
eDisplay (OP7200)
¼ VGA Operator Control Panel

User’s Manual
019–0116 • 090529–M

Digi International Inc.
www.rabbit.com

OP7200 User’s Manual

Part Number 019-0116 • 090529–M • Printed in U.S.A.
©2002–2009 Digi International Inc. • All rights reserved.

Digi International reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit and Dynamic C are registered trademarks of Digi International Inc.

Rabbit 2000, RabbitCore, and RabbitNet are trademarks of Digi International Inc.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International.

The latest revision of this manual is available on the Rabbit Web site, www.rabbit.com,
for free, unregistered download.
eDisplay (OP7200)

http://www.rabbit.com/
http://www.rabbit.com/
http://www.rabbit.com/

TABLE OF CONTENTS

Chapter 1. Introduction 1
1.1 Features ...1
1.2 Development and Evaluation Tools..3

1.2.1 Tool Kit ...3
1.2.2 Software ..4

1.3 RabbitNet Peripheral Cards ..5
1.4 CE Compliance ...6

1.4.1 Design Guidelines ...7
1.4.2 Interfacing the OP7200 to Other Devices ...7

Chapter 2. Getting Started 9
2.1 Power Supply Connections ...10
2.2 Demonstration Program on Power-Up ...11
2.3 Programming Cable Connections ...12
2.4 Installing Dynamic C ..13
2.5 Starting Dynamic C ..13
2.6 PONG.C..14
2.7 Where Do I Go From Here? ...14
2.8 Remove Battery Tab ...15

Chapter 3. Subsystems 17
3.1 OP7200 Pinouts ..18

3.1.1 Headers and Screw Terminals...18
3.2 Indicators ..19

3.2.1 LEDs ...19
3.2.2 Buzzer ...19

3.3 Digital I/O ...20
3.3.1 Digital Inputs...20
3.3.2 Digital Outputs..22

3.4 Analog Features (OP7200 only) ...24
3.4.1 A/D Converter Inputs..24
3.4.2 Analog Current Measurements ...27
3.4.3 Calibrating the A/D Converter Chip ...28
3.4.4 Touchscreen ..31
3.4.5 Analog Supply Voltage...31
3.4.6 A/D Converter Reference Voltage (+V) ...32

3.5 Serial Communication ..33
3.5.1 RS-232 ..34
3.5.2 RS-485 ..34
3.5.3 RabbitNet Port...36
3.5.4 Ethernet Port ...37
3.5.5 Programming Port ...38

3.6 Memory...39
3.6.1 SRAM ...39
3.6.2 Flash Memory ...39

3.7 Liquid Crystal Display Controller ..40
User’s Manual

3.8 Keypad ... 41
3.9 OP7200 CPLD.. 42
3.10 Programming Cable.. 44

3.10.1 Changing Between Program Mode and Run Mode.. 44
3.11 Other Hardware .. 45

3.11.1 Spectrum Spreader.. 45

Chapter 4. Software 47
4.1 Running Dynamic C... 47

4.1.1 Upgrading Dynamic C.. 49
4.1.2 Accessing and Downloading Dynamic C Libraries ... 50

4.2 Font and Bitmap Converter .. 51
4.3 Sample Programs.. 52

4.3.1 General OP7200 Sample Programs .. 52
4.3.2 Digital I/O... 52
4.3.3 Serial Communication .. 53
4.3.4 A/D Converter Inputs ... 54
4.3.5 Graphic Display.. 55
4.3.6 Keypad.. 55
4.3.7 Touchscreen (OP7200 only)... 55
4.3.8 Using System Information from the RabbitCore Module .. 56

4.4 OP7200 Libraries ... 57
4.5 OP7200 Function APIs... 58

4.5.1 Board Initialization... 58
4.5.2 Digital I/O... 59
4.5.3 LEDs... 62
4.5.4 Serial Communication .. 63
4.5.5 A/D Converter Inputs (OP7200 only) .. 65
4.5.6 Graphic Display Functions ... 75
4.5.7 Keypad Functions... 96

4.6 Touchscreen (OP7200 only)... 99
4.7 RabbitNet Port.. 111

Chapter 5. Using the TCP/IP Features 113
5.1 TCP/IP Connections ... 113
5.2 TCP/IP Sample Programs... 115

5.2.1 How to Set IP Addresses in the Sample Programs... 115
5.2.2 How to Set Up Your Computer for Direct Connect ... 116
5.2.3 Run the PINGME.C Demo... 117
5.2.4 Running More Demo Programs With a Direct Connection ... 118

5.3 Where Do I Go From Here? ... 119

Chapter 6. Installation, Mounting, and Care Guidelines 121
6.1 Grounding... 121
6.2 Installation Guidelines.. 122
6.3 Mounting Instructions .. 123

6.3.1 Bezel-Mount Installation .. 123
6.4 Care Guidelines .. 125

Appendix A. Specifications 127
A.1 Electrical and Mechanical Specifications.. 128

A.1.1 Physical Mounting... 130
A.2 Conformal Coating .. 131
A.3 Jumper Configurations .. 132
A.4 Use of Rabbit 2000 Parallel Ports ... 135
A.5 I/O Address Assignments.. 137
eDisplay (OP7200)

Appendix B. Power Supply 139
B.1 Power Supplies...139

B.1.1 Power for Analog Circuits..140
B.1.2 Grounds ..140
B.1.3 RabbitNet Power Supplies..140

B.2 Batteries and External Battery Connections ..141
B.2.1 Replacing the Backup Battery ..141
B.2.2 External Battery..142
B.2.3 Battery-Backup Circuit...143
B.2.4 Power to VRAM Switch...144
B.2.5 Reset Generator ..144

B.3 Chip Select Circuit ...145

Appendix C. Demonstration Board Connections 147
C.1 Connecting Demonstration Board..147

Appendix D. RabbitNet 151
D.1 General RabbitNet Description..151

D.1.1 RabbitNet Connections ..151
D.1.2 RabbitNet Peripheral Cards..152

D.2 Physical Implementation..153
D.2.1 Control and Routing...153

D.3 Function Calls ..154
D.3.1 Status Byte ...160

Index 161

Schematics 165
User’s Manual

eDisplay (OP7200)

1. INTRODUCTION

The OP7200 intelligent operator interface is a small, high-
performance, C-programmable data acquisition and display unit
that offers built-in I/O, Ethernet connectivity, and an optional
touchscreen. The OP7200 can be used in a control system with
RabbitNet™ expansion I/O cards. A Rabbit® 2000 microprocessor
operating at 22.1 MHz provides fast data processing.

The OP7200 is designed for panel mounting and is NEMA-4
compatible. The OP7200 incorporates the powerful Rabbit 2000
microprocessor, flash memory, static RAM, industrialized digi-
tal I/O ports, RS-232/RS-485 serial ports, a 10/100-compatible
Ethernet port, and eight optional A/D converter inputs and
touchscreen.

1.1 Features
• Small size: 4.4" × 5.7" × 1.7" (112 mm × 144 mm × 43 mm).

• ¼ VGA LCM display (320 × 240 pixels) with white LED backlight.

• Software-controlled LCD contrast and backlight on/off.

• 9-key keypad.

• LCD controller and SRAM compatible with OP7100.

• 4 status LEDs.

• 24 digital I/O: 16 filtered digital inputs with an input range of ±36 V DC and a switch-
ing point of 2.4 V, and 8 sourcing/sinking/tristate high-current outputs (250/350/0 mA).

• Rabbit 2000 microprocessor operating at 22.1 MHz.

• Audible alarm buzzer.

• 128K static RAM and 256K flash memory standard.

• One RJ-45 10/100-compatible Ethernet port with a 10Base-T Ethernet interface.
User’s Manual 1

• Four serial ports (2 RS-232 or 1 RS-232 with RTS/CTS, 1 RS-485 or RabbitNet™
expansion port, and 1 CMOS-compatible programming port).

• Onboard backup battery for real-time clock and SRAM, connection point for external
battery included.

• Watchdog.

• External reset input.

• Meets NEMA 4 watertightness specifications when front-panel mounted.

• Optional 8-channel 12-bit A/D converter.

• Optional 4096 × 4096 analog touchscreen.

Two OP7200 models are available. Their standard features are summarized in Table 1.

Additional 512K flash/512K SRAM memory options are available for custom orders
involving nominal lead times. Contact your Rabbit sales representative or authorized
distributor for more information.

Throughout this manual, the term OP7200 refers to the complete series of OP7200 opera-
tor interfaces unless other production models are referred to specifically.

Appendix A provides detailed specifications.

Table 1. OP7200 Models

Feature OP7200 OP7210

Microprocessor Rabbit 2000 running at 22.1 MHz

Static RAM 128K

Flash Memory 256K

RJ-45 Ethernet Connector and
Filter Capacitors Yes

RabbitCore Module Used RCM2200

A/D Converter Inputs Yes No

4096 × 4096 Touchscreen Yes No

Visit our Web site for up-to-date information about additional add-ons and features as
they become available. The Web site also has the latest revision of this user’s manual.
2 eDisplay (OP7200)

http://www.rabbit.com/products/op7200/

1.2 Development and Evaluation Tools
1.2.1 Tool Kit

A Tool Kit contains the hardware essentials you will need to use your OP7200. The items
in the Tool Kit and their use are as follows.

• OP7200 Getting Started instructions.
• Dynamic C CD-ROM, with complete product documentation on disk.
• Programming cable, used to connect your PC serial port to the OP7200.
• Universal AC adapter, 12 V DC, 1 A (includes Canada/Japan/U.S., Australia/N.Z.,

U.K., and European style plugs).

• Demonstration Board with pushbutton switches and LEDs. The Demonstration Board
can be hooked up to the OP7200 to demonstrate the I/O.

• Wire assembly to connect Demonstration Board to OP7200.
• Screwdriver.
• Rabbit 2000 Processor Easy Reference poster.
• Registration card.

Figure 1. OP7200 Tool Kit

����

����

�����������
	�
��

����������

��������
������
������������ ����������

Rabbit and Dynamic C are registered trademarks of Digi International Inc.

eDisplay (OP7200)
The OP7200 intelligent operator interface is a small, high-performance, C-programmable data acquisition
and display unit that offers built-in I/O, Ethernet connectivity, and an optional touchscreen. These Getting
Started instructions included with the Tool Kit will help you get your OP7200 up and running so that you
can run the sample programs to explore its capabilities and develop your own applications.

Tool Kit Contents
The OP7200 Tool Kit contains the following items:

• Dynamic C CD-ROM, with complete product documentation on disk.

• Demonstration Board with pushbutton switches and LEDs.

• Wire assembly to connect Demonstration Board to OP7200.
• Programming cable, used to connect your PC serial port to the OP7200.

• Universal AC adapter, 12 V DC, 1 A (includes Canada/Japan/U.S., Australia/N.Z., U.K., and European
style plugs).

• Screwdriver.

• Getting Started instructions.

• Rabbit 2000 Processor Easy Reference poster.

• Registration card.

Visit our online Rabbit store at www.rabbit.com/store/ for the latest information on peripherals and acces-
sories that are available for the OP7200 operator interface.

Step 1 — Install Dynamic C®

Before doing any development, you must install Dynamic C. Insert the CD from the Tool Kit in your PC’s
CD-ROM drive. If the installation does not auto-start, run the setup.exe program in the root directory
of the Dynamic C CD. Install any Dynamic C modules after you install Dynamic C.

����������
����

������������

���������	

���������

����������

����������

������

���������

��������	

��������

���������

���������

���������

������

��

��

��
��������

�����
�	
��������

���������������
�����	

��������������������
��������	

���������

���������

������	�

���������

��	�
�����

���������
�	��������
����������
User’s Manual 3

1.2.2 Software

The OP7200 is programmed using version 7.30 or later of Rabbit’s Dynamic C. A compat-
ible version is included on the Tool Kit CD-ROM. Dynamic C v. 9.60 includes the popular
µC/OS-II real-time operating system, point-to-point protocol (PPP), FAT file system, Rabbit-
Web, and other select libraries that were previously sold as individual Dynamic C modules.

Rabbit also offers for purchase the Rabbit Embedded Security Pack featuring the Secure
Sockets Layer (SSL) and a specific Advanced Encryption Standard (AES) library. In addi-
tion to the Web-based technical support included at no extra charge, a one-year telephone-
based technical support subscription is also available for purchase. Visit our Web site at
www.rabbit.com for further information and complete documentation, or contact your
Rabbit sales representative or authorized distributor.
4 eDisplay (OP7200)

http://www.rabbit.com/products/dc/

1.3 RabbitNet Peripheral Cards
RabbitNet™ is an SPI serial protocol that uses a robust RS-422 differential signalling inter-
face (twisted-pair differential signaling) to run at a fast 1 Megabit per second serial rate. The
OP7200 has one RabbitNet port, which can support one peripheral card. Distances between a
master processor unit and peripheral cards can be up to 10 m or 33 ft.

The following low-cost peripheral cards are currently available.

