calling vJPI_SpiWaitBusy() which returns when
the transfer has completed, or by periodically calling bJPI_SpiPollBusy() to
check whether the SPI master is still busy.

5. Data received from a slave is read using one of the following functions,
depending on the transaction size:

u8JPI_SpiReadTransfer8() for 8-bit data
u16JPI_SpiReadTransfer16() for 16-bit data
u32JPI_SpiReadTransfer32() for 32-bit data

6. If another transfer is required then Steps 3 to 5 must be repeated for the next
data. Otherwise, if “Automatic Slave Selection” is off, the SPI slaves must be
de-selected by calling vJPI_SpiSelect(0) or vJPI_SpiStop().

A number of other SPI functions exist in the Jenie Peripherals Interface. The current
SPI configuration can be obtained and saved using vJPI_SpiReadConfiguration(). If
necessary, this saved configuration can later be restored in the SPI using the function
vJPI_SpiRestoreConfiguration().
JN-UG-3042 v1.8 © Jennic 2010 85

Chapter 5
Controlling Hardware Peripherals

 Jennic

5.8 Serial Interface (2-wire)

The JN5139/JN5148 device includes an industry-standard 2-wire synchronous Serial
Interface (SI) that provides a simple and efficient method of data exchange between
devices.

The Serial Interface is similar to an I2C interface. It comprises two lines:

Serial data line
Serial clock line

The Serial Interface peripheral on the JN5139/JN5148 device acts as a master of the
Serial Interface bus and can implement bi-directional communication with a slave
device on the bus. Note that the Serial Interface bus on the JN5148 device can have
more than one master, but multiple masters cannot use the bus at the same time (to
avoid this, an arbitration scheme is provided - see later).

As a bus master, the JN5139/JN5148 provides the clock (on the clock line) for
synchronous data transfers (on the data line) - this clock is scaled from the 16-MHz
system clock.

The master can write data to or read data from a slave device. The protocol used is
outlined below:

1. The master takes control of the Serial Interface bus by issuing a start bit
(provided that no other master has control of the bus).

2. The master specifies the 7-bit address of the slave to communicate with.
3. The master indicates whether it intends to perform a read or write transaction

with the slave.
4. If the slave with the specified address exists on the bus, the slave responds to

the master with an ACK (aknowledgment).
5. Provided that the slave exists, the master continues to perform the required

data transfer operation:
For a write operation, the master sends a series of data bytes to the slave,
which responds to each byte with an ACK.
For a read operation, the master receives a series of data bytes from the
slave, with the master responding to each byte (except the final one) with
an ACK.

6. Once the transfer is complete, the master relinquishes control of the bus with
a stop bit. Alternatively, it can issue another start condition and begin another
data transfer from Step 1.

On the JN5148 device, an arbitration scheme exists to resolve conflicts caused by
competing masters attempting to take control of the Serial Interface bus. If a master
loses arbitration, it must wait and try again later.

Note: In order to implement data transfers on the SI
bus, you are advised to study the protocol detailed in the
I2C Specification (available from www.nxp.com).
86 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
5.9 Intelligent Peripheral (IP) Interface
The Intelligent Peripheral (IP) interface is used for high-speed data exchanges
between the JN5139/JN5148 device and a ‘remote’ processor, which may be a
separate processor contained in the wireless network node. The data exchange
requires minimal use of the CPU of this processor. This interface is based on the Serial
Peripheral Interface (SPI) - see Section 5.7. The IP interface on the JN5139/JN5148
is an SPI slave - the remote processor must contain the SPI master (which initiates
data transfers). The interface shares pins with DIO14-18.

The data transfer is bi-directional. The JN5139/JN5148 device uses a Transmit buffer
and Receive buffer in a dedicated block of local memory for the data exchanges - each
buffer in this IP memory block contains sixty-three 32-bit words. The IP_INT line is
used by the JN5139/JN5148 device to indicate that it is ready to transmit data (held in
a local Transmit buffer) to the remote processor. As the master device, the remote
processor must initiate the transfer. Data can be transmitted and received
simultaneously, but the clock edges on which receive data is sampled and transmit
data is changed are separately configurable on the JN5139/JN5148 device.

Before using the IP interface, it must first be enabled using the function
vJPI_IpEnable(). This function allows the transmit and receive clock edges to be
selected, and the byte order for the data transfer to be set as Big Endian or Little
Endian. The function bJPI_IpSendData() is used to indicate to the remote processor
(via the IP_INT line) that the JN5139/JN5148 device is ready to transmit and receive
data. It is then the responsibility of the remote processor, as the master, to initiate the
data transfer. Two functions are provided to check from the JN5139/JN5148 side
whether a data transfer has completed:

bJPI_IpTxDone() can be used to check whether all data has been transmitted
bJPI_IpRxDataAvailable() can be used to check whether data has been
received

Received data can be read from the local Receive buffer using the function
bJPI_IpReadData().

Figure 17: IP Interface as SPI Slave

 JN5139/JN5148

IP Interface
(SPI slave)

Remote Processor

SPI master
DIO14-18

Bi-directional
data transfer
JN-UG-3042 v1.8 © Jennic 2010 87

Chapter 5
Controlling Hardware Peripherals

 Jennic
88 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
6. Advanced Issues in Network Operation
This chapter deals with a range of Jenie network features and issues that are not
covered in the description of basic network operation in Chapter 3. These areas
include:

Identifying the network (Section 6.1)
Sending messages (Section 6.2)
Routing (Section 6.3)
Losing a parent node (Section 6.4)
Losing a child node (Section 6.5)
Auto-polling (Section 6.6)

Many of these descriptions refer to the use of Jenie global variables. These global
variables can be set in the function vJenie_CbConfigureNetwork(), and are fully
listed and described in the Jenie API Reference Manual (JN-RM-2035).

6.1 Identifying the Network
As described in Section 1.4.1, Jenie uses two identifiers to distinguish a network from
other Jenie networks operating in the same space - the Network Application ID and
PAN ID. Two global variables must be set to initialise these identifiers:

gJenie_NetworkApplicationID represents the Network Application ID. This is a
32-bit fixed value used throughout the application to identify the network. It will
usually be set at the time of manufacture and take the same value in all
networks based on a particular product. However, it should be unique within a
given operating environment - that is, it should not clash with the Network
Application IDs of neighbouring networks. Such a clash is unlikely if the
Network Application ID assigned during design/manufacture is a random
value. However, this may become an issue when using multiple networks
based on the same product (see Section 1.4.1 and Joining Networks with
Duplicate Network Application IDs below).
gJenie_PanID represents the PAN ID of the network. This is a 16-bit value
which is used by the lower stack levels to identify the network and must be
unique within the operating environment - that is, it must not clash with the PAN
IDs of neighbouring networks. To this effect, the network Co-ordinator will
determine the uniqueness of the specified PAN ID at system start-up by
“listening” in on neighbouring networks - if the specified PAN ID is found
elsewhere, the value of this global variable will be automatically adjusted until a
unique value is obtained. In this respect, it does not matter which value you
assign to this global variable (except 0xFFFF, which is forbidden), as it may be
changed by the system. However, the chances of the PAN ID being changed in
this way can be minimised by deriving the value of this global variable from part
of the Co-ordinator’s MAC address (which is globally unique).
JN-UG-3042 v1.8 © Jennic 2010 89