• Digital I/O

• A/D converter

• D/A converter

• Display/Keypad interface

• Relay card

Appendix D provides additional information on RabbitNet peripheral cards and the Rabbit-
Net protocol. Visit our Web site for up-to-date information about additional add-ons and fea-
tures as they become available.
User’s Manual 5

http://www.rabbit.com/

1.4 CE Compliance
Equipment is generally divided into two classes.

These limits apply over the range of 30–230 MHz. The limits are 7 dB higher for frequencies
above 230 MHz. Although the test range goes to 1 GHz, the emissions from Rabbit-based
systems at frequencies above 300 MHz are generally well below background noise levels.

The OP7200 has been tested and was found to be in conformity with
the following applicable immunity and emission standards. The OP7210
is also CE qualified as it is a sub-version of the OP7200. Boards that
are CE-compliant have the CE mark.

NOTE: Earlier versions of the OP7200 sold before 2003 that do not
have the CE mark are not CE-compliant.

Immunity

The OP7200 operator control panels meet the following EN55024/1998 immunity stan-
dards.

• EN61000-4-2 (ESD)

• EN61000-4-3 (Radiated Immunity)

• EN61000-4-4 (EFT)

• EN61000-4-6 (Conducted Immunity)

Additional shielding or filtering may be required for a heavy industrial environment.

Emissions

The OP7200 operator control panels meet the following emission standards emission stan-
dards with the Rabbit 2000 spectrum spreader turned on and set to the normal mode. The
spectrum spreader is only available with Rev. C or higher of the Rabbit 2000 microproces-
sor. This microprocessor is used on the OP7200 operator control panels that carry the CE
mark.

• EN55022:1998 Class B

• FCC Part 15 Class B

Your results may vary, depending on your application, so additional shielding or filtering
may be needed to maintain the Class B emission qualification.

CLASS A CLASS B

Digital equipment meant for light industrial use Digital equipment meant for home use

Less restrictive emissions requirement:
less than 40 dB µV/m at 10 m
(40 dB relative to 1 µV/m) or 300 µV/m

More restrictive emissions requirement:
30 dB µV/m at 10 m or 100 µV/m
6 eDisplay (OP7200)

1.4.1 Design Guidelines

Note the following requirements for incorporating the OP7200 operator control panels
into your application to comply with CE requirements.

General

• The power supply provided with the Tool Kit is for development purposes only. It is the
customer’s responsibility to provide a CE-compliant power supply for the end-product
application.

• When connecting the OP7200 to outdoor cables, the customer is responsible for provid-
ing CE-approved surge/lightning protection.

• Rabbit recommends placing digital I/O or analog cables that are 3 m or longer in a
metal conduit to assist in maintaining CE compliance and to conform to good cable
design practices. Rabbit also recommends using properly shielded I/O cables in noisy
electromagnetic environments.

• While the OP7200 meets the EN61000-4-2 (ESD) requirements in that it can withstand
contact discharges of ± 4 kV and air discharges of ± 8 kV, it is the responsibility of the
end-user to use proper ESD precautions to prevent ESD damage when installing or ser-
vicing the OP7200.

• To meet electromagnetic compatibility requirements, and in particular to prevent mis-
operation or damage from electrostatic discharges, connect the bezel to a protective
ground via a low-impedance path as explained in Section 6.1.

Safety

• For personal safety, all inputs and outputs to and from the OP7200 must not be con-
nected to voltages exceeding SELV levels (42.4 V AC peak, or 60 V DC). Damage to
the Rabbit 2000 microprocessor may result if voltages outside the design range of 0 V
to 5.5 V DC are applied directly to any of its digital inputs.

• The lithium backup battery circuit on the OP7200 has been designed to protect the bat-
tery from hazardous conditions such as reverse charging and excessive current flows.
Do not disable the safety features of the design.

1.4.2 Interfacing the OP7200 to Other Devices

Since the OP7200 operator control panels are designed to be connected to other devices,
good EMC practices should be followed to ensure compliance. CE compliance is ulti-
mately the responsibility of the integrator. Additional information, tips, and technical
assistance are available from your authorized Rabbit distributor, and are also available on
our Web site at www.rabbit.com.
User’s Manual 7

http://www.rabbit.com/products/ce_certification/index.shtml

8 eDisplay (OP7200)

2. GETTING STARTED

Chapter 2 explains how to connect the programming cable and
power supply to the OP7200.
User’s Manual 9

2.1 Power Supply Connections
1. First prepare the AC adapter for the country where it will be used by selecting the plug.

The OP7200 Tool Kit presently includes Canada/Japan/U.S., Australia/N.Z., U.K., and
European style plugs. Snap in the top of the plug assembly into the slot at the top of the
AC adapter as shown in Figure 2, then press down on the spring-loaded clip below the
plug assembly to allow the plug assembly to click into place.

Connect the bare ends of the power supply to the +PWR and -PWR positions on pins 1
and 2 of screw terminal header J3 as shown in Figure 2. The polarity of your connec-
tions is not important because the power-supply circuit has a full-wave bridge rectifier.

Figure 2. Power Supply Connections

2. Apply power.

Plug in the AC adapter. If you are using your own power supply, it must provide 9 V to
40 V DC or 24 V AC—voltages outside this range could damage the OP7200.

CAUTION: Unplug the power supply while you make or otherwise work with the connections
to the screw-terminal headers. This will protect your OP7200 from inadvertent shorts or power
spikes.

NOTE: A hardware RESET is done by unplugging the AC adapter, then plugging it back in.
You may also reset the OP7200 by grounding the reset input located on pin 5 of screw-terminal
header J10.

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�
�
�

�
�
��

��
��
��

�
�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�
��
�

�
��
�

�
�
�

��
�

�
�

��
�

���

���
���

�
��

�
��

�
�
���

�
�

����
��

�

��
��

��
�
��

�
�

�

�

���
���

���

�
�

�
�

�
��

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

�
��

�
�

�
��

�
�

�
�

�
�

��
�

��
 ��� ��� ���

�
�

!�

�
��

�
��

��

"��

��

�
�

���

�
 �

�
 �

�

�
 �

�
 �

�
 �

�

�

��
�

��

��
�

��

�

��
�

�����

��
�

��

�

��
�

��

��
�

��

�

��
��

��

��

��

���

�
��

�
�

�
��

��

�
��

���

����
����

����

�
��

�
�

�
��

�
��

�
��

���

���

��

���

� �

� �
���
���
���

���

�
��

��
�

��
�

�
��� �

��

��
�

���

����

�
��

���

�

��

�
�
���

��

#�

���

#��

����
�

�

�

��	�

�����

��

�

�
�

�
�

�
�

��

�
��

��

�
�

�

�
��

��

�

�

�

�

��

�

�

���

�
��

���

�
��

�
�

�
�

�
�

�
��

�
��

�
��

�
��

�
��

�
�
���

��
���

��
��

�

���
���

�
�
�

�
�
�

�
$
�
�

�
��

��
�
���

�
���

�
��

�
��

�
���

��

���

��
��

�

�����
����	

��

�
�

����

��� ���

���

�
�

�
�#�

���

��

�%&&'()

��������	
��
����
�	�����
������	������	��	��������
��������	
����
������
�

�

�

�����

�

�

�

�

����	 ����	

�

���������������

���������������

�
�

�'*+,'
-.+&
/+,'(0
12-'(&
&%3
12&+
-.+&

�2%4
4.56
12&+
4.%/'�

�
�����
��
�	��������
10 eDisplay (OP7200)

2.2 Demonstration Program on Power-Up
A repeating sequence of graphics and menus will be displayed on the LCD when power is
first applied to the OP7200. Press any of the five keypad buttons immediately below the
LCD to select the corresponding demonstration. When you are in a menu demo screen,
press the diamond-shaped keypad button in the middle row to enter the menu choice that
is highlighted, or press the up and down keys above and below the diamond-shaped key-
pad button to move around the menu.

Note that the programming cable should not be connected for this demonstration.

This demonstration will be replaced by a new program when the programming cable is
attached and the new program is compiled and run. The demonstration is available for
future reference in the Dynamic C SAMPLES\OP7200 directory as FUN.C.
User’s Manual 11

2.3 Programming Cable Connections
Connect the programming cable to download programs from your PC and to program and
debug the OP7200.

NOTE: Use only the programming cable that has a red shrink wrap around the RS-232
level converter (Part No. 101-0513), which is supplied with the OP7200 Tool Kit. Other
Rabbit programming cables might not be voltage-compatible or their connector sizes
may be different.

Connect the 10-pin PROG connector of the programming cable to header J1 on the
OP7200’s RabbitCore module. Ensure that the colored edge lines up with pin 1 as shown.
(Do not use the DIAG connector, which is used for monitoring only.) Connect the other end
of the programming cable to a COM port on your PC. Make a note of the port to which
you connect the cable, as Dynamic C will need to have this parameter configured. Note
that COM1 on the PC is the default COM port used by Dynamic C.

Figure 3. Programming Cable Connections

NOTE: Some PCs now come equipped only with a USB port. It may be possible to use an
RS-232/USB converter (Part No. 20-151-0178) with the programming cable supplied
with the OP7200 Tool Kit. Note that not all RS-232/USB converters work with
Dynamic C.

��
 ���

��
��

�
��

�

��

���

�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

��

�

��
��

��
�

��
��

����
��

��
��

��

�

�
��

��

�

�
��

��

��

��

��

�
��

��
�

�
�

���

���

���
���

���
���

�
�
���

��

������

�

���������
�� �
�

���
���

���

��

��
���

����

���

����

������

����

����

���

����

����

����

���

����

��� ��

���

�� ��

�� ���

��
 ��� ��� ��� ��

!�

���
���

��

"��

��

��

���

� �

� �

�
� �

� �
� �

�
�

���

��

���

���

���

�����

���

���

���

��

���

���

����

����

��

���

���

��

���

��

���

���

����
����
����

���
��

���
���

���

���

���

��

���

� �

� �
���
���
���

���

������

���

���� ���

���

���

����

���

���

�

��

�
�
���

��

#�

���

#��

����
�

�

�

��	�

�����

��

�

��

��
��

��

���

��

��

�

���

��

�
�

�

�

��

�
�

���

���

���

���

��
��

��

���

���

��� ���
���

�
�
���

��
���

��
��

�

���
���

���

���

�$
�����

��
����

����

���

���

����

��

���

��

��

�

�
�

����

��� ���

���

�
�

�
�#� �%&&'()

���	���

���

�� �� �
 ��
� ��

��
�
�

���

���

�

�
�

��

�
� !� �� �� "� " "

"�

�

���

���

�������

#��

���

���

���

�
 �� ��

��

��
!� ��
��

��
��

��
 ���

"�
���

���
���
��

��� ��

!

��������� ���

��� ���

���

�

��

���
��

��� ���

�
�
���

���
���

"�

 !"#$
����%

�

�

�

�����

�

�

�

�

����	 ����	

�

���������������

���������������

��������	
��
����
�	�����
������	������	��	��������

��������	
����
������

�����������
	�
��

�+
��
���
4+(&

�+.+('7
'76'

�
�
�
�

��

�
��
�

�
�
�
�

�'7
-8(129
:(%4

����&�
�','(
71-/+22'/&
&8'
4(+6(%**126
/%3.'
3)
45..126
+2
&8'
(133+2
/%3.';
�%('<5..)
45..
+2
&8'
/+22'/&+(
&+
('*+,'
1&
<(+*
&8'
8'%7'(;
12 eDisplay (OP7200)

2.4 Installing Dynamic C
If you have not yet installed Dynamic C version 7.30 (or a later version), do so now by
inserting the Dynamic C CD from the OP7200 Tool Kit in your PC’s CD-ROM drive. The
CD will auto-install unless you have disabled auto-install on your PC.

If the CD does not auto-install, click Start > Run from the Windows Start button and
browse for the Dynamic C setup.exe file on your CD drive. Click OK to begin the
installation once you have selected the setup.exe file.

The online documentation is installed along with Dynamic C, and an icon for the docu-
mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the
menu. If the icon is missing, create a new desktop icon that points to default.htm in the
docs folder, found in the Dynamic C installation folder.

The latest versions of all documents are always available for free, unregistered download
from our web sites as well.

The Dynamic C User’s Manual provides detailed instructions for the installation of
Dynamic C and any future upgrades.

NOTE: If you have an earlier version of Dynamic C already installed, the default instal-
lation of the later version will be in a different folder, and a separate icon will appear on
your desktop.

2.5 Starting Dynamic C
Once the OP7200 is connected to your PC and to a power source, start Dynamic C by
double-clicking the Dynamic C icon on your desktop or in your Start menu. Dynamic C
uses the serial port specified during installation

If you are using a USB port to connect your PC to the OP7200, choose Options > Project
Options and check “Use USB to Serial Converter” in “Serial Options” on the Communi-
cations tab. Click OK to save the settings.