Chapter 6
Advanced Issues in Network Operation

 Jennic

Joining Networks with Duplicate Network Application IDs

It is theoretically possible for two or more Jenie networks with the same Network
Application ID to operate concurrently, even in the same frequency channel, since at
the network level the PAN ID is used to differentiate between the networks, and the
PAN ID is always unique. In practice, problems may occur when forming one of these
networks. When a Router or End Device attempts to join the network, it will only be
able to identify the required network through the Network Application ID, since this
value is hard-coded in the application which runs on the joining node. This node does
not know the PAN ID of the desired network, since this value may have been re-
configured dynamically by the Co-ordinator (and will not be known by the joining node
until it has successfully joined the network). Therefore, it is possible that the joining
node will join another network with the same Network Application ID, i.e. the wrong
network. You may, however, be able to prevent a node from joining the wrong network
by using the function eJenie_SetPermitJoin() to control the “permit joining” status of
potential parents. This is a useful feature to build into a wireless network product,
particularly if you expect multiple networks based on the product to be deployed in the
same operating space.

6.2 Sending Messages

6.2.1 Timing Issues in Data Sends
There are two timing phenomena to take into consideration when sending data
messages - simultaneous packets and hetrodyning, which may lead to packet loss.
These effects are described below.

Simultaneous Packets
If several child nodes all send packets at exactly the same time to a parent then
packets may be lost - for example, if the children respond at the same time to a
broadcast requesting data. The solution is to stagger the responses to the broadcast
request in the application by using a short random delay, perhaps seeded from the
MAC address of the sending node.

The effect of simultaneous sends can also be observed if all Routers send periodic
data to the Co-ordinator. If the Routers are started simultaneously (for example,

Tip: For more information on handling neighbouring
networks with the same Network Application ID, refer to
the Application Note Jenie Controlled Network
Membership (JN-AN-1116).

Caution: Packet loss can have serious consequences
and may lead to network disruption such as the loss of a
parent or child node - see Section 6.4 and Section 6.5.
90 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
following a power outage), their timers will be approximately synchronised and they
will perform their periodic sends at roughly the same time. This may result in packet
loss at the Co-ordinator. A better approach is to start a node's timer when it joins to
the network, allowing the Router timers and therefore periodic sends to be staggered.
However, even in this case, you may also see the effect of heterodyning (see below).

A further technique to reduce packet collisions is to add a small random delay before
sending each packet (see below).

Hetrodyning
If several child nodes send packets to a parent asynchronously (say, every 500 ms),
over time the transmissions may slowly drift into and out of synchronisation. This is
because the crystals used to time the transmissions on the child nodes have slightly
different frequencies. The effect is called heterodyning and is similar to beat
frequencies in sound.

Thus, the children may start by sending data at different times but, over a long period
of time, the transmissions will become synchronised, packet collisions will occur and
packets may be lost. Therefore, the system will initially run well but, after a period of
time, there will be an increase in the rate at which packets are lost, followed by a
decrease in this rate (as the transmissions move out of synchronisation again).

To reduce this effect, add a small random delay to the time between data
transmissions. For example, use rand() seeded with the MAC address of the sending
node to ensure that nodes are not using the same pseudo-random numbers.

6.2.2 Re-tries in Data Sends
When a message is sent using the function eJenie_SendData() or
eJenie_SendDataToBoundService() with the TxOptions flag TXOPTION_SILENT
cleared, Jenie submits the packet to the IEEE 802.15.4 MAC layer of the protocol
stack and returns E_JENIE_DEFERRED. If a buffer is free, the MAC layer will attempt
to send the packet. If the send fails, three further attempts will be made, making 4 tries
in total.

Depending on the outcome of the send, Jenie will (eventually) generate one of the
following stack events:

E_JENIE_PACKET_SENT: A MAC acknowledgement has been received from
the next hop node, confirming the send
E_JENIE_PACKET_FAILED: There was no MAC layer buffer free for the send
or no MAC acknowledgement has been received to confirm the send

Note: For eJenie_SendData(), if the TxOptions flag
TXOPTION_SILENT or TXOPTION_BDCAST (broadcast)
is set, the above stack events will not be generated.
JN-UG-3042 v1.8 © Jennic 2010 91

Chapter 6
Advanced Issues in Network Operation

 Jennic

6.2.3 End-to-End Acknowledgements for Data Sends

When sending data using the function eJenie_SendData() or
eJenie_SendDataToBoundService(), an end-to-end acknowledgement can be
requested by enabling the TxOptions flag TXOPTION_ACKREQ. In this case, the final
destination node should return an acknowledgement to the source node, once the
data has been received (note that these acknowledgements are different from the
IEEE 802.15.4 MAC acknowledgements mentioned in Section 6.2.2, which simply
indicate that a data packet has reached the next hop towards its destination).

It should be noted that the use of end-to-end acknowledgements will double the
packet overhead of the network. Therefore, you should only request an end-to-end
acknowledgement when it is essential that a packet reaches its destination. The
following guidelines should be useful:

Do request acknowledgements when sending commands that will change the
operation of the network.
Do not request acknowledgements when sending regular sensor readings.

Also be aware that all of the original packet data is returned in an end-to end
acknowledgement. Therefore, if you are sending large data packets, this will impact
heavily on network performance.
92 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
6.3 Routing
The Co-ordinator and Routers of a network can each play a routing role, but their
routing capability must be explicity enabled in the application using the global variable
gJenie_RoutingEnabled (when a Router is to act as an End Device, this variable must
be used to disable routing for the node).

6.3.1 Neighbour Tables and Routing Tables
A routing node contains both a Neighbour table and a Routing table (see Section
1.11.1). The Neighbour table is small, since a node can have an absolute maximum
of only 16 children. The Routing table, however, can potentially accommodate entries
for a very large number of descendant nodes and therefore take up significant memory
space. For this reason, the application is allowed some control over the Routing table,
in order to limit the amount of memory space occupied by the table.

The Routing table is represented in memory as an array of structures, where each
structure is of the type tsJenieRoutingTable and contains the routing information for
one descendant node (these structures are automatically filled in by the stack when
the network is formed and are not the concern of the application). This array must be
declared in the application and configured using two global variables:

gJenie_RoutingTableSize determines the size of the array and therefore the
maximum number of descendant nodes (excluding immediate children). This
value should be set realistically to the maximum expected number of
descendants, so not to reserve more memory space than needed for the
Routing table.
gJenie_RoutingTableSpace is a pointer to the Routing table in memory - thus,
the array will start at this point in memory.

Note that for the Co-ordinator, the value of gJenie_RoutingTableSize will determine
(but will not be equal to) the maximum permissible number of nodes in the network.

Note: If a node attempts to join a network and this
requires a new entry in a Routing or Neighbour table
which is already full, the join request will be rejected and
the joining node’s potential parent will receive a
notification event of type E_JENIE_CHILD_REJECTED.
JN-UG-3042 v1.8 © Jennic 2010 93

Chapter 6
Advanced Issues in Network Operation

 Jennic

6.3.2 Stale Route Purging

Routing tables can retain stale routes as nodes join and leave the network. Stale
routes will normally be removed by traffic exercising the Routing tables, but some stale
entries may persist in quiet networks. An automatic ‘route purge’ mechanism can be
run in the background, which checks the validity of every entry in the Routing table.