Dynamic C assumes, by default, that you are using serial port COM1 on your PC when
you are running a program. If you are using COM1, then Dynamic C should detect the
OP7200 and go through a sequence of steps to cold-boot the OP7200 and to compile the
BIOS. If the error message “Rabbit Processor Not Detected” appears, you have probably
connected to a different PC serial port such as COM2, COM3, or COM4. You can change
the serial port used by Dynamic C with the OPTIONS menu, then try to get Dynamic C to
recognize the OP7200 by selecting Reset Target/Compile BIOS on the Compile menu or
by pressing <Ctrl-Y>. Try the different COM ports in the OPTIONS menu until you find
the one you are connected to. If you still can’t get Dynamic C to recognize the target on
any port, then the hookup may be wrong or the COM port might not working on your PC.

If you receive the “BIOS successfully compiled …” message after pressing <Ctrl-Y> or
starting Dynamic C, and this message is followed by a communications error message, it
is possible that your PC cannot handle the 115,200 bps baud rate. Try changing the baud
rate to 57,600 bps as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Communications
menu. Change the baud rate to 57,600 bps.
User’s Manual 13

2.6 PONG.C
You are now ready to test your set-up by running a sample program.

Find the file PONG.C, which is in the Dynamic C SAMPLES folder. To run the program,
open it with the File menu (if it is not still open), then compile and run it by pressing F9 or
by selecting Run in the Run menu. The STDIO window will open on the PC and will dis-
play a small square bouncing around in a box.

This program shows that the CPU is working. The sample program described in
Section 5.2.3, “Run the PINGME.C Demo,” tests the TCP/IP portion of the board.

2.7 Where Do I Go From Here?
NOTE: If you purchased your OP7200 through a distributor or Rabbit partner, contact

the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

• Use the Technical Support e-mail form at www.rabbit.com/support/.

If the sample program ran fine, you are now ready to go on to explore other OP7200 fea-
tures and develop your own applications.

The following sample programs illustrate the features and operation of the OP7200.

These sample programs can be used as templates for applications you may wish to
develop.

Chapter 3, “Subsystems,” provides a description of the OP7200’s features, Chapter 4,
“Software,” describes the Dynamic C software libraries and introduces some sample pro-
grams. Chapter 5, “Using the TCP/IP Features,” explains the TCP/IP features.

Basic Keypad Touchscreen

BUFFLOCK.C
CONTRAST.C
PRIMITIVES.C
SCROLLING.C
TEXT.C

KP_16KEY.LIB
KP_ANALOG.C
KP_BASIC.C
KP_MENU.C

BTN_16KEY.C
BTN_BASICS.C
BTN_KEYBOARD.C
CAL_TOUCHSCREEN.C
RD_TOUCHSCREEN.C
14 eDisplay (OP7200)

http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbitsemiconductor.com/forums/

2.8 Remove Battery Tab
The backup battery on the OP7200 has a plastic tab to protect the battery against discharg-
ing before the OP7200 is placed into service. Although the battery is located inside the
OP7200’s protective casing, it is possible to reach the plastic tab using pliers or tweezers
from the opening on the side of the OP7200 shown in Figure 4.

Figure 4. Remove Battery Tab

NOTE: Rabbit recommends that the battery tab not be removed until you are ready to
place the OP7200 in normal service with regular power connected to header J3.

The backup battery protects the contents of the SRAM and keeps the real-time clock
running when regular power to the OP7200 is interrupted. If you plan to use the real-time
clock functionality in your application, you will need to set the real-time clock once you
remove the plastic tab. Set the real-time clock using the onscreen prompts in the demon-
stration program. Alternatively, you may set the real-time clock using the SETRTCKB.C
sample program from the Dynamic C SAMPLES\RTCLOCK folder. The RTC_TEST.C
sample program in the Dynamic C SAMPLES\RTCLOCK folder provides additional exam-
ples of how to read and set the real-time clock.

��
 ���

��
��

�
��

�

��

���

�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

��

�

���
�

�
��

�
��
�

��
���

�

�
��

�

�

��

�
��

��

�

��

�

�

��
�

�

��
�

�

��

��
�

�
�

���

���

���
���

���
���

�
�
���

��

������

�

���������
�� �
�

���
���

���

��

��
���

����

���

����

������

����

����

���

����

����

����

���

����

��� ��

���

�� ��

�� ���

��
 ��� ��� ��� ��

!�

���
���

��

"��

��

��

���

� �

� �

�
� �

� �
� �

�
�

���

��

���

���

���

�����

���

���

���

��

���

���

����

����

��

���

���

��

���

��

���

���

����
����
����

���

��

���
���

���
���

���

��

���

� �

� �
���
���
���

���
������

���

���� ���

���

���

����

���

���

�

��

�
�
���

��

#�

���

#��

����
�

�

�

��	�

�����

��

�

��

��
��

��

���

��

��

�

���

��

�
�

�

�

��

�
�

���

���

���

���

��
��

��

���

���

��� ���
���

�
�
���

��
���

��
��

�

���
���

���

���

�$
�����

��
����

����

���

���

����

��

���

��

��

�

�
�

����

��� ���

���

�
�

�
�#�

���

�%&&'()

�� �� �
 ��
� ��

��
�
�

���

���

�

�
�

��

�
� !� �� �� "� " "

"�

�

���

���

�������

#��

���

���

���

�
 �� ��

��

��
!� ��
��

��
��

��
 ���

"�
���

���
���
��

��� ��

!

��������� ���

��� ���

���

�

��
���
��

��� ���

�
�
���

���
���

"�

 !"#$
����%

�

�

�

�����

�

�

�

�

����	 ����	

�

���������������

���������������

��!!
�!"#	�'
�"(

��������	
��
����
�	�����
������	������	��	��������

��������	
����
������
User’s Manual 15

16 eDisplay (OP7200)

3. SUBSYSTEMS

Chapter 3 describes the principal subsystems for the OP7200.

• Digital I/O

• Analog Features (OP7200 only)

• Serial Communication

• Memory

• Liquid Crystal Display Controller

• Keypad

• OP7200 CPLD

Figure 5 shows these Rabbit-based subsystems designed into the OP7200.

Figure 5. OP7200 Subsystems

The memory and microprocessor are located on the RabbitCore module. The RCM2200
module is used on the OP7200. If you have more than one OP7200 or other Rabbit products
built around RabbitCore modules, take care not to swap the RabbitCore modules since they
contain system ID block information and calibration constants that are unique to the board
they were originally installed on. It is a good idea to save the calibration constants should
you need to replace a RabbitCore module in the future. See Section 4.3.8, “Using System
Information from the RabbitCore Module,” for more information.

�	$�)��	

���%

 !"#$

���%*+
,#'

���-*+
,#'

��

��	���� �����

���������!
"###

������

���./0

�1�
�,�2�)	�)

��3�	"!
4���	

��3�	"!
��	��	

4�	�)5"'��	,
���1��6�"7

�,�'$�
#')���

�,�),!!�)
User’s Manual 17

3.1 OP7200 Pinouts
The OP7200 pinouts are shown in Figure 6.

Figure 6. OP7200 Pinouts

NOTE: Screw-terminal header J2 and the associated analog and digital I/O are not avail-
able on the OP7210.

3.1.1 Headers and Screw Terminals

Standard OP7200 models are equipped with four 1 × 12 screw terminal strips (J2, J3, J6,
and J10), and a 2 × 5 programming header and an RJ-45 Ethernet jack on the RCM2200
RabbitCore module.

The RJ-45 jack labeled RabbitNet is a serial I/O expansion port for use with RabbitNet
I/O cards. The RabbitNet jack does not support Ethernet connections. Be careful to connect
your Ethernet cable to the jack labeled Ethernet.

���

�"�

�"��

�"��

�"��

�"�

�"��

�"��

�"��

��

=�>�

��>�

���

����

����

�������

�������

���

���

����

����

����

���

����

���

���

���

��

���

���

���

��

���

���

����

����

����

���

����

����

����

����

���

����

����

����

���

����

$%

������
������

�������
������

�������
������

&������� ��

��'��

�
("%"

�����

����)

*

�������
+������

�
(,-.

�������
������

�����

$/#

$"

$0

�%&&'()

�� ��

�

 ��

� �
�

��
�
�

���

�
��

�

�

�

��

�

� !� �� �� "� " "

"�

�

���

���

�������

#�
�

���

�
�
�

���

�
 �� ��

��

��
!� ��

��

��
��

�
�
 �
��

"�
���

���

���
��

���
��

!

���
������ ���

��� �
��

���

�

��

��
�

��

���
���

�
�
���

���

���
"�

!"
#$

�
�
�
�
%

18 eDisplay (OP7200)

3.2 Indicators
3.2.1 LEDs

The OP7200 has two LEDs, Power Good and Microprocessor Bad.

The green Power Good LED at DS2 indicates when power is applied to the OP7200 and
that Vcc is within the proper operating range of 4.5 to 5.5 V. The LED turns off when the
OP7200 is being reset.

The red Microprocessor Bad LED at DS1 indicates the status of the OP7200. Following
reset, DS1 will be ON and will remain ON until turned OFF by Dynamic C. Once the
microprocessor comes out of reset and finishes all its internal checks and initializes the
system, it should turn DS1 OFF.

The operation of DS1 may be redefined in any manner desired with the caveat that DS1
comes ON after reset. The USR label on the dust cover refers to the LED at DS1 and
reflects its secondary purpose as a user-defined indicator.

3.2.2 Buzzer

An audible buzzer is turned on and off through the use of a programmed I/O bit defined in
software.
User’s Manual 19

3.3 Digital I/O
3.3.1 Digital Inputs

The OP7200 has 19 digital inputs, IN0–IN18, each of which is protected over a range of
–36 V to +36 V. The inputs are factory-configured to be pulled up to +5 V, but they can
also be pulled down to 0 V in banks of eight by changing a surface-mounted 0 Ω resistor.
Figure 7 shows a sample digital input circuit. All 19 inputs are protected against noise
spikes by a low-pass filter composed of a 22 kΩ series resistor and a 10 nF capacitor.

Figure 7. OP7200 Digital Inputs [Pulled Up—Factory Default]

OP7200 series boards can be made to order in volume with the banks of digital inputs
pulled down to 0 V. Contact your authorized Rabbit distributor or your Rabbit sales
representative for more information.

For IN0–IN7 the actual switching point between a zero and a one is 1.5 V max and 3.5 V
min respectively. The range between 1.5 and 3.5 V is undefined. For IN8–IN15 the actual
switching point between a zero and a one is 0.8 V max and 2.0 V min respectively. The
range between 0.8 and 2.0 V is undefined. For IN16–IN17, which are available only on
the OP7200 model, the actual switching point between a zero and a one is 0.8 V max and
3.5 V min respectively. The range between 0.8 V and 3.5 V is undefined.

Therefore, the input voltage must be less than 0.8 V for all the digital inputs as a group to
ensure that a zero is being read, and the input voltage must be must be greater than 3.5 V
for a one.

IN16–IN18 interface to the A/D converter chip serially with an access time of 100 µs,
which is different from the access time of 5 µs for IN0–IN15, which interface in parallel
with the Rabbit 2000 microprocessor.

��
2?

��
9�

�
9�

�"((�	�����8
%�'),�),'�##,)

1�����)
��2����$//

���

�
�

��
20 eDisplay (OP7200)

The digital inputs are each fully protected over a range of -36 V to +36 V, and can handle
short spikes of ±40 V.

Figure 8. OP7200 Digital Input Protected Range

���
$

�
�
$

�
;

$

���
$

'������
��������
3�����

��4��

�
��
��
��
���
�
�
��
5
�
��
��
�

��4��

��4��
User’s Manual 21

3.3.2 Digital Outputs

The OP7200 has eight digital outputs, OUT0–OUT7, which are individually configurable
with the digoutConfig or digoutTriStateConfig software function calls as sinking
(up to 350 mA per channel) or as sourcing (up to 250 mA per channel). Figure 9 shows a
wiring diagram for using the digital outputs in a sinking or a souring configuration.

Figure 9. OP7200 Digital Outputs

All the digital outputs are in the high-impedance tristate when the OP7200 is initially
powered on or reset. The CPLD (U4) then enables either the sink control or the source
control to operate the digital outputs as sinking or sourcing, and thereby serves as a hard-
ware block to prevent both sinking and sourcing drivers from being activated at the same
time in a given channel.

Although the components are not installed, there is provision on the circuit board for the dig-
ital outputs to be pulled as a group to Vcc, +K, or to GND through 27 kΩ resistors. In spe-
cial circumstances, you may need to pull sinking outputs high to either Vcc or +K, or you
may need to pull sourcing outputs to GND, for example, when driving low-level logic sig-
nals. Pulling the digital outputs up to +K allows the current-sinking outputs to be used as
voltage outputs where their upper level is controlled by the voltage of +K. OP7200 series

��

�'*�'��+�!��!

+��	�'��+�!��!

��

	������
1���

	������
1���

����
�4��

�������
�4
���

����
������
�������
�4
���
22 eDisplay (OP7200)

boards can be made to order in volume with the digital outputs pulled up to Vcc or +K, or
pulled down to GND. Contact your authorized Rabbit distributor or your Rabbit sales rep-
resentative for more information.