If the application is continuously generating traffic from all nodes then the Routing
tables will be kept up-to-date by the application's traffic. Therefore, in this case,
automatic purging is not required. However, if the application sends data infrequently
then the tables could be out-of-date following a recovery activity and the automatic
purging becomes essential.

In very long thin networks, the purging can add excessive traffic following a network
recovery (e.g. following a power outage), with all the nodes issuing 'purge route'
packets at the same time. The excessive traffic can result in collisions and possible
packet loss.

Jennic suggest that for very large networks, which may be long and thin with regular
traffic, purging should be disabled on Router nodes and enabled on the Co-ordinator
with the purging interval increased from the default value of 1 second (per entry) - a
function for setting this interval is outlined below. The ideal level is dependent upon
the level of application network traffic and the number of nodes on the network - the
value can be increased until the number of route purge messages are not significantly
contributing to packet losses caused by network contention.

Two JenNet route purging functions are provided:

vApi_SetPurgeRoute(): Allows route purging to be enabled/disabled.
vApi_SetPurgeInterval(): Allows interval between route purging activities (one
entry per activity) to be set in units of 100 ms (the default interval is 1 s).

The above functions need to be called after the 'network up' event
(E_JENIE_NETWORK_UP), when the default network operation is fully established.
94 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
6.3.3 Automatic Route Importation
Jenie/JenNet provides a mechanism which allows a whole network branch to move
within the network - this speeds up network recovery (e.g. following a power outage).
This route importation feature is used when a Router node has moved in the network
and has descendant children. Initially, the Routing tables of all ascendant nodes, up
to and including the Co-ordinator, will contain either no routing or stale routing for this
branch of the tree.

If we rely solely on the ‘purge route’ mechanism (which has the primary purpose of
removing fragments of stale routing on all Routers) to clean up the Routing tables (see
Section 6.3.2), it is highly likely that many packets will be lost due to traffic flowing
down the old stale routes. This is because the purge route mechanism is a very slow
process and does not repair a route but simply deletes stale fragments.

Another alternative is to rely on demand-driven route repair, which would be used for
every packet mis-routed. This is quite a heavy process, as each route repair would
result in a 'find node' broadcast followed by an 'establish route' message being sent
from every node involved.

The route importation process tries to minimise traffic by performing a route repair
between the newly joined Router and the Co-ordinator, rather than from leaf nodes all
the way up to the Co-ordinator (as would be the case if a 'find node' message were
generated).

A Boolean parameter, gRouteImport, is provided in JenNet to enable/disable route
importation (it is enabled by default). Thus, to disable route importation, the following
line of code is required:

gRouteImport=FALSE; // to disable the route import mechanism

The feature can be disabled at any time, including prior to starting the stack.

Note: The ‘route importation’ and ‘purge route’
mechanisms can both be disabled, leaving only the
demand-driven repair process, if this suits the
application or network layout.
JN-UG-3042 v1.8 © Jennic 2010 95

Chapter 6
Advanced Issues in Network Operation

 Jennic

6.4 Losing a Parent Node (Orphaning)

A node must be able to determine if it has lost its parent and become an orphan. Once
orphaned, the node may then need to re-join the network.

6.4.1 Detecting Orphaning
There are three ways a child node can determine whether it has been orphaned:

Lost packets
Lost pings
‘Unknown Node’ message

Lost Packets
A node may decide that it has lost its parent when a certain number of consecutively
sent packets have been lost (including unacknowledged poll packets - see Section
6.6). In Jenie, this number is determined by the global variable gJenie_MaxFailedPkts.
Due to the retries (see Section 6.2.2), when this happens the total number of lost
packets will be 4 x gJenie_MaxFailedPkts. Since the node has now lost its parent,
Jenie will attempt to re-join the network (see Section 6.4.2).

Lost Pings
In a quiet network with little traffic, Routers and End Devices generate pings to avoid
the loss of a parent (auto-pings are described in Section 1.12.3). If there is no other
traffic on the link:

A Router will periodically ping its parent at an interval determined by the global
variable gJenie_RouterPingPeriod (in units of 100 ms).
An End Device will periodically ping its parent at an interval determined by the
global variable gJenie_EndDevicePingInterval (expressed in terms of sleep
cycles). For example, if this interval is set to 4 and the sleep period is
2 seconds, the node will ping its parent every 8 seconds.

Given no other network traffic, the number of failed pings before the node decides that
it has lost its parent is determined by the global variable gJenie_MaxFailedPkts (which
is set to 5, by default). In this case, Jenie will attempt to re-join the network (see
Section 6.4.2) after a time given by gJenie_MaxFailedPkts multiplied by the ping
interval.

Note that the chance of a failed (ping) packet increases as the ping-rate increases.
You are therefore advised to keep the ping period as long as possible, but short
enough to detect a failed link within reasonable time.

Note: Following a failed ping, the ping will be re-sent
after a random back-off time - this helps multiple nodes
to avoid becoming synchronised in their ping attempts to
their parent.
96 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Unknown Node
A node can detect that it has been orphaned if it receives a JenNet
UNKNOWN_NODE message in response to a message previously sent to its parent.
This may occur if the parent has lost the child from its Neighbour table because the
parent has been reset without context saving of neighbour information (that is, the
global variable gJenie_RecoverChildrenFromJpdm has been set to zero). On
receiving this response, a stack reset will automatically be generated on the child and
the node will attempt to re-join the network (see Section 6.4.2).

6.4.2 Re-joining the Network
When a node considers its parent to be lost (see Section 6.4), Jenie initiates a stack
reset and begins a search for a new parent. The application is notified with
E_JENIE_STACK_RESET.

The recovery method depends on the node type, as follows:

An orphaned Router will continuously scan for a new parent until a network is
joined. Jenie then sends an E_JENIE_NETWORK_UP event to the application.
An orphaned End Device will scan for a new parent. If the device is successful
in re-joining the network, Jenie sends an E_JENIE_NETWORK_UP event to
the application. Otherwise, the device goes to sleep for a period determined by
the global variable gJenie_EndDeviceScanSleep, then scans again, repeating
the scan/sleep cycle until the network has been successfully re-joined.

6.5 Losing a Child Node
A parent node must be able to determine whether its children are still active. The
detection methods for the loss of a child node are different for End Device and Router
children.

6.5.1 End Device Children
Two mechanisms are employed by a parent to determine whether an End Device child
has become inactive and should therefore be removed from its set of children:

A timeout on communications coming from the End Device
Restrictions on the locally buffered messages destined for the End Device

These are described in the sub-sections below.

Caution: In order to avoid being removed from the
network, an active End Device must ensure that both
the communication timeout and the buffered message
restrictions are not violated.
JN-UG-3042 v1.8 © Jennic 2010 97

Chapter 6
Advanced Issues in Network Operation

 Jennic

Communication Timeout

For an End Device child, the parent implements a timeout period on communications
from the child. This timeout period is determined by the value of the global variable
gJenie_EndDeviceChildActivityTimeout.

If the parent does not receive a communication from the End Device child
within this timeout period, it considers the child to be lost and removes it from
the Neighbour table (this change will also be propagated up the tree to the
Routing tables of ascendant nodes).
If the parent does receive a communication from the End Device child within
this timeout period, the timeout is reset and starts again.

Note that data polling from the child does not count as communication for this purpose.

Automatic pings from an End Device to its parent can be used to prevent this timeout
mechanism from deducing that the child is lost when it is simply sending data
infrequently. A ping is generated just before going to sleep, with a ping interval defined
in terms of a number of sleep cycles configured using the global variable
gJenie_EndDevicePingInterval (therefore the ping is not necessarily sent before every
sleep period). For this mechanism to work, the End Device child must sleep/wake
regularly enough for the time between pings not to exceed the value of
gJenie_EndDeviceChildActivityTimeout, otherwise the parent will assume that the
child is lost.

Buffered Message Restrictions
Data messages sent to an End Device are buffered by the node’s parent and collected
by the End Device through data polling using the function eJenie_PollParent(). This
allows messages that arrive while the End Device is asleep to be retained and later
collected when the End Device is awake.

A total of 12 message buffers in the parent are used for this purpose - 4 of these are
802.15.4 MAC buffers and 8 are JenNet buffers. The MAC buffers are filled first and
when these become full, the JenNet buffers are used, forming a FIFO queue which
feeds into the MAC buffers. An End Device child collects its messages from the MAC
buffers, but the parent will not indefinitely store a message in one of these buffers -
once a message has been in a MAC buffer for 8 seconds, the message is discarded
and considered to be a failed communication by the parent.

When the number of failed messages reaches the value of the global variable
gJenie_MaxFailedPkts, the parent considers the End Device to be a lost child and will
remove this child from its Neighbour table (this change will also be propagated up the
tree to the Routing tables of ascendant nodes).

This mechanism has implications for End Devices that sleep for long periods and
which therefore cannot often poll for data. Such an End Device can cause routing
congestion in its parent and could be mistakenly removed from the network, because

Note: An End Device that must stay awake for long
periods may need to regularly send data to its parent, to
avoid being considered lost by the parent.
98 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
its parent has buffered a sufficient number of ‘failed messages’ for the End Device
while it has been sleeping.

To prevent these situations, follow the recommendations below:

Avoid sending messages to an End Device that is known to be sleeping,
particularly if the sleep duration is long (more than 7 seconds).
Avoid sending messages to many End Devices at the same time.
If an End Device periodically requests data from other nodes, ensure that it
frequently polls its parent for the responses (to clear the MAC buffers as quickly
as possible).

In addition, an End Device with a sleep duration of longer than 7 seconds should not
use auto-pinging of its parent, since the ping responses will not be retrieved from the
parent quickly enough and therefore count as failed packets. Instead, while awake, the
End Device should:

1. Send a message to its parent - if there is no data to send, it should send an
empty message

2. Poll its parent to clear any pending messages

6.5.2 Router Children
For a Router child, the parent counts the consecutive failed communications with the
child (unreturned 802.15.4 MAC acknowledgements) and considers the child to be lost
when this count exceeds the value of the global variable gJenie_MaxFailedPkts. In
this case, the child is removed from the parent’s Neighbour table and all descendant
of the Router child are removed from the parent’s Routing table (these changes will
also be propagated up the tree to the Routing tables of ascendant nodes).

Automatic pings from a Router to its parent can be used to prevent the parent from
assuming the child is lost when it is simply sending data infrequently. Regular pings
will be generated by the Router child with a ping period configured through the global
variable gJenie_RouterPingPeriod (on parent and child). The parent will consider the
Router child to be lost if it does not receive a ping or data from the child within the
period defined by the product:

gJenie_MaxFailedPkts x gJenie_RouterPingPeriod x 100 ms

Note: The global variable gJenie_RouterPingPeriod
must be set to the same value on the parent and child
Routers. It must also be set to this same value on the
Co-ordinator, which uses this variable setting for
detecting the loss of Router children (but does not need
it for generating pings itself).
JN-UG-3042 v1.8 © Jennic 2010 99

Chapter 6
Advanced Issues in Network Operation

 Jennic

6.6 Auto-polling (End Device only)

An End Device has the potential to sleep and may therefore not always be in a position
to receive data sent to it. For this reason, messages destined for an End Device are
buffered by its parent and the End Device must poll the parent for these messages.

In Jenie, auto-polling is enabled on an End Device by default. Auto-polling is the
periodic polling of the parent, where the poll period is set using the global variable
gJenie_EndDevicePollPeriod. By default, this is set to 5 seconds.

Provided that auto-polling has not been disabled, an End Device will automatically poll
its parent on waking from sleep, irrespective of the poll period set. This means that if
you set the sleep period using eJenie_SetSleepPeriod() to be shorter than the polling
period defined in gJenie_EndDevicePollPeriod, the End Device will poll the parent
more often than configured through this global variable.

Note that any lost (unacknowledged) poll packets will count as failed packets and will
therefore contribute to causing a stack reset if this count reaches the value of the
global variable gJenie_MaxFailedPkts (lost packets are described in Section 6.4).
Decreasing the polling period set through gJenie_EndDevicePollPeriod has the effect
of increasing the chances of a failed packet and a stack reset. You are therefore
advised not to poll more often than is necessary.

Receiving End Device data using auto-polling is described in Section 3.7.3.

6.7 Beacon Calming
If other networks are scanning the operating channel of your network, this can affect
your network’s performance, since all the nodes in your network may be responding
to the beacon requests (by sending beacons). A mechanism is available to manage
repeated beacon request activity and reduce the beacon activity over air. This ‘beacon
calming’ feature executes an algorithm that limits the sending of beacons in relation to
the level of beacon activity and the number of available children.

For large dense networks, you should enable the beacon calming feature using the
JenNet function Nwk_SetBeaconCalming(). This function sets a time-window during
which a node will respond to beacon requests:

1. A node with no children will always respond.
2. As a node acquires children, the time window is reduced.
3. A node that has reached the maximum number of children will not respond at

all.
This feature is disabled by default.

Note: Auto-polling can also be disabled through
gJenie_EndDevicePollPeriod (by setting it to zero). If
auto-polling is disabled, the End Device can explicitly
poll the parent using the function eJenie_PollParent().
100 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
6.8 Packet Loss
Various circumstances in which packets may be lost, and the possible consequences,
have already been mentioned in the preceding sections of this chapter. This section
summarises these scenarios, and provides information and advice on packet loss.

Lost packets may include unacknowledged data packets, pings and polling requests.
The loss of packets can be monitored from the viewpoints of an End Device and a
parent as follows:

End Device: By default in Jenie, consecutive lost packets are counted on an
End Device and this count is used to assess whether the link to the parent node
has failed. If this count exceeds the value of the global variable
gJenie_MaxFailedPkts (or 4 x gJenie_MaxFailedPkts, if re-tries are included)
then the End Device will reset its stack and try to find another parent.
Parent: A parent node (Router or Co-ordinator) can also monitor for packet
loss in the application. Counters for successful and failed transmission
attempts to each of the node's children and to its own parent (if relevant) are
maintained in the Neighbour table on the node, which can be accessed using
the function eJenie_GetNeighbourTableEntry(). These counters can be used
by the application to monitor the level of packet loss and if excessive packet
loss is occurring for a particular child, the parent can remove the child from the
network using the JenNet function vNwk_DeleteChild().