+K is an externally supplied voltage of 9–40 V DC used primarily in combination with
current sourcing outputs, and should be capable of delivering up to 2 A. Although a con-
nection to a +K supply is not absolutely required with sinking outputs, it is highly recom-
mended to protect against current spikes when driving inductive loads.

Connect the positive +K supply to pin 3 of screw-terminal header J3 and the negative side
of the supply to pin 12 of screw-terminal header J3. Exercise care to connect this supply
correctly because the +K inputs are not protected against reverse polarity, and serious
damage to the OP7200 may result if you connect this supply backwards.

When you are using the same DC power supply as the main power supply for the OP7200
and as the +K power supply, Rabbit recommends that you tie the -PWR connection to
ground. Since this step will bypass the reverse-polarity protection afforded by the full-
wave bridge rectifier, ensure that the positive leads from the power supply are connected
correctly to prevent damage to the OP7200.

Figure 10. +K, Power Supply, and Sample Load Connections

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�
�
�

�
�
��

��
��
��

�
�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

��
�

�
��

�

�
�
�

��
�

���

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

��
�

��

�

��
�

�����

��
�

��

�

��
�

��

��
�

��

�

��
��

��

��

��
��

�

��
��������	
��
����
�	�����
������	������	��	��������
��������	
����
������
�

�

�

�����

�

�

�

�

����	 ����	

�

���������������

���������������

�
�

����(����	,��'�
�5��#��3�#"9�

�,:�)�#���!6�5,)
��;����"�7�6*

�+22'/&'7
&+
�129126
�5&45&

�+22'/&'7
&+
�+5(/126
�5&45&

�,"7

�,"7

�

�<	�)�"!
6*��,:�)
����!6

�

��
�7"�	�)��>�

=�>�

�+22'/&'7
&+
�129126
�5&45&

�+22'/&'7
&+
�+5(/126
�5&45&

�"��

��

���

�"��
�,"7

�,"7

�

�

��
User’s Manual 23

3.4 Analog Features (OP7200 only)
The single A/D converter used in the OP7200 (the OP7210 does not have analog or touch-
screen capabilities) has a resolution of 11 bits (single-ended mode) or 12 bits (differential
mode). There are eight channels of A/D conversion, and the OP7200 also has provision
for up to four digital inputs. Three of the four digital inputs are available on screw terminal
header J2. The fourth digital input serves as a board status bit, and is controlled by a 0 Ω
surface-mount resistor R159. The factory default is for R159 to not be installed, which
leaves this fourth input pulled up to Vcc.

3.4.1 A/D Converter Inputs

Figure 11 shows a pair of A/D converter input circuits. Each A/D converter input consists
of resistors and a capacitor. The resistors form a10:1 attenuator, and the capacitor protects
the A/D converter input against electrostatic discharges.

Figure 11. A/D Converter Inputs

���
9�
����

����

�
$

���� ���

1�����)
��2����

�;���
$

�
�

���
9�

�
2?

��

9

�

��

9

��
2?

��	
24 eDisplay (OP7200)

The A/D converter chip can make either single-ended or differential measurements
depending on the value of the opmode parameter in the software function call. Adjacent
A/D converter inputs are paired to make differential measurements. The default setup for
the OP7200 is to measure only positive voltages for the ranges listed in Table 2.

Many other possible ranges are possible by physically changing the resistor values that
make up the attenuator circuit.

It is also possible to read a negative voltage by moving the 0 Ω jumper (see Figure 11) on
header JP4, JP5, JP6, or JP7 associated with the A/D converter input from analog ground
to the 2.048 V reference voltage generated and buffered by the A/D converter. Adjacent
input channels are paired so that moving a particular jumper changes both of the paired
channels. At the present time Rabbit does not offer the software drivers to work with sin-
gle-ended negative voltages, but the differential mode described below may be used to
measure negative voltages.

Differential measurements require two channels. As the name differential implies, the dif-
ference in voltage between the two adjacent channels is measured rather than the differ-
ence between the input and analog ground. Voltage measurements taken in differential
mode have a resolution of 12 bits, with the 12th bit indicating whether the difference is
positive or negative.

Table 2. Positive A/D Converter Input Voltage Ranges

Min. Voltage
(V)

Max. Voltage
(V)

Amplifier
Gain

mV per Tick

0.0 +20.0 1 10

0.0 +10.0 2 5

0.0 +5.0 4 2.5

0.0 +4.0 5 2.0

0.0 +2.5 8 1.25

0.0 +2.0 10 1.0

0.0 +1.25 16 0.625

0.0 +1.0 20 0.500
User’s Manual 25

The A/D converter chip can only accept positive voltages. When the 0 Ω resistor shown in
Figure 11 ties the A/D attenuator circuit to analog ground, both differential inputs must be ref-
erenced to analog ground, and both inputs must be positive with respect to analog ground.

To make such differential measurements, move the 0 Ω resistor jumper (see Figure 11)
associated with the A/D converter inputs (JP4, JP5, JP6, or JP7) from analog ground to the
2.048 V reference voltage. This allows input voltages that are negative with respect to
analog ground. Table 3 provides the differential voltage ranges for this setup.

If a device such as a battery is con-
nected across two channels for a
differential measurement, and it is
not referenced to analog ground,
then the current from the device
will flow through both sets of
attenuator resistors as shown in
Figure 12. This will generate a
negative voltage at one of the
inputs, AIN1, which will almost
certainly lead to inaccurate A/D
conversions.

Figure 12. Current Flow from Ungrounded
or Floating Source

Table 3. Differential Voltage Ranges

Min. Differential
Voltage

(V)

Max. Differential
Voltage

(V)

Amplifier
Gain

mV per Tick

0 ±20.0 ×1 10

0 ±10.0 ×2 5

0 ±5.0 ×4 2.5

0 ±4.0 ×5 2.0

0 ±2.5 ×8 1.25

0 ±2.0 ×10 1.00

0 ±1.25 ×16 0.625

0 ±1.0 ×20 0.500

���
9�

���
9�

�
2?

��
9�

��
9�

�
2?

��	����

����

�

�

�

�

�

�

=

������
26 eDisplay (OP7200)

The input circuit of the OP7200 was designed to use the differential mode in a unique way
to support measuring voltages in an equal range above and below ground. This method
also requires you to move the 0 Ω jumper (see Figure 11) on the header associated with the
A/D converter inputs (JP4, JP5, JP6, or JP7) from analog ground to the 2.048 V reference
voltage. The input is connected to the even-numbered channel, and the odd-numbered
channel is tied to analog ground. Table 4 provides the bipolar voltage ranges for this setup.

3.4.2 Analog Current Measurements

Table 4. Bipolar Voltages

Min. Voltage
(V)

Max. Voltage
(V)

Amplifier
Gain

mV per Tick

-20.0 +20.0 1 10

-10.0 +10.0 2 5

-5.0 +5.0 4 2.5

-4.0 +4.0 5 2.0

-2.5 +2.5 8 1.25

-2.0 +2.0 10 1.00

-1.25 +1.25 16 0.625

-1.0 +1.0 20 0.500

The A/D converter inputs can also be used with 4–20 mA
current sources by measuring the resulting analog volt-
age drop across a 100 Ω 1% precision resistor placed
between the analog input and analog ground as shown in
Figure 13.

The single-ended scale of 0–2.56 V with a gain of 8 is
used to get an A/D current conversion of 12.5 µA/tick. Figure 13. Resistor for 4–20 mA

Current Sources

���
�
�@

��������

����
User’s Manual 27

3.4.3 Calibrating the A/D Converter Chip

Manufacturing tolerances for resistors, bias currents, offset voltages, gain, and the like
introduce errors into the A/D conversions. Ideally there would be a one-to-one straight-
line relationship between the input voltage and the output of the A/D converter, and a
graph of such a line would have a slope of 1 and would pass through the (0,0) coordinate.
However, the errors arising from manufacturing tolerances introduce a deviation between
the applied input voltage and the voltage that is output by the A/D converter. The actual
plot of voltage in vs. the voltage out from A/D converter is not actually a straight line.
However, a straight line is a very good first-order approximation, and the calibration rou-
tines provided for the OP7200 are based on a straight line with a slope of 1 and an offset
from (0,0). The calibration routines use two known measurement points on the voltage-in
vs. voltage-out line as the basis to calculate calibration constants that will be used to adjust
for the slope of the line and the offset from (0,0). The calibration routines typically use
input voltage points that are 10% less then the maximum and 10% more than the mini-
mum readings possible for the A/D converter on any given range.

Quality calibration procedures are extremely important in obtaining good A/D converter
results. No matter how high a resolution the A/D converter has, it cannot compensate for
improper calibration. A/D converter results will never be more accurate than the meter
used in the calibration process. Therefore, use the best digital volt and milli-amp meter
available that meets or exceeds the accuracy of the A/D converter chip.

3.4.3.1 Modes

The OP7200 A/D converter operates in three different modes:

• the single-ended mode,

• the differential mode, and

• the milli-amp mode

The calibration and read routines provided correspond to these three modes.

3.4.3.2 Calibration Constants

The A/D converter has eight individual input channels, and each channel has eight pro-
grammable gains. Additionally, the A/D converter has the capability for adjacent inputs
to be paired to make differential measurements with eight different gains, and provision is
also made to convert 4–20 mA analog current measurements.
28 eDisplay (OP7200)

To get the best results form the A/D converter, it is necessary to calibrate each mode for
each of its gains. The following table provides a grid for each possible set of calibration
constants.

For the single-ended mode there are calibration constants for each channel and for each of
its gains, for a total of 64 sets of calibration constants. The milli-amp mode covers 4–20 mA
(actually 0–25 mA) currents. Separate calibration and read-back routines are provided for
this. Since only one range of current measurement is provided, these routines use only one
gain (4). One set of calibration constants is provided for each of the eight input channels.
The differential-mode routines use a pair of input channels to make measurements. In this
case, calibration constants are stored for each pair of channels and for each of the eight
gains, for a total of 32 sets of calibration constants.

When a calibration is performed, it fills in one of the squares in the table with a set of cal-
ibration constants representing the corresponding mode, channel, and gain. These con-
stants are stored in flash memory, and are thus maintained even when power is been
removed from the OP7200. Note that calibration constants are stored for each of the
modes. Since A/D converter read routines select the appropriate calibration constants based
on the mode, it is possible for software calls to move from one mode to another without
recalibration.

3.4.3.3 Calibration Recommendations

It is imperative that you calibrate each of the A/D converter inputs in the same manner as
they are to be used in the application. For example, if you will be performing floating dif-
ferential measurements or differential measurements using a common analog ground, then
calibrate the A/D converter in the corresponding manner. The calibration must be done
with the attenuator reference selection jumper in the desired position (see Figure 11). If a

Mode

Single-Ended mA Differential

Gain
Code 1 2 4 5 8 10 16 20 4 1 2 4 5 8 10 16 20

In
pu

t

0

1

2

3

4

5

6

7

User’s Manual 29

calibration is performed and the jumper is subsequently moved, the corresponding input(s)
must be recalibrated. The calibration table only holds calibration constants based on
mode, channel, and gain. Other factors affecting the calibration must be taken into
account by calibrating using the same mode and gain setup as in the intended use.

It is not necessary to fill out the entire calibration table. Only the entries associated with
the modes, channels, and gains that you will be using are necessary. This fact can be used
to simplify and speed up the calibration process.

Each calibration is normally done at 10% less than the maximum and 10% more than the
minimum within a given voltage range defined by the mode, channel, and gain. However,
if an application is known to use only portion of a particular range, it is possible to obtain
improved accuracy by using calibration points that are 10% less than the expected maxi-
mum and 10% greater than the expected minimum.

3.4.3.4 Factory Calibration

Because of the large number of possible calibrations, the factory performs only a rudimen-
tary calibration on the unit. By default, all four of the attenuator reference selection jump-
ers are in the analog ground position. The factory performs a single-ended calibration on
each of the eight channels with a gain of 1 (0–20 V range). The remaining single-ended
calibration constants for the other seven gains are approximated and are filled in based on
the initial calibration. The milli-amp and differential portions of the table are filled in
using typical expected values. All read routines will work properly with these factory-ini-
tialized calibration constants, but only the single-ended mode should be expected to return
accurate results over a range of 0–20 V until you recalibrate the OP7200 for your use.

Sample programs are provided to illustrate how to read and calibrate the various A/D
inputs for the three operating modes.

These sample programs are found in the ADC subdirectory in SAMPLES\OP7200. See
Section 4.3, “Sample Programs,” for more information on these sample programs and how
to use them.