Therefore, excessive packet loss can lead to network self-healing and a changing
network shape. Under normal circumstances, this works well to find the best radio path
to a parent, but high traffic rates can also result in lost packets and subsequent re-
forming of the network.

6.8.1 Packet Collisions
Packet collisions can occur in areas of traffic congestion in the network. The following
scenarios may lead to packet loss in this way:

Simultaneous Packets
Packet loss can occur when packets are sent simultaneously from multiple child nodes
to a common parent. This scenario is described in Section 6.2.1.

Heterodyning
When multiple nodes transmit periodically with approximately the same transmission
interval, the transmissions may drift into and out of synchronisation, causing packet
loss during the synchronised phases. This phenemenon of heterodyning is described
in more detail in Section 6.2.1.

Unsolicited Packets
A large number of unsolicited packets travelling up the network (towards the Co-
ordinator) can lead to collisions and lost packets - for example, periodic data packets
containing sensor readings. The solution is to ‘pull’ the packets up the network, as
JN-UG-3042 v1.8 © Jennic 2010 101

Chapter 6
Advanced Issues in Network Operation

 Jennic

described in Section 6.8.2, allowing over-air transmissions of data packets to be
scheduled.

Clashes of Periodic Data and Ping Transmissions
Collisions can occur between a Router’s periodic data packets to the Co-ordinator
(e.g. containing sensor readings) and the Router’s ping packets to its own parent.

This effect depends on the selected timings. For example, if a Router passes data to
the Co-ordinator every 20 seconds and the ping-rate is 10 seconds then data packets
and ping packets may be sent at the same time, with data packets colliding with ping
responses coming back from the parent. However, this is not likely to be a problem if
the data slightly precedes the scheduled ping, since there will be no need for the ping
and it will be postponed by the stack.

You should configure your timings to avoid such clashes. For example, if your Routers
send data every 20 seconds then a ping period of 13 seconds would be a sensible
choice. However, the best way of avoiding these clashes is to add a degree of
randomisation to the timings of the data transmissions - that is, offset each
transmission by a random number of milliseconds from its scheduled time.

Increased Collisions with Network Depth
If packets are passing down the network at the same time as other packets are
passing up the network, this contributes to the risk of packet collisions and associated
packet losses. This problem becomes more acute in deeper networks. It is therefore
advisable to use high values of gJenie_MaxFailedPkts for deep networks or control
the packet direction using a pull system from the Co-ordinator.

6.8.2 Minimising Packet Loss
You can take steps in your application and your network design to make processing
time available for handling packets and therefore minimise packet loss. These
measures are described below.

Application Deployment
If the application makes intensive use of interrupts and dominates use of the
processor in the main loop, giving very little processing resource to the stack, then the
outcome will be that buffers will fill and packets will be lost. Therefore, you should not
deploy such applications on nodes that need to process a high throughput of packets.

No End Device Children for Co-ordinator
If possible, do not allow End Devices to directly join the Co-ordinator node. This can
be done by setting the global variable gMaxSleepingChildren to 0 on the Co-ordinator.
Adopting this strategy will increase the efficiency of the Co-ordinator for processing
network traffic.
102 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Start-up Delays and Caching
Substantial traffic is generated when a network starts up and nodes begin to join. This
can cause congestion, collisions and lost packets, particularly at the Co-ordinator. The
problem can be overcome by staggering the network join requests submitted by
potential nodes. This effect can be achieved by introducing different start delays
before calling eJenie_Start() in the joining nodes.

In addition, in order to minimise the traffic from End Devices joining the network, the
join results can be cached in their parent Routers. The Co-ordinator should then
request this End Device data from the Routers by sending messages using the
function eJenie_SendData(). This ‘polling’ method reduces the amount of unsolicited
traffic in the network, with the data from all the immediate children of a Router being
sent to the Co-ordinator in one message. This approach is particularly useful to avoid
buffer timeouts for End Devices with long sleep durations.

‘Node-up’ Messages
The Co-ordinator can create a list of all the nodes that have joined the network. This
list can be assembled by the Co-ordinator from application-level ‘node-up’ messages
that can be sent by the nodes as they join the network. However, these packets do not
form a reliable basis for creating a node list, as they may be lost in the sudden, frantic
activity of a network recovery. The most reliable approach is to contruct the node list
from the regular data packets received from the nodes. However, nodes that do not
often send data packets to the Co-ordinator should send regular ‘node-up’ messages
to indicate their presence. All of these packets can also be used to detect the loss of
nodes from the network - a node may be considered to be lost if a number of of
expected packets from the node have failed to arrive.

Pushing Packets vs Pulling Packets
Sending packets up the network (for example, to the Co-ordinator) is referred to as
‘pushing’ packets. This can be undesirable, as it may lead to congestion, collisions
and lost packets if many nodes send packets up the network at the same time. If a
‘push’ approach to sending data is to be adopted, it is advisable to introduce some
degree of randomisation (delays) and/or beaconing to control the traffic flow. A
synchronisation message can be broadcast from the Co-ordinator to all the nodes,
prompting them to restart their timers. Each node can then transmit in its own
timeslots, reducing the amount of simultaneous network traffic.

An alternative method of transferring packets up the network, which avoids the
congestion problems of pushing packets, is to ‘pull’ the packets up the network. In this
case, the destination node requests the packets from the source nodes by sending
messages using the function eJenie_SendData() - for example, the Co-ordinator may
request sensor readings from various nodes. This allows a node which is high in the
tree, such as the Co-ordinator, to control the flow of packets up the network.
JN-UG-3042 v1.8 © Jennic 2010 103

Chapter 6
Advanced Issues in Network Operation

 Jennic

6.8.3 Route Updates

If a Router node and all of its children are moved within a network, the Routing tables
for this branch of the network must be updated as quickly as possible, since packets
may be lost as they are passed down stale routes. Jenie/JenNet provides an
automatic ‘route importation’ mechanism to handle these updates - this feature is
described in Section 6.3.3.

6.9 Network Self-Healing

6.9.1 Automatic Recovery
The ‘automatic recovery’ mechanism of Jenie/JenNet can be summarised as the
following collection of features (previously mentioned in this chapter):

Auto-polling feature, which prevents the accumulation of packets for an End
Device in the buffers of its parent and therefore prevents the End Device from
being orphaned
End Device Child Activity Timeout feature, which detects when an End Device
child is no longer active in the network (and should therefore be orphaned)
Auto-ping feature, which allows an End Device or Router to check that its
parent is still active in the network
Maximum Failed Packets feature, which detects when a node has lost its
parent

Automatic recovery can be disabled by disabling all of these features. It is then the
responsibility of the application to detect whether communications have been lost and
to take the appropriate action by calling eJenie_Leave() - this call first forces the local
node to leave the network (if connected), then invokes a stack reset and finally forces
the node to re-join the network.