Mode Read Calibrate

Single-Ended, one channel ADRD_SE_CH.C ADCAL_SE_CH.C

Single-Ended, all channels ADRD_SE_ALL.C ADCAL_SE_ALL.C

Milli-Amp ADRD_MA_CH.C ADCAL_MA_CH.C

Differential, analog ground ADRD_DIFF_GND.C ADCAL_DIFF_GND.C

Differential, 2 V reference ADRD_DIFF_2V.C ADCAL_DIFF_2V.C
30 eDisplay (OP7200)

3.4.4 Touchscreen

The OP7200 analog touchscreen provides a high-resolution matrix of 4096 × 4096
elements. The touchscreen is mounted to the front of and is the same size as the LCD mod-
ule. A four-conductor flex cable connects the touchscreen to the OP7200 at connector J13.
The inputs from the touchscreen are protected from ESD by ferrite beads, capacitors, and
shunt diodes. The ferrite beads and capacitors also serve to eliminate EMI radiating from
the cable. Ferrite beads rather than resistors are used in series with the inputs to maintain
the most accurate measurement of the touchscreen x,y position.

A reference voltage is applied across the touchscreen. When the touchscreen is touched,
resistances that represent the x,y position are presented at the input circuit. The touchscreen
controller chip U9 converts these resistances into digital form for use by the software.

NOTE: Should you touch two or more different points on the touchscreen simultaneously,
the resistance presented to the input circuit will represent some difference between the
resistances corresponding to the points. This can lead to a different or an unknown
key’s value being processed. To prevent this from happening, exercise care to “touch”
only one point or position on the touchscreen at a time.

3.4.5 Analog Supply Voltage

The analog section is isolated from digital noise generated by other components by way of a
low-pass filter composed of L2, C31, and C32 as shown in the left side of Figure 14. The +V
analog power supply powers the A/D converter chip.

Figure 14. Analog Supply and Voltage Reference Circuits

���
���
2?

����
���
�

�$

����
��

�

�
�
$�-���
�814

�2&'(2%.
�'<'('2/'
$+.&%6'

"��
�+

���
�+2,'(&'(

�$$//

�
�
���
2?

�
�
���
2?

#�
User’s Manual 31

3.4.6 A/D Converter Reference Voltage (+V)

A reference voltage of 2.048 V is generated by the A/D converter chip. The reference volt-
age is used by the touchscreen controller chip, and may also be used to bias the input
attenuator circuits when bipolar inputs are to be measured. As shown in Figure 14, the
factory default is for a surface-mounted 0 Ω resistor to connect pins 1–2 on header JP8.
This enables the internal reference voltage of 2.048 V generated by the A/D converter chip.

By connecting pins 2–3 on header JP8 instead, a ratiometric reference can be provided by
the divider consisting of R148 and R150. A fixed reference can be configured by remov-
ing R150 and installing a zener diode at U12. The zener diode will then set the reference
voltage. C91 would be always installed, and provides filtering. None of these components
(R148, R150, C91, or U12) is factory-installed.
32 eDisplay (OP7200)

3.5 Serial Communication
The OP7200 has two RS-232 serial ports, which can be configured as one RS-232 serial
channel (with RTS/CTS) or as two RS-232 (3-wire) channels using the serMode software
function call. Table 5 summarizes the options.

The OP7200 also has one RS-485 serial channel and a CMOS serial channel that serves as
the programming port. When you are using the OP7200 in a RabbitNet network, Serial
Port B is configured as a clocked serial port and the RS-485 chip drives the RabbitNet
port—the OP7200 then cannot be used for RS-485 serial communication.

All four serial ports operate in an asynchronous mode up to the baud rate of the system
clock divided by 32. An asynchronous port can handle 7 or 8 data bits. A 9th bit address
scheme, where an additional bit is sent to mark the first byte of a message, is also sup-
ported. Serial Port A, the programming port, and Serial Port B can be operated alternately
in the clocked serial mode. In this mode, a clock line synchronously clocks the data in or
out. Either of the two communicating devices can supply the clock. When the Rabbit pro-
vides the clock, the baud rate can be up to ¼ of the system clock frequency, or more than
5.525 Mbps for a 22.1 MHz clock speed.

The OP7200 boards use all four serial ports. Serial Port A is used in the clocked serial
mode to provide cold-boot, download, and emulation functions. Serial Port B is used
either for RS-485 or for RabbitNet communication, and Serial Ports C and D are used for
RS-232 communication. The OP7200 uses an 11.0592 MHz crystal, which is doubled to
22.1184 MHz. At this frequency, the OP7200 supports standard asynchronous baud rates
up to a maximum of 230,400 bps.

Table 5. Serial Communication Configurations

Software
Mode

Serial Port

B C D

0 RS-485 RS-232, 3-wire RS-232, 3-wire

1 RS-485 RS-232, 5-wire CTS/RTS

2 not initialized*

* Use modes 2 and 3 when Serial Port B is going to used by other libraries such as
PACKET.LIB.

RS-232, 3-wire RS-232, 3-wire

3 not initialized* RS-232, 5-wire CTS/RTS
User’s Manual 33

3.5.1 RS-232

The OP7200 RS-232 serial communication is supported by an RS-232 transceiver. This
transceiver provides the voltage output, slew rate, and input voltage immunity required to
meet the RS-232 serial communication protocol. Basically, the chip translates the Rabbit
2000’s CMOS/TTL signals to RS-232 signal levels. Note that the polarity is reversed in an
RS-232 circuit so that a +5 V output becomes approximately -10 V and 0 V is output as
+10 V. The RS-232 transceiver also provides the proper line loading for reliable commu-
nication.

RS-232 can be used effectively at the OP7200’s maximum baud rate for distances of up to
15 m.

If you are planning to use any of the RS-232 serial ports and the RabbitNet port on the
OP7200, initialize the serial port(s) before you initialize the RabbitNet port. Section 4.5.4
provides some sample code to illustrates the sequence.

3.5.2 RS-485

The OP7200 has one RS-485 serial channel, which is connected to the Rabbit 2000 Serial
Port B through an RS-485 transceiver. The half-duplex communication uses an output
from the CPLD (U4) to control the transmit enable on the communication line. Using this
scheme a strict master/slave relationship must exist between devices to insure that no two
devices attempt to drive the bus simultaneously.

The OP7200 can be used in an RS-485 multidrop network spanning up to 1200 m (4000 ft),
and there can be as many as 32 attached devices. Connect the 485+ to 485+ and 485– to
485– using single twisted-pair wires as shown in Figure 15. Note that a common ground is
recommended.

Figure 15. OP7200 Multidrop Network

�
�
=�
��

�

�
�
��

��

�
�
�

�
�
=�
��

�

�
�
��

��

�
�
�

�
�
=�
��

�

�
�
��

��

�
�
�

34 eDisplay (OP7200)

The OP7200 comes with a 220 Ω termination resistor and two 681 Ω bias resistors
installed and enabled with jumpers across pins 1–2 and 4–6 on header J8, as shown in
Figure 16.

Figure 16. RS-485 Termination and Bias Resistors

For best performance, the termination resistors in a multidrop network should be enabled
only on the end nodes of the network, but not on the intervening nodes. Jumpers on boards
whose termination resistors are not enabled may be stored across pins 1–3 and 5–6 of
header J8.

NOTE: Remove the back cover from the OP7200 to access the bias and termination
resistor jumpers on header J8.

��

�

�

�

�

�

1�����)
��2����

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�
�
�

�
�
��

��
��
��

�
�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

��
�

�
��

�

�
�
�

��
�

�
�

��
�

���

���
���

�
��

�
��

�
�
���

�
�

����
��

�

��
��

��
�
��

�
�

�

�

���
���

���

�
�

�
�

�
��

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

�
��

�
�

�
��

�
�

�
�

�
�

��
�

��
 ��� ��� ���

�
�

!�

�
��

�
��

��

"��

��

�
�

���

�
 �

�
 �

�

�
 �

�
 �

�
 �

�

�

��
�

��

��
�

��

�

��
�

�����

��
�

��

�

��
�

��

��
�

��

�

��
��

��

��

��

���

�
��

�
�

�
��

��

�
��

���

����
����

����

�
��

�
�

�
��

�
��

�
��

���

���

��

���

� �

� �
���
���
���

���

�
��

��
�

��
�

�
��� �

��

��
�

���

����

�
��

���

�

��

�
�
���

��

#�

���

#��

����
�

�

�

��	�

�����

��

�

�
�

�
�

�
�

��

�
��

��

�
�

�

�
��

��

�

�

�

�

��

�

�

���

�
��

���

�
��

�
�

�
�

�
�

�
��

�
��

�
��

�
��

�
��

�
�
���

��
���

��
��

�

���
���

�
�
�

�
�
�

�
$
�
�

�
��

��
�
���

�
���

�
��

�
��

�
���

��

���

��
��

�

�
�

����

��� ���

���

�
�

�
�#�

���

�%&&'()

�� ��

�

 ��

� �
�

��
�
�

���
�
��

�

�

�

��

�

� !� �� �� "� " "

"�

�

���

���

�������

#�
�

���

�
�
�

���

�
 �� ��

��

��
!� ��

��

��
��

�
�
 �
��

"�
���

���

���
��

���
��

!

���
������ ���

��� �
��

���

�

��

��
�

��

���
���

�
�
���

���

���
"�

!"
#$

�
�
�
�
%

� �
���
�

���
���
�

���
���
�

����

����

�

������
����	�

���

���

"� ��
��

�

�

�

User’s Manual 35

3.5.3 RabbitNet Port

The RJ-45 jack labeled RabbitNet is a serial I/O expansion port for use with RabbitNet
I/O cards. The RabbitNet jack does not support Ethernet connections. There is also no
provision for the OP7200 to supply power to any RabbitNet peripheral cards.

When you are using the OP7200 in a RabbitNet network, Serial Port B is configured as a
clocked serial port and the RS-485 chip drives the RabbitNet port—the OP7200 then
cannot be used for RS-485 serial communication.

If you are planning to use any of the RS-232 serial ports and the RabbitNet port on the
OP7200, initialize the serial port(s) before you initialize the RabbitNet port. Section 4.5.4
provides some sample code to illustrates the sequence.

In principle, the OP7200 can operate either as a master controller with RabbitNet expan-
sion I/O, or it can operate as a slave operator interface in a RabbitNet network. Jumper
settings on header JP10 are used to configure the OP7200 for master or slave operation as
shown in Appendix A.3, “Jumper Configurations.” The factory default is for the OP7200
to be configured as a RabbitNet master.

At the present time, Dynamic C does not support the operation of the OP7200 as a slave,
and so the OP7200 is restricted to being used as a master.

Appendix D provides additional information about the RabbitNet system.
36 eDisplay (OP7200)

3.5.4 Ethernet Port

Figure 17 shows the pinout for the Ethernet port (J2 on the OP7200’s RabbitCore module).
Note that there are two standards for numbering the pins on this connector—the convention
used here, and numbering in reverse to that shown. Regardless of the numbering conven-
tion followed, the pin positions relative to the spring tab position (located at the bottom of
the RJ-45 jack in Figure 17) are always absolute, and the RJ-45 connector will work prop-
erly with off-the-shelf Ethernet cables.

Figure 17. RJ-45 Ethernet Port Pinout

RJ-45 pinouts are sometimes numbered opposite to the way shown in Figure 17.

Two LEDs are placed next to the RJ-45 Ethernet jack, one to indicate a live Ethernet link
(LNK) and one to indicate Ethernet activity (ACT).

The transformer/connector assembly ground is connected to the OP7200’s RabbitCore
module printed circuit board digital ground via a 0 Ω resistor “jumper,” R29, as shown in
Figure 18.

Figure 18. Isolation Resistor R29

The factory default is for the 0 Ω resistor “jumper” at R29 to be installed. In high-noise
environments, remove R29 and ground the transformer/connector assembly directly
through the chassis ground by using the EGND terminal on the RabbitCore module. This
will be especially helpful to minimize ESD and/or EMI problems.

��A�����

�$(,.�����

�;

�B�C�
�;

�B�C�

;

�B�C�
�;

�B�C�

� �

�$(,.�$��4

	
��
��������������

���

�������
������

�����
������
User’s Manual 37

3.5.5 Programming Port

The RabbitCore module on the OP7200 has a 10-pin programming header. The program-
ming port uses the Rabbit 2000’s Serial Port A for communication. Dynamic C uses the
programming port to download and debug programs.

The programming port is also used for the following operations.

• Cold-boot the Rabbit 2000 on the RabbitCore module after a reset.

• Remotely download and debug a program over an Ethernet connection using the
RabbitLink EG2110.

• Fast copy designated portions of flash memory from one Rabbit-based board (the
master) to another (the slave) using the Rabbit Cloning Board.

Alternate Uses of the Serial Programming Port

All three clocked Serial Port A signals are available as

• a synchronous serial port

• an asynchronous serial port, with the clock line usable as a general CMOS input

The serial programming port may also be used as a serial port via the DIAG connector on
the serial programming cable.

In addition to Serial Port A, the Rabbit 2000 startup-mode (SMODE0, SMODE1), status,
and reset pins are available on the serial programming port.

The two startup mode pins determine what happens after a reset—the Rabbit 2000 is
either cold-booted or the program begins executing at address 0x0000.