To disable the automatic recovery mechanism, set the following global variables to 0:

gJenie_EndDevicePollPeriod (End Devices only)
gEndDeviceChildActivityTimeout (Routers and Co-ordinator only)
gJenie_RouterPingPeriod (Routers only)
gJenie_MaxFailedPkts
104 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
6.9.2 Network Recovery
If the whole or part of a network suffers from a failure, such as a power outage on one
or more routing nodes, the network will attempt to recover from this situation.

Normal Recovery
The most extreme case is when only the Co-ordinator is reset and the rest of the
network tries to continue to function without it. When the Co-ordinator restarts, it will
detect that the default PAN ID is in use by the old network and will select a new PAN
ID - in this way, the Co-ordinator loses contact with its old network. In this situation, all
the Co-ordinator's previous child nodes will hold all of the tree below them as a
functioning network, until the maximum number of failed packets is reached for
communications to the parent Co-ordinator. The child node should then attempt to re-
join the Co-ordinator with the new PAN ID. So the whole network will slowly disconnect
down the tree - the Co-ordinator must wait for the previous network to collapse and
then re-build the whole network (with the new PAN ID). This process is slow, so it will
take some time for the network to fully recover.

Recovery with Context Data
Network recovery can be speeded up by using context saving on the Co-ordinator
(see Section 3.10). This requires the Co-ordinator to save context data (including the
PAN ID) during normal operation. On a Co-ordinator reset, the saved data is retrieved,
allowing the Co-ordinator to restart with the existing PAN ID and with the Co-
ordinator’s children able to just re-connect to it (thus, the normal network disassembly/
reassembly process is by-passed and the network is instantly re-started).

If a node goes through a reset, it may be desirable for the application to be restored
to the state that it was in before the reset - for example, in the case of a streetlight
node, if the lamp was illuminated before the reset then the node should be restarted
with the lamp illuminated (and not in a default ‘off’ state). Again, this can be achieved
by storing key variables through context saving:

If the application changes state infrequently, the state could be stored in non-
volatile memory using the save context data feature.
If the application changes state on a very regular basis then saving to non-
volatile memory should be avoided, as the memory's maximum write limit may
be exceeded.

The wake timer register can be used to store small quantities of data.
JN-UG-3042 v1.8 © Jennic 2010 105

Chapter 6
Advanced Issues in Network Operation

 Jennic

6.10 Key Performance Parameters

This section describes how certain key network parameters affect the performance of
the network. The full set of Jenie/JenNet network parameters are listed and described
in the Jenie API Reference Manual (JN-RM-2035).

6.10.1 Broadcast TTL (Time To Live)

gJenie_MaxBcastTTL
The broadcast TTL (Time To Live) is represented by the global variable
gJenie_MaxBcastTTL and defines the maximum number of hops for which a
broadcast message will stay alive in the network. Each time the broadcast message
is re-transmitted, the TTL counter of the message is decremented. When this counter
reaches zero, the broadcast packet is discarded.

If a network is likely to be very long and thin, the TTL value needs to reflect the depth
of the network - for example, if the network is 20 nodes deep then the TTL value
should be much greater than 20 (twice the depth is a good guide, giving 40).

If you need to adjust the size of the TTL value for different broadcast packets (i.e. to
vary the network penetration of the packets), you can use the JenNet function
vApi_SetBcastTTL() to set the required value before you send the broadcast using
eJenie_SendData().
The TTL count is the 'last resort' mechanism to stop circulating broadcast packets.
The normal mechanism is a small history buffer of packet sequence numbers. If the
sequence number has been seen before (broadcast sequence numbers are not
modified by the network) then the packet is quietly discarded. Therefore, the TTL
mechanism is not used under normal circumstances.

6.10.2 Automatic Recovery Threshold

gJenie_MaxFailedPkts
The automatic recovery threshold is represented by the global variable
gJenie_MaxFailedPkts and defines the maximum number of consecutive failed
packets before the node will consider its connection with the network to be lost. The
node will then reset the stack (and leave the network).

Caution: Setting a very large TTL value to fit all
possible networks is fine provided that the network is
quiet. Otherwise, the high traffic level will erase the
broadcast from the sequence history buffer and the
packet will keep travelling through the network until the
TTL count has expired. This can add to the traffic load
for a short period of time.
106 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
For large networks that are either very deep or have high traffic levels, this value
should be set to 10 or higher, so that the network can tolerate intermittent packet loss
or interferers.

If this value is too low then your network will occasionally change shape for no
apparent reason.

Setting the value to 0 disables the failed packet detection and automatic recovery
mechanisms, i.e. stops the node stack from resetting in order to leave the network and
find a new parent.

6.10.3 Ping Period

gJenie_RouterPingPeriod
Jenie_EndDevicePingInterval

The ping mechanism is used by a node to test the link to its parent when there is no
other application traffic. If there is regular network traffic, this will allow the loss of the
link to be detected and the ping mechanism can remain inactive. In a quiet network,
the ping mechanism should be active and the ping period should be made as long as
possible to stop unnecessary ping traffic from blocking up the network.

For a Router, the interval between consecutive pings is set through the global
variable gJenie_RouterPingPeriod, which must be set to the same value on child and
parent Routers (including the Co-ordinator). If there is no other network traffic, the time
for a Router to detect the loss of its parent or a parent to detect the loss of a Router
child is given by:

gJenie_MaxFailedPkts x gJenie_RouterPingPeriod x 100 ms

The value of gJenie_RouterPingPeriod needs to be large enough not to flood the
network with ping packets, but small enough to provide a reasonable detection period.

For an End Device, the global variable gJenie_EndDevicePingInterval sets the
interval between pings in terms of a number of sleep-wake cycles. If there is no other
network traffic, the time for an End Device to detect the loss of its parent is given by:

gJenie_MaxFailedPkts x gJenie_EndDevicePingInterval x sleep-wake period

Since the parent has no knowledge of the sleep-wake periods of its End Device
children, it applies a fixed timeout to pings from its children, where this timeout is set
through the global variable gJenie_EndDeviceChildActivityTimeout.

Setting gJenie_EndDevicePingInterval to 0 disables the automatic recovery
mechanism when there is no other traffic, i.e. stops the End Device stack from
resetting in order to leave the network and find a new parent. Therefore, in this case,
the application will be responsible for detecting the node loss.
JN-UG-3042 v1.8 © Jennic 2010 107

Chapter 6
Advanced Issues in Network Operation

 Jennic

6.10.4 End Device Poll Period

gJenie_EndDevicePollPeriod
The rate at which an End Device polls its parent for any buffered packets is set in
terms of a poll period via the global variable gJenie_EndDevicePollPeriod.

Very frequent polling (a short poll period) may impact the performance of the parent
Router and should be avoided. In the Router buffers, there is an 8-second packet
persistence time of queued messages, so the poll period should be less than 8
seconds. The optimum poll period depends on the expected rate at which messages
for the End Device will be received by the parent - you should poll frequently enough
not to allow too many messages to accumulate in the Router buffers.

The End Device will automatically poll its parent when it wakes from sleep (provided
that polling is not disabled - see below). Therefore, the poll period set through
gJenie_EndDevicePollPeriod is only important when the node is awake for long
periods (otherwise, polling on waking will suffice).

Automatic polling can be disabled by setting gJenie_EndDevicePollPeriod to 0. The
application must then poll manually using eJenie_PollParent().

6.10.5 End Device Scan Sleep Period

Jenie_EndDeviceScanSleepPeriod
If an End Device is not connected to a network, it will sleep between scans for a
parent. The sleep period between scans is set via the global variable
Jenie_EndDeviceScanSleepPeriod. If a network has a large number of End Devices,
this setting affects the speed of network recovery - a very long sleep period between
scans means that the network will take longer to start up, but reduces the amount of
beacon traffic and preserves battery life. Therefore, longer periods are recommended
if there is a high density of End Devices in the same radio sphere.

Following a failed scan, if a different sleep period (than the period set through
Jenie_EndDeviceScanSleepPeriod) is required before starting another scan, the
joining functionality of the stack must first be aborted. This is achieved by calling the
function eJenie_Leave() after the E_JENIE_STACK_RESET event which follows the
failed scan. The application can then force the device to sleep for the desired duration
by calling eJenie_SetSleepPeriod() to set the sleep duration followed by
eJenie_Sleep() to put the device into sleep mode. This approach allows the sleep
period to be altered between scan attempts - for example, to introduce extended sleep
periods in order to conserve battery life while the device is failing to join a network.

Note: The ‘sleep between scans’ period can also be set
at run-time using the JenNet API function
vApi_SetScanSleep(). This setting over-rides the
Jenie_EndDeviceScanSleepPeriod global variable
setting but does not replace it.
108 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Appendices

A. Hardware and Memory Usage
This appendix details the JN5139/JN5148 hardware and memory required by Jenie.

A.1 Hardware Resources
The JN5139/JN5148 hardware required by the Jenie/JenNet stack is as follows:

For End Devices only: Wake Timer 0 for sleep mode.
For all devices: Tick timer for scheduling - this timer fires every 10 ms and a
tick is passed up to the application as a stack event.

A.2 Memory Resources
This section details the memory resources required by the Jenie/JenNet stack on the
Jennic wireless microcontrollers. JN5139 and JN5148 memory resources are covered
separately below.

JN5139 Memory Resources
From the 96 KB of RAM on the JN5139 wireless microcontroller, the exact memory
resources required by the Jenie/JenNet stack depend on the size of the Routing table,
as indicated in Table 1 below.

Note: The above figures do not include 6 KB for the 802.15.4 stack layers, 4 KB for the machine
stack and 2 KB for the heap.

Routing Table Size Memory Required

Co-ordinator Router End Device

25 51 KB 51 KB 37 KB

100 52 KB 52 KB 37 KB

250 54 KB 54 KB 37 KB

500 57 KB 57 KB 37 KB

1000 63 KB 63 KB 37 KB

Table 1: JN5139 Memory Required by Jenie/JenNet Stack

Note: The Routing table size is configurable at
application compile-time.
JN-UG-3042 v1.8 © Jennic 2010 109

Appendices Jennic

 JN5148 Memory Resources

From the 128 KB of RAM on the JN5148 wireless microcontroller, the exact memory
resources required by the Jenie/JenNet stack depend on the size of the Routing table,
as indicated in Table 2 below.

Note: The above figures do not include 6 KB for the 802.15.4 stack layers, 4 KB for the
machine stack and 2 KB for the heap.

Routing Table Size Memory Required

Co-ordinator Router End Device

25 31 KB 31 KB 20 KB

100 32 KB 32 KB 20 KB

250 33 KB 33 KB 20 KB

500 36 KB 36 KB 20 KB

1000 42 KB 42 KB 20 KB

Table 2: JN5148 Memory Required by Jenie/JenNet Stack

Note: The Routing table size is configurable at
application compile-time.
110 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
B. Glossary

Term Description

Address A numeric value that is used to identify a network node. In Jenie, the 64-bit
IEEE/MAC address of the device is used.

API Application Programming Interface: A set of programming functions that
can be incorporated in application code to provide an easy-to-use interface
to underlying functionality and resources.

Application The program that deals with the input/output/processing requirements of
the node, as well as high-level interfacing to the network.

AT-Jenie An ASCII- or binary-based serial command set which provides a high-level
control interface to the network.

Binding The process of associating a service on one node with a compatible serv-
ice on another node so that communication between them can be per-
formed without specifying addresses.

Channel A narrow frequency range within the designated radio band - for example,
the IEEE 802.15.4 2400-MHz band is divided into 16 channels. A wireless
network operates in a single channel which is determined at network initial-
isation.

Child A node which is connected directly to a parent node and for which the par-
ent node provides routing functionality. A child can be an End Device or
Router. Also see Parent.

Context Data Data which reflects the current state of the node. The context data must be
preserved during sleep mode (of an End Device).

Co-ordinator The node through which a network is started, initialised and formed - the
Co-ordinator acts as the seed from which the network grows, as it is joined
by other nodes. The Co-ordinator also usually provides a routing function.
All networks must have one and only one Co-ordinator.

End Device A node which has no networking role (such as routing) and is only con-
cerned with data input/output/processing. As such, an End Device cannot
be a parent.

IEEE 802.15.4 A standard network protocol that is used as the lowest level of the Jennic
software stack. Among other functionality, it provides the physical interface
to the network’s transmission medium (radio).

Jenie Jennic’s proprietary easy-to-use interface between the application and the
JenNet network level of the Jennic software stack. Available in the form of
an API or a serial command set (AT-Jenie).

JenNet Jennic’s proprietary network protocol which sits on IEEE 802.15.4 in the
Jennic software stack. An application interacts with JenNet through the
Jenie interface.

Joining The process by which a device becomes a node of a network. The device
transmits a joining request. If this is received and accepted by a parent
node (Co-ordinator or Router), the device becomes a child of the parent.
Note that the parent must have “permit joining” enabled.
JN-UG-3042 v1.8 © Jennic 2010 111

Appendices Jennic
Network
Application ID

A 32-bit value that identifies the network application (e.g. a product). It is
used in Jenie as the main way to identify a network (rather than using the
PAN ID).

PAN ID Personal Area Network Identifier - this is a 16-bit value that uniquely identi-
fies the network in that all neighbouring networks must have different PAN
IDs.

Parent A node which allows other nodes (children) to connect to it and provides a
routing function for these child nodes. A maximum number of children can
be accepted (this limit is user-configurable). A parent can be a Router or
the Co-ordinator. Also see Child.

Registering Services The process by which a node provides a list of its services to the network. A
parent node holds its own service list and those of its children.

Requesting Services The process by which a node specifies the services that it requires from
other nodes. The remote nodes send responses detailing which of these
services they support.

Router A node which provides routing functionality (in addition to input/output/
processing) if used as a parent node. Also see Routing.

Routing The ability of a node to pass messages from one node to another, acting as
a stepping stone from the source node to the target node. Routing function-
ality is provided by Routers and the Co-ordinator. Routing is handled by the
network level software and is transparent to the application on the node.

Service A Jenie concept corresponding to a feature, function or capability of a node
(e.g. support of LCD display). A node can support up to 32 services.

Service Profile The list of services supported in a network. It is represented as a 32-bit
value in which each bit represents a service - ‘1’ indicating service sup-
ported, ‘0’ indicating service not supported.