The status pin is used by Dynamic C to determine whether a Rabbit microprocessor is
present. The status output has three different programmable functions:

1. It can be driven low on the first op code fetch cycle.

2. It can be driven low during an interrupt acknowledge cycle.

3. It can also serve as a general-purpose CMOS output.

The /RESET_IN pin is an external input that is used to reset the Rabbit 2000 and the
onboard peripheral circuits on the RabbitCore module. The serial programming port can be
used to force a hard reset on the RabbitCore module by asserting the /RESET_IN signal.
The green Power Good LED goes off momentarily during a reset.

Refer to the Rabbit 2000 Microprocessor User’s Manual for more information.
38 eDisplay (OP7200)

3.6 Memory
3.6.1 SRAM

The OP7200’s RabbitCore module is designed to accept 128K to 512K of SRAM pack-
aged in an SOIC case. The standard OP7200’s RabbitCore modules come with 128K of
SRAM.

3.6.2 Flash Memory

The OP7200 is also designed to accept 128K to 512K of flash memory. The standard
OP7200’s RabbitCore modules comes with one 256K flash memory.

NOTE: Rabbit recommends that any customer applications should not be constrained by
the sector size of the flash memory since it may be necessary to change the sector size
in the future.

A Flash Memory Bank Select jumper configuration option based on 0 Ω surface-mounted
resistors exists at header JP2 on the RabbitCore module. This option, used in conjunction
with some configuration macros, allows Dynamic C to compile two different co-resident
programs for the upper and lower halves of the 256K program flash in such a way that
both programs start at logical address 0000. This is useful for applications that require a
resident download manager and a separate downloaded program. See Technical Note 218,
Implementing a Serial Download Manager for a 256K Flash, for details.
User’s Manual 39

3.7 Liquid Crystal Display Controller
The LCD module controller chip provides support for the LCD module. The controller
chip is attached to the data bus on the OP7200’s RabbitCore module, and is mapped to the
I/O address space. This interface is composed of eight data bits, one address line, and three
control lines (/IORD, /IOWR, and /LCDM-CS).

The interface from the LCD controller to the LCD module is unidirectional. Data flow from
the controller chip to the LCD module. A number of control lines are provided for this func-
tion, but not all of them are used for a particular LCD module. The controller continually
reads the SRAM (which is included on the LCD controller chip used after January,2006)
for data placed there by the microprocessor and refreshes the display periodically.

Other functions support the LCD module to adjust its contrast and to turn the white LED
backlight on and off. A variable resistor between two of the LCD module’s terminals sets
the contrast. U5 is a digitally controlled potentiometer that is controlled by software. Once
the value is set, the value will be maintained. A single programmed I/O bit is used to turn
the LED backlight on or off. Since this bit does not have enough drive current to light the
LED directly, it is buffered by the FET Q1.

The controller chip used in OP7200’s sold before 2006 supported either 32K or 64K of
SRAM. These OP7200s were designed using a dual-footprint SRAM to accept either one
32K or one 128K SRAM. The 128K part was standard. The full 64K supported by the
controller is available with the 128K SRAM, plus an additional 64K can be swapped in
and out by using the programmed I/O bit VA16. Pins 1–2 on header JP9 are normally con-
nected by a 0 Ω surface-mounted resistor, but pins 2–3 should be connected instead for
video SRAM paging with I/O bit VA16.

OP7200 units sold after January, 2006, have a new LCD controller chip because the previ-
ously used LCD controller chip is no longer available. The new LCD controller chip has
32K of internal SRAM. Figure 19 shows the area of the OP7200 that changed to accommo-
date the new LCD controller chip. The new LCD controller is not 100% code-compatible
with the old chip—Section 4.1.2.1 explains how to handle programs developed using
versions of Dynamic C before v. 9.40.

Figure 19. How to Identify Pre-2006 OP7200 Boards

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�

�
�

������

�
��

�
��

�
�
���

�
�

���

���

�

��
�

�
��

�
��

�
�

�

�

������

���

�
�

�
� �
��

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

�
�� �
�

�
��

�
�

�
�

�
�

��
�

�
�

�
��

�
��

�
��

!�

�
�

�
��

�

��

"�

�
�

���

�

�

��
�

��

��
�

��

�

�
��

��
�

��
�

�
��

�

�
��

��
�

���

����

�
��

���

�

��

�
�

���

��

#�

�
��

#��

��
�� �

�

�

��	�

�����

��

�

�
�

�
�

�
�

��

�
��

�
�

�
�

�

�
��

�
�

�

�

�

�

�
�

�

�

�
��

�
��

�
��

�
��

�
�

�
�

�
�

�
��

�
��

�
�� �
��

���

�

�

���

�
�

���

�
�

��

�

��� ���

�
�
�

�
�
�

�
$
�
�

�
��

��

�
��

�
�
��

�

�
��

��

��
��

�

���

���

��� ���

#� �
�

�
�

�� �
���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

��
��

��
��

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�

�
�

���
���

�
��

�
��

�
�
���

�
�

����
��

�

��
��

��
�
��

�
�

�

�

���
���

���

�
�

�
�

�
��

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

�
��

�
�

�
��

�
�

�
�

�
�

��
�

��
 ��� ��� ���

�
�

!�

�
��

�
��

��

"��

��

�
�

���

��
�

��

��
�

��

�

�
��

��
�

��
�

�
��� �

��

��
�

���

����

�
��

���

�

��

�
�
���

��

#�

���

#��

����
�

�

�

��	�

�����

��

�

�
�

�
�

�
�

��

�
��

��

�
�

�

�
��

��

�

�

�

�

��

�

�

���

�
��

���

�
��

�
�

�
�

�
�

�
��

�
��

�
��

�
��

�
��

�
�
���

��
���

��
��

�

���
���

�
�
�

�
�
�

�
$
�
�

�
��

��
�
���

�
���

�
��

�
��

��

��
��

�

�%&&'()

��� ����
���

���

�
��

�
�

�
��

�
��

�
�
��

�
��

���

�
��

�

��� ���

���

�
�

�
�#�

���

�%&&'()

��&("##0�+�7"## 	���&'!�+�7"##
40 eDisplay (OP7200)

3.8 Keypad
The OP7200 is equipped with a nine-position keypad. The keypad is attached to the front
bezel with an adhesive backing and is connected through J16 to the OP7200 printed-
circuit board with a flex cable. Only 7 of the 10 conductors in the cable are used at the
present time. The extra lines are reserved for an expanded keypad or LED indicators. The
interface to the keypad is through programmed I/O bits composed of four scan rows of
three keys each. Driving a particular scan line (/KB–S0:3) low will read back a zero on the
keypad data lines (/PB0:2–K0:2) associated with the three keys on the selected row.
Diodes D16–D19 prevent feedback, allowing the software to read the keypad even when
multiple keys are pressed simultaneously. Resistors R138–R141 and capacitors C79–C81
and C83 form a low-pass filter to protect against ESD damage. These same circuits help to
eliminate EMI from being radiated from the keypad or its flex cable. R149, R151–R152,
and C82–C84 perform a similar function for the keypad data lines. The tri-state receiver
chip U13 connects the key data to the microprocessor data bus at the appropriate time
when directed by the control signals /IORD and /PE5-IO-CS1. Note that only the low-
order three bits of the data bus are connected. The software must mask off the high 5 bits
since they are undefined.

Figure 20 shows how the keypad is encoded with respect the scan and data lines. For
example, if /KB–S2 is asserted low, then keys D, H, and E are read back on data lines K0,
K1, and K2 respectively. A zero read on the data lines indicates that the key is pressed and
a one indicates that it is not. Ones are always read back on data lines that are not assigned
to any particular key. Once the values read from the keypad remain constant for a length of
time, the read can be assumed to be valid.

Figure 20. OP7200 Keypad Encoding

� � � � �

? � A

�

�������
�
�
�
�

�������
?
�
A

�������

�
�

������
������
������
�����

User’s Manual 41

3.9 OP7200 CPLD
All the random logic used to control the OP7200 is contained within a single ComPlex
Logic Device (CPLD). The AMD ATF1500A contains 32 macrocells and is packaged in a
44-pin TQFP. This device contains decoding and a number of I/O bits that can be set to
high or low to control various functions of the OP7200.

The CPLD interfaces to the address and data bus on the RabbitCore module, and is write-
only. Two chip select lines, /PE4 and /PE5, are used to enable the device. /PE4 and /PE5
are configured in software as I/O strobes, and set the base address used by the CPLD. /PE4
is used when selecting one of the sixteen I/O control bits associated with the eight driver
circuits. /PE5 is used with the remainder of the controls. The control bits within the CPLD
normally can be set and reset independently of one another. The SINK and SOURCE out-
puts are different in that both the SINK and SOURCE outputs for a particular driver can-
not be asserted simultaneously. If either the SINK or SOURCE output is asserted, and the
software tries to set the other, the operation is ignored and the bit will not be set. The pur-
pose of this interlock is to prevent damage to the driver circuit by not allowing both cur-
rent sourcing and sinking to be enabled simultaneously.

Table 6. CPLD Parameters

/PE5 /PE4 A3–0 D0 Signal Function
1 0 0000 1 SINK0 Enable Sink Output 0
1 0 0000 0 SINK0 Disable Sink Output 0
1 0 0001 1 SINK1 Enable Sink Output 1
1 0 0001 0 SINK1 Disable Sink Output1
1 0 0010 1 SINK2 Enable Sink Output 2
1 0 0010 0 SINK2 Disable Sink Output 2
1 0 0011 1 SINK3 Enable Sink Output 3
1 0 0011 0 SINK3 Disable Sink Output 3
1 0 0100 1 SINK4 Enable Sink Output 4
1 0 0100 0 SINK4 Disable Sink Output 4
1 0 0101 1 SINK5 Enable Sink Output 5
1 0 0101 0 SINK5 Disable Sink Output 5
1 0 0110 1 SINK6 Enable Sink Output 6
1 0 0110 0 SINK6 Disable Sink Output 6
1 0 0111 1 SINK7 Enable Sink Output 7
1 0 0111 0 SINK7 Disable Sink Output 7
1 0 1000 1 SOURCE0 Enable Source Output 0
1 0 1000 0 SOURCE0 Disable Source Output 0
1 0 1001 1 SOURCE1 Enable Source Output 1
1 0 1001 0 SOURCE1 Disable Source Output 1
1 0 1010 1 SOURCE2 Enable Source Output 2
1 0 1010 0 SOURCE2 Disable Source Output 2
42 eDisplay (OP7200)

1 0 1011 1 SOURCE3 Enable Source Output 3
1 0 1011 0 SOURCE3 Disable Source Output 3
1 0 1100 1 SOURCE4 Enable Source Output 4
1 0 1100 0 SOURCE4 Disable Source Output 4
1 0 1101 1 SOURCE5 Enable Source Output 5
1 0 1001 0 SOURCE5 Disable Source Output 5
1 0 1110 1 SOURCE6 Enable Source Output 6
1 0 1110 0 SOURCE6 Disable Source Output 6
1 0 1111 1 SOURCE7 Enable Source Output 7
1 0 1111 0 SOURCE7 Disable Source Output 7
0 1 0000 1 /KB-S0 Assert Keypad Scan Line S0
0 1 0000 0 /KB-S0 Deassert Keypad Scan Line S0
0 1 0001 1 /KB-S1 Assert Keypad Scan Line S1
0 1 0001 0 /KB-S1 Deassert Keypad Scan Line S1
0 1 0010 1 /KB-S2 Assert Keypad Scan Line S2
0 1 0010 0 /KB-S2 Deassert Keypad Scan Line S2
0 1 0011 1 /KB-S3 Assert Keypad Scan Line S3
0 1 0011 0 /KB-S3 Deassert Keypad Scan Line S3
0 1 0100 1 BKLT-ON Turn On the LCDM Backlight
0 1 0100 0 BKLT-ON Turn Off the LCDM Backlight
0 1 0101 1 RS485-EN Enable the 485 Transmitter
0 1 0101 0 RS485-EN Disable the 485 Transmitter
0 1 0110 1 ALARM Turn On the Buzzer
0 1 0110 0 ALARM Turn Off the Buzzer
0 1 0111 1 VA16 Assert the VA16 Address Line/RabbitNet CS
0 1 0111 0 VA16 Deassert the VA16 Address Line/RabbitNet CS
0 1 1000 1 /CS Assert X9015 Chip Select
0 1 1000 0 /CS Deassert X9015 Chip Select
0 1 1001 1 U_D Set X9015 to Count Up
0 1 1001 0 U_D Set X9015 to Count Down
0 1 1010 * INC Increment the X9015 Counter
0 1 1011 * NA Reserved
0 1 1100 * NA Reserved
0 1 1101 * NA Reserved
0 1 1110 * NA Reserved
0 1 1111 * NA Reserved

Table 6. CPLD Parameters (continued)

/PE5 /PE4 A3–0 D0 Signal Function
User’s Manual 43

3.10 Programming Cable
The programming cable is used to connect the programming port of the RabbitCore module
to a PC serial COM port. The programming cable converts the RS-232 voltage levels used
by the PC serial port to the TTL voltage levels used by the Rabbit 2000.

When the PROG connector on the programming cable is connected to the RabbitCore
module’s programming header, programs can be downloaded and debugged over the serial
interface.

The DIAG connector of the programming cable may be used on the programming header of
the RabbitCore module with the module operating in the Run Mode. This allows the pro-
gramming port to be used as a regular serial port.

3.10.1 Changing Between Program Mode and Run Mode

The OP7200 is automatically in Program Mode when the PROG connector on the pro-
gramming cable is attached to the RabbitCore module, and is automatically in Run Mode
when no programming cable is attached. When the Rabbit 2000 is reset, the operating
mode is determined by the status of the SMODE pins. When the programming cable’s
PROG connector is attached, the SMODE pins are pulled high, placing the Rabbit 2000 in
the Program Mode. When the programming cable’s PROG connector is not attached, the
SMODE pins are pulled low, causing the Rabbit 2000 to operate in the Run Mode.

Figure 21. OP7200 Program Mode and Run Mode Set-Up

A program can be run in either mode, but can only be downloaded and debugged when the
OP7200 is in the Program Mode.

Refer to the Rabbit 2000 Microprocessor User’s Manual for more information on the pro-
gramming port and the programming cable.

�������� ��� ���� ���

��������;����:$���'$"�3��3�9,7�&
��������� ����!!"��
"5	�)�)�9,2��3�,)�"		"'$��3��),3)"99��3�'"(!�=

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�
�
�

�
�
��

��
��
��

�
�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�
��
�

�
��
�

�
�
�

��
�

���

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

��
�

��

�

��
�

�����

��
�

��

�

��
�

��

��
�

��

�

��
��

��

��

��
��

�

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�
�
�

�
�
��

��
��
��

�
�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�
��
�

�
��
�

�
�
�

��
�

���

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

��
�

��

�

��
�

�����

��
�

��

�

��
�

��

��
�

��

�

��
��

��

��

��
��

�

��

��������	
��
����
�	�����
������	������	��	��������
��������	
����
������
�

�

�

�����

�

�

�

�

����	 ����	

�

���������������

���������������

�
�

��

��������	
��
����
�	�����
������	������	��	��������
��������	
����
������
�

�

�

�����

�

�

�

�

����	 ����	

�

���������������

���������������

�
�

�
��
�

�
�
�
�

�+.+('7
'76'

�+
�
�

�
�
�

4+(&

�����������
	�
��
44 eDisplay (OP7200)

3.11 Other Hardware
3.11.1 Spectrum Spreader

OP7200 operator control panels that carry the CE mark on their RabbitCore module have
a Rabbit 2000 microprocessor that features a spectrum spreader, which helps to mitigate
EMI problems. By default, the spectrum spreader is on automatically for OP7200 operator
control panels that carry the CE mark when used with Dynamic C 7.30 or later versions,
but the spectrum spreader may also be turned off or set to a stronger setting. The means for
doing so is through a simple global macro as shown below.

There is no spectrum spreader functionality for OP7200 operator control panels that do
not carry the CE mark on their RabbitCore module or when using any OP7200 with a ver-
sion of Dynamic C prior to 7.30.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Normal spreading is the default, and usually no entry is needed. If you need to specify

normal spreading, add the line
ENABLE_SPREADER=1

For strong spreading, add the line
ENABLE_SPREADER=2

To disable the spectrum spreader, add the line
ENABLE_SPREADER=0

NOTE: The strong spectrum-spreading setting is not needed for the OP7200.

3. Click OK to save the macro. The spectrum spreader will now remain off whenever you
are in the project file where you defined the macro.
User’s Manual 45

46 eDisplay (OP7200)

4. SOFTWARE

Dynamic C is an integrated development system for writing
embedded software. It runs on an IBM-compatible PC and is
designed for use with single-board computers and other devices
based on the Rabbit microprocessor.

Chapter 4 provides the libraries, function calls, and sample pro-
grams related to the OP7200.

4.1 Running Dynamic C
You have a choice of doing your software development in the flash memory or in the static
RAM included on the OP7200. The flash memory and SRAM options are selected with
the Options > Compiler menu.

The advantage of working in RAM is to save wear on the flash memory, which is limited
to about 100,000 write cycles. The disadvantage is that the code and data might not both
fit in RAM.

NOTE: An application can be developed in RAM, but cannot run standalone from RAM
after the programming cable is disconnected. Standalone applications can only run from
flash memory.

NOTE: Do not depend on the flash memory sector size or type. Due to the volatility of
the flash memory market, the OP7200 and Dynamic C were designed to accommodate
flash devices with various sector sizes.

OP7200s that are special-ordered with 512K flash/512K SRAM memory options have two
256K flash memories. By default, Dynamic C will use only the first flash memory for pro-
gram code in these OP7200s. Uncomment the USE_2NDFLASH_CODE macro within the
RABBITBIOS.C file in the Dynamic C BIOS folder to allow the second flash memory to
hold any program code that is in excess of the available memory in the first flash.
User’s Manual 47

Developing software with Dynamic C is simple. Users can write, compile, and test C and
assembly code without leaving the Dynamic C development environment. Debugging
occurs while the application runs on the target. Alternatively, users can compile a program
to an image file for later loading. Dynamic C runs on PCs under Windows 98 or later. Pro-
grams can be downloaded at baud rates of up to 460,800 bps after the program compiles.

Dynamic C has a number of standard features.

• Full-feature source and/or assembly-level debugger, no in-circuit emulator required.

• Royalty-free TCP/IP stack with source code and most common protocols.

• Hundreds of functions in source-code libraries and sample programs:
Exceptionally fast support for floating-point arithmetic and transcendental functions.

RS-232 and RS-485 serial communication.

Analog and digital I/O drivers.

I2C, SPI, GPS, file system.

LCD display and keypad drivers.

• Powerful language extensions for cooperative or preemptive multitasking

• Loader utility program to load binary images into Rabbit targets in the absence of
Dynamic C.

• Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

• Standard debugging features:
Breakpoints—Set breakpoints that can disable interrupts.

Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.

Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

Watch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

Stack window—shows the contents of the top of the stack.

Hex memory dump—displays the contents of memory at any address.

STDIO window—printf outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. printf output may also be sent to a serial port or file.
48 eDisplay (OP7200)

4.1.1 Upgrading Dynamic C
4.1.1.1 Patches and Bug Fixes

Dynamic C patches that focus on bug fixes are available from time to time. Check the Web
site www.rabbit.com/support/ for the latest patches, workarounds, and bug fixes.

The default installation of a patch or bug fix is to install the file in a directory (folder) dif-
ferent from that of the original Dynamic C installation. Rabbit recommends using a differ-
ent directory so that you can verify the operation of the patch without overwriting the
existing Dynamic C installation. If you have made any changes to the BIOS or to libraries,
or if you have programs in the old directory (folder), make these same changes to the
BIOS or libraries in the new directory containing the patch. Do not simply copy over an
entire file since you may overwrite a bug fix; of course, you may copy over any programs
you have written. Once you are sure the new patch works entirely to your satisfaction, you
may retire the existing installation, but keep it available to handle legacy applications.

4.1.1.2 Upgrades

Dynamic C installations are designed for use with the board they are included with, and
are included at no charge as part of our low-cost kits. Dynamic C is a complete software
development system, but does not include all the Dynamic C features. Rabbit also offers
add-on Dynamic C modules containing the popular µC/OS-II real-time operating system,
as well as PPP, Advanced Encryption Standard (AES), and other select libraries. In addi-
tion to the Web-based technical support included at no extra charge, a one-year telephone-
based technical support module is also available for purchase.

NOTE: Dynamic C RabbitSys cannot be used with the OP7200.
User’s Manual 49

http://www.rabbit.com/support/

4.1.2 Accessing and Downloading Dynamic C Libraries

The libraries needed to run the OP7200 are available on the CD included with the Devel-
opment Kit. Upgrades may be downloaded from www.rabbit.com/support/downloads/ on
our Web site. You may need to download upgraded or additional libraries to run selected
RabbitNet peripheral boards or to use an OP7200 purchased after January, 2006, with a
Dynamic C release prior to v. 9.40.

When downloading the libraries from the Web site, click on the product-specific links
until you reach the links for the OP7200 download you require. You will be able to either
run the download directly from the Web site, or you may choose to save it to run later.

Once you run the download, InstallShield will install the additional or upgraded software.
A readme file associated with the installation will then guide you to add to, replace, or edit
Dynamic C libraries or sample programs.

You will be able to use the revamped Dynamic C installation with the OP7200 and you
will continue to be able to use this upgraded installation with all the other Rabbit products
you were able to use before.

4.1.2.1 New LCD Controller Chip

OP7200 units sold after January, 2006, have a new LCD controller chip because the pre-
viously used LCD controller chip is no longer available. The new LCD controller is not
100% code-compatible with the old chip, and therefore changes were made to the LCD
drivers. The updated drivers for the OP7200 are included in Dynamic C v. 9.40 and later,
and are backward-compatible for use with the old LCD controller chip.

If you are using a program developed with an earlier version of Dynamic C, you will need
to replace the existing Dynamic C SED1335F.LIB library in your Dynamic C installa-
tion in the LIB\DISPLAYS\GRAPHIC\320x240 folder. Once you have the new
SED1335F.LIB library, you will have to recompile your program.

The new SED1335F.LIB library is available for download from our Web site at
www.rabbit.com/support/downloads/downloads_prod.shtml, and has been tested for
compatibility with Dynamic C versions 7.33 and later.

The changes to the SED1335F.LIB library will improve the OP7200 screen update time
by a factor of four. Otherwise, the form, fit, and function of the OP7200 are not affected
by the changes.
50 eDisplay (OP7200)

http://www.rabbit.com/support/downloads/
http://www.rabbit.com/support/downloads/downloads_prod.shtml

4.2 Font and Bitmap Converter
The Font and Bitmap Converter is a utility included with Dynamic C to convert Windows
fonts and monochrome bitmaps to a library file format compatible with Dynamic C appli-
cations and Rabbit’s graphic displays. These library files may be added to applications
with the statement #use LIBRARYFILENAME.LIB or by cutting and pasting from the
library file directly into the application. Remember to enter LIBRARYFILENAME.LIB into
LIB.DIR, which is located in the Dynamic C directory if you #use LIBRARYFILE-
NAME.LIB.

To start the Font and Bitmap Converter, use the Windows Start > Run menu or Windows
Explorer to launch fbmcnvtr.exe from the root folder where Dynamic C is installed.
Click on Help in the Font and Bitmap Converter utility to get complete use information
about the utility.
User’s Manual 51

4.3 Sample Programs
Sample programs are provided in the Dynamic C SAMPLES folder. The sample program
PONG.C demonstrates the output to the STDIO window. The various directories in the
SAMPLES folder contain specific sample programs that illustrate the use of the correspond-
ing Dynamic C libraries.

The SAMPLES\OP7200 folder provides sample programs specific to the OP7200. Each
sample program has comments that describe the purpose and function of the program. Fol-
low the instructions at the beginning of the sample program.

To run a sample program, open it with the File menu (if it is not still open), then compile
and run it by pressing F9 or by selecting Run in the Run menu. The OP7200 must be in
Program mode (see Section 3.10) and must be connected to a PC using the programming
cable as described in Section 2.3.

More complete information on Dynamic C is provided in the Dynamic C User’s Manual.

4.3.1 General OP7200 Sample Programs

The following sample programs are found in the SAMPLES\OP7200 directory.

• BOARD_ID.C—Detects the model of the board you are using and displays the informa-
tion in the STDIO window.

• FUN.C—Demonstrates the features of the OP7200. A variable customer-supplied 0–10 V
DC power supply is recommended to demonstrate the analog input section.

4.3.2 Digital I/O

The following sample programs are found in the IO subdirectory in SAMPLES\OP7200.

• BUZZER.C—Demonstrates the use of the OP7200 buzzer.

• DIGIN.C—Demonstrates the use of the digital inputs. Using the Demonstration Board,
you can see an input channel toggle from HIGH to LOW when pressing a pushbutton
on the Demonstration Board.

• DIGOUT.C—Demonstrates the use of the high-current outputs configured as either
sinking or sourcing outputs. Using the Demonstration Board, you can see an LED
toggle on/off via a high-current output.

• LED.C—Toggles the LEDs on the OP7200.

• PWM.C—Demonstrates the use of Timer B to generate a 42 Hz PWM signal on digital
output OUT0. The PWM duty cycle may be adjusted from 1 to 99%. Connect +K to
+PWR (pins 1 and 3 on screw-terminal header J3) to run this sample program.

• TRISTATE.C—Demonstrates the use of the high-current outputs configured as sink-
ing, sourcing, or tristate outputs. Using the Demonstration Board, you can see a bank of
channels toggle the corresponding LEDs on/off via the high-current outputs.
52 eDisplay (OP7200)

4.3.3 Serial Communication

The following sample programs are found in the RS232 subdirectory in SAMPLES\OP7200.

• PUTS.C—This program transmits and then
receives an ASCII string on Serial Ports C and
D. The serial data received are displayed in the
STDIO window.