Sleep Mode An operating state of a node in which the device consumes minimal power.
During sleep, the only activity of the node is to time the sleep duration to
determine when to wake up and resume normal operation. The total sleep
duration is user-configurable. Only End Devices can sleep.

Stack The collection of software layers used to operate a system. The high-level
user application is at the top of the stack and the low-level interface to the
transmission medium is at the bottom of the stack.

UART Universal Asynchronous Receiver Transmitter - a standard interface used
for cabled serial communications between two devices (each device must
have a UART).

Term Description
112 © Jennic 2010 JN-UG-3042 v1.8

Jennic Jenie API
User Guide
Revision History

Version Date Comments

1.0 04-Dec-2007 First release

1.1 21-Feb-2008 Added chapter on controlling hardware peripherals and appendix on
global variables

1.2 07-Mar-2008 Updated for Jenie v1.2

1.3 01-Apr-2008 Minor updates

1.4 09-July-2008 Updated for Jenie v1.3

1.5 24-Sep-2008 Updated with minor corrections

1.6 01-Dec-2008 Updated for Jenie v1.4. More information added in Appendix A.5.1 on
buffering messages for End Device children. Added Appendix B on
hardware and memory usage

1.7 27-Aug-2009 Minor updates/corrections made

1.8 17-Mar-2010 Modified for JN5148, added chapter on advanced issues and various
other updates/corrections made
JN-UG-3042 v1.8 © Jennic 2010 113

Jenie API
User Guide

 Jennic

Important Notice

Jennic reserves the right to make corrections, modifications, enhancements, improvements and other changes to its
products and services at any time, and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders, and should verify that such information is current and complete.
All products are sold subject to Jennic's terms and conditions of sale, supplied at the time of order acknowledgment.
Information relating to device applications, and the like, is intended as suggestion only and may be superseded by
updates. It is the customer's responsibility to ensure that their application meets their own specifications. Jennic makes
no representation and gives no warranty relating to advice, support or customer product design.
Jennic assumes no responsibility or liability for the use of any of its products, conveys no license or title under any
patent, copyright or mask work rights to these products, and makes no representations or warranties that these
products are free from patent, copyright or mask work infringement, unless otherwise specified.
Jennic products are not intended for use in life support systems/appliances or any systems where product malfunction
can reasonably be expected to result in personal injury, death, severe property damage or environmental damage.
Jennic customers using or selling Jennic products for use in such applications do so at their own risk and agree to fully
indemnify Jennic for any damages resulting from such use.
All trademarks are the property of their respective owners.

Jennic Ltd
Furnival Street

Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951
E-mail: info@jennic.com

For the contact details of your local Jennic office or distributor, refer to the Jennic web site:
114 © Jennic 2010 JN-UG-3042 v1.8

	Contents
	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Feedback Address

	1. Fundamental Concepts
	1.1 Wireless Operation
	1.1.1 Radio Communication
	1.1.2 Battery Power

	1.2 Network Communications
	1.3 Network and Node Types
	1.3.1 Star Topology
	1.3.2 Tree Topology

	1.4 Network Identitification and Isolation
	1.4.1 Identification
	1.4.2 Isolation

	1.5 Node Addressing
	1.6 Software Architecture
	1.7 Services
	1.7.1 Service Profile
	1.7.2 Service Discovery

	1.8 Bindings
	1.9 Network Formation
	1.10 Data Transfer
	1.11 Routing
	1.11.1 Neighbour and Routing Tables
	1.11.2 Routing Process on a Node

	1.12 Configurable Protocol Operations
	1.12.1 Message Acknowledgements
	1.12.2 Data Polling (End Device only)
	1.12.3 Auto-ping

	2. What is Jenie?
	2.1 Jenie Architecture
	2.2 Jenie Functionality
	2.2.1 Core Functionality
	2.2.2 Hardware Functionality

	2.3 Forms of Jenie
	2.4 Jenie API
	2.5 Installing Jenie

	3. Application Tasks
	3.1 Starting the Network (Co-ordinator only)
	3.2 Starting Other Nodes (Routers and End Devices)
	3.3 Configuring the Radio Transmitter
	3.4 Configuring Security
	3.5 Discovering Services
	3.5.1 Registering Services
	3.5.2 Requesting Services

	3.6 Binding Services
	3.7 Transferring Data
	3.7.1 Sending and Receiving Data using Addresses
	3.7.2 Sending and Receiving Data using Bound Services
	3.7.3 Receiving Data for an End Device

	3.8 Obtaining Signal Strength Measurements
	3.9 Entering and Leaving Sleep Mode (End Devices only)
	3.9.1 Sleep Mode with Memory Held
	3.9.2 Sleep Mode without Memory Held

	3.10 Saving and Restoring Context Data
	3.10.1 Network Context
	3.10.2 Application Context

	3.11 Leaving the Network

	4. Working with the Jenie API
	4.1 Jenie Application Templates
	4.1.1 Pre-requisites
	4.1.2 Supplied Files

	4.2 Code Descriptions
	4.2.1 Co-ordinator Code
	4.2.2 Router Code
	4.2.3 End Device Code

	4.3 Building Your Application
	4.3.1 Building Code using Makefiles
	4.3.2 Building Code using Eclipse (JN5148 only)
	4.3.3 Building Code using Code::Blocks (JN5139 only)

	4.4 Downloading Code to Nodes

	5. Controlling Hardware Peripherals
	5.1 ADC
	5.2 DACs
	5.3 Comparators
	5.4 Digital I/O
	5.5 Timers
	5.5.1 Timer/PWM Mode
	5.5.2 Delta-Sigma Mode (NRZ and RTZ)
	5.5.3 Capture Mode

	5.6 Wake Timers
	5.7 Serial Peripheral Interface (SPI)
	5.8 Serial Interface (2-wire)
	5.9 Intelligent Peripheral (IP) Interface

	6. Advanced Issues in Network Operation
	6.1 Identifying the Network
	6.2 Sending Messages
	6.2.1 Timing Issues in Data Sends
	6.2.2 Re-tries in Data Sends
	6.2.3 End-to-End Acknowledgements for Data Sends

	6.3 Routing
	6.3.1 Neighbour Tables and Routing Tables
	6.3.2 Stale Route Purging
	6.3.3 Automatic Route Importation

	6.4 Losing a Parent Node (Orphaning)
	6.4.1 Detecting Orphaning
	6.4.2 Re-joining the Network

	6.5 Losing a Child Node
	6.5.1 End Device Children
	6.5.2 Router Children

	6.6 Auto-polling (End Device only)
	6.7 Beacon Calming
	6.8 Packet Loss
	6.8.1 Packet Collisions
	6.8.2 Minimising Packet Loss
	6.8.3 Route Updates

	6.9 Network Self-Healing
	6.9.1 Automatic Recovery
	6.9.2 Network Recovery

	6.10 Key Performance Parameters
	6.10.1 Broadcast TTL (Time To Live)
	6.10.2 Automatic Recovery Threshold
	6.10.3 Ping Period
	6.10.4 End Device Poll Period
	6.10.5 End Device Scan Sleep Period

	Appendices
	A. Hardware and Memory Usage
	A.1 Hardware Resources
	A.2 Memory Resources

	B. Glossary