To set up the OP7200, you will need to tie
TxC and RxD together on the screw-terminal
header at J10, and you will also tie TxD and
RxC together as shown in the diagram.

• RELAYCHR.C—This program echoes charac-
ters to or from a serial utility such as Hyper-
Terminal or Tera Term.

To set up the OP7200, you will need to tie
TxC and RxD together on the screw-terminal
header at J10.

Set up HyperTerminal or Tera Term as follows: 19200 bps, 8 data bits, no parity, 1 stop
bit, and no flow control. Here are a few additional settings if you are using Tera Term.

Disable Local Echo in the Terminal setup

Enable the receive and line feed options (CR + LF) under New line in the Terminal setup

Now when you type characters in the HyperTerminal or Tera Term window, they will
appear in the window because they are being echoed back by the sample program.

Two sample programs, MASTER.C and SLAVE.C, are available in the RS485 subdirectory
in SAMPLES\OP7200 to illustrate RS-485 master/slave communication. To run these
sample programs, you will need a second Rabbit-based system with RS-485—another
Rabbit single-board computer or OP7200 may be used as long as you use the master or
slave sample program associated with that board.

The RS-485 connections between the slave and master devices are as follows.

• RS485+ to RS485+

• RS485– to RS485–

• GND to GND

Then connect your PC COM port to screw-terminal
header J10 as follows.

PC Tx to RxC on J10

PC Rx to TxD on J10

PC GND to GND on J10

$/#

�
�
�

����

����

�
�
�
��
�
�

�
�
�
��
�
�

�
�
�

�
�
�

��
�
�

��
��

��
��

��
�

��
��

$/#

�
�
�

����

����

�
�
�
��
�
�

�
�
�
��
�
�

�
�
�

�
�
�

��
�
�

��
��

��
��

��
�

��
��

� �
 � �

� � �

�
�
�

�
�
�

�
C

D+
5&
E

�
C

D12
E

�
�
�

�
��
�

�
�
�

�
�
�

�
�
�

	+
User’s Manual 53

• MASTER.C—This program demonstrates a simple RS-485 transmission of lower case
letters to a slave. The slave will send back converted upper case letters back to the
master OP7200 and display them in the STDIO window. Use SLAVE.C to program the
slave.

• SLAVE.C—This program demonstrates a simple RS-485 transmission of lower case
letters to a master OP7200. The slave will send back converted upper case letters back
to the master OP7200 and display them in the STDIO window. Use MASTER.C to pro-
gram the master OP7200.

4.3.4 A/D Converter Inputs

The following sample programs are found in the ADC subdirectory in SAMPLES\OP7200.

• ADCAL_DIFF_2V.C—Demonstrates how to recalibrate an A/D input channel being
used for a differential input with the input attenuator tied to the 2 V reference voltage.

• ADCAL_DIFF_GND.C—Demonstrates how to recalibrate an A/D input channel being
used for a differential input with the input attenuator tied to analog ground.

• ADCAL_MA_CH.C—Demonstrates how to recalibrate an A/D input channel being used to
convert analog current measurements to generate the calibration constants for that channel.

• ADCAL_SE_ALL.C—Demonstrates how to recalibrate all single-ended A/D input chan-
nels for a given gain.

• ADCAL_SE_CH.C—Demonstrates how to recalibrate one single-ended A/D input chan-
nels to generate the calibration constants for that channel.

NOTE: The above sample programs will overwrite the calibration constants set at the factory.

• ADRD_DIFF_2V.C—Demonstrates how to read an A/D input channel being used for a
differential input with the input attenuator tied to the 2 V reference voltage.

• ADRD_DIFF_GND.C—Demonstrates how to read an A/D input channel being used for
a differential input with the input attenuator tied to analog ground.

• ADRD_MA_CH.C—Demonstrates how to read an A/D input channel being used to con-
vert analog current measurements using previously defined calibration constants for
that channel.

• ADRD_SE_ALL.C—Demonstrates how to read all single-ended A/D input channels
using previously defined calibration constants.

• ADRD_SE_CH.C—Demonstrates how to read one single-ended A/D input channels
using previously defined calibration constants.
54 eDisplay (OP7200)

4.3.5 Graphic Display

The following sample program is found in the LCD_BASIC subdirectory in
SAMPLES\OP7200.

• BUFFLOCK.C—Demonstrates how to improve LCD performance by using the
glBuffLock and glBuffUnlock functions.

• CONTRAST.C—Demonstrates how to adjust the contrast on the LCD.

• PRIMITIVES.C—Demonstrates the primitive graphic functions to draw lines, circles,
polygons, and bitmaps.

• SCROLLING.C—Demonstrates the scrolling features of the GRAPHIC.LIB library.

• TEXT.C—Demonstrates the text features of the GRAPHIC.LIB library.

4.3.6 Keypad

The following sample programs are found in the LCD_KEYPAD subdirectory in
SAMPLES\OP7200.

• KP_16KEY.C—Demonstrates using 9-key keypad instead of touchscreen to control vir-
tual keypad.

• KP_ANALOG.C—Demonstrates using 9-key keypad instead of touchscreen to control
virtual keypad.

• KP_BASIC.C—Demonstrates the keypad functions.

• KP_MENU.C—Demonstrates how to implement a menu system using the GLMENU.LIB
library.

4.3.7 Touchscreen (OP7200 only)

The following sample program is found in the LCD_TOUCHSCREEN subdirectory in
SAMPLES\OP7200.

• BTN_16KEY.C—Demonstrates the use of a virtual keypad for data entry.

• BTN_BASICS.C—Demonstrates the basic functionality of the touchscreen buttons.

• BTN_KEYBOARD.C—Demonstrates the use of a virtual keypad for data entry.

• CAL_TOUCHSCREEN.C—Demonstrates how to recalibrate the touchscreen coordinates.

• RD_TOUCHSCREEN.C—Demonstrates how to read the touchscreen in debounced or
real-time modes.

• TSCUST16KEY.LIB—Sample library demonstrating how to make custom keysets
using GLTOUCHSCREEN.LIB.

• TSCUSTKEYBOARD.LIB—Sample library demonstrating how to make custom keysets
using GLTOUCHSCREEN.LIB functions.
User’s Manual 55

4.3.8 Using System Information from the RabbitCore Module

Calibration constants for the A/D converter are stored in the simulated EEPROM area of
the flash memory. You may find it useful to retrieve the calibration constants and save
them for future use, for example, if you should need to replace the RabbitCore module on
the OP7200.

The following sample programs, found in the Calib_Save_Retrieve subdirectory in
SAMPLES\OP7200, illustrate how to save or retrieve the calibration constants. Note that
both sample programs prompt you to use a serial number for the OP7200. This serial num-
ber can be any 5-digit number of your choice, and will be unique to a particular OP7200.
Do not use the MAC address on the bar code label of the RabbitCore module attached to
the OP7200 since you may at some later time use that particular RabbitCore module on
another OP7200, and the previously saved calibration data would no longer apply.

• SAVECALIB.C—This program demonstrates how to save your analog calibration coef-
ficients using a serial port and a PC serial utility such as Tera Term.

NOTE: Use the sample program GETCALIB.C to retrieve the data and rewrite it to the
single-board computer.

• GETCALIB.C—This program demonstrates how to retrieve your analog calibration
data to rewrite it back to the simulated EEPROM in flash with using a serial utility such
as Tera Term.

NOTE: Calibration data must be saved previously in a file by the sample program
SAVECALIB.C.

NOTE: In addition to loading the calibration constants on the replacement RabbitCore
module, you will also have to add the product information for the OP7200 to the ID
block associated with the RabbitCore module. The sample program WRITE_
IDBLOCK.C, available on the our Web site at www.rabbit.com/support/feature_
downloads.shtml, provides specific instructions and an example.

Two sample programs are available to show how to get information on ID and user blocks,
and how to clear the contents in the user block. These sample programs are in the
Dynamic C SAMPLES\USERBLOCK folder.

• USERBLOCK_INFO.C—This program reports on the size and capabilities of the ID and
user blocks. It will report the version of the ID block, the size of the ID and user blocks,
the size of the user blocks reserved for calibration constants, whether the ID or user
blocks are mirrored, and the total amount of flash memory used by the ID and user
blocks.

• USERBLOCK_CLEAR.C—This program clears the contents of the user block. Note that
it does not clear the calibration constants or the system ID block.

When you run this sample program in the Program Mode, there is a 300 ms timer delay
after each writeUserBlock() call to allow Dynamic C and the OP7200 to exchange
a debug packet in order to inform the debug kernel that the OP7200 is still “alive.” The
timer delay is not necessary in the Run Mode with nodebug or when single-stepping.
56 eDisplay (OP7200)

http://www.rabbit.com/support/feature_downloads.shtml
http://www.rabbit.com/support/feature_downloads.shtml

4.4 OP7200 Libraries
The following library folders contain the libraries whose function calls are used to develop
applications for the OP7200.

• OP7200—libraries associated with features specific to the OP7200. The functions in
the OP72xx.LIB library are described in Section 4.5, “OP7200 Function APIs.”.

• DISPLAYS—libraries associated with the LCD display. The GLMENU.LIB library pro-
vides function calls to display menus on the OP7200 LCD display.

• KEYPADS—libraries associated with the keypad. The KEYPAD9.LIB library provides
function calls to keypad menus for the OP7200 keypad.

• TOUCHSCREENS—libraries associated with the touchscreen. The GLTOUCHSCREEN.LIB
library allows you to link adjacent pixel locations on the LCD to create a button. The
button can then be translated by the touchscreen when pressed. The TS_R4096.LIB
library in the TouchScreens directory provides low-level touchscreen function calls.

• RABBITNET—libraries associated with the RabbitNet network. The RN_CFG_
OP72.LIB library is used to configure the OP7200 for use as a master with RabbitNet
peripheral cards. The function calls in the RNET.LIB library are used to set up the Rab-
bitNet network, and are described in Appendix D. Each RabbitNet I/O card also has its
own library in this folder, and these function calls are described in the user’s manual for
each I/O card.

Call the libraries you intend to use in the following order.

#use "OP72xx.LIB"

#use "GLMENU.LIB"

#use "KEYPAD9.LIB"

#use "RN_CFG_OP72.LIB"

#use "NET.LIB"

Finally, call the library or libraries associated with the RabbitNet I/O card(s) in your
RabbitNet system, for example, #use "RNET_DIO.LIB" for the RabbitNet digital I/O
card

Other generic functions applicable to all devices based on the Rabbit 2000 microprocessor
are described in the Dynamic C Function Reference Manual.
User’s Manual 57

4.5 OP7200 Function APIs
4.5.1 Board Initialization

Call this function at the beginning of your program. This function initializes the system I/O ports and
loads all the A/D converter calibration constants from flash memory into SRAM for use by your pro-
gram. This function will turn off LED DS1 (Microprocessor Bad) to indicate that the initialization was
successful.

The ports are initialized according to Table A-3.

void brdInit (void);
58 eDisplay (OP7200)

4.5.2 Digital I/O

This functions is used to configure the high-current outputs as either a sinking or a sourcing type output.
Note that brdInit must be executed before calling this function.

PARAMETERS
outputMode is an 8-bit parameter where each bit corresponds to a high-current output:

Bit 7 = OUT7
Bit 6 = OUT6
Bit 5 = OUT5
Bit 4 = OUT4
Bit 3 = OUT3
Bit 2 = OUT2
Bit 1 = OUT1
Bit 0 = OUT0

To set the outputs, set the corresponding bit to one of the following states:

0 = Sinking type circuit
1 = Sourcing type circuit

EXAMPLE
digOutConfig(0x81);
 // OUT0 and OUT7 are sourcing, OUT1–OUNT6 are sinking

 SEE ALSO
brdInit, digIn, digOut, triStateConfig, digOutTriState

Sets the state of a digital output (OUT0–OUT7).

The output channel is set to the state that is specified. If the output is configured as sinking, set to 0 for
the driver to be sinking, or set to 1 for the driver to be OFF (high-impedance state). If the output is con-
figured as sourcing, set to 0 for the driver to be OFF (high-impedance state), or set to 1 for the driver to
be sourcing.

Remember to call brdInit and digOutConfig before executing this function.

A runtime error will occur for the following conditions:

1. channel or state out of range.

2. brdInit or digOutConfig was not executed before executing digOut.

3. Your tried to use a channel configured as a tri-state output.

PARAMETERS
channel is the output channel number (0–7).

state is the output value (0 or 1).

SEE ALSO
brdInit, digOutConfig, triStateConfig, digOutTriState

void digOutConfig(char outputMode);

void digOut(int channel, int state);
User’s Manual 59

Allows a given channel to be configured as a tristate type output. When a channel is configured as a
tristate output, then digOutTriState can be used to control that channel.

A run-time error will occur for the following conditions:

1. digOut is disabled from controlling any channel that is configured as a tristate output.

2. brdInit was not executed before executing digTriStateConfig.

PARAMETER
triState is an 8-bit parameter where each bit corresponds to a high-current output:

Bit 7 = OUT7
Bit 6 = OUT6
Bit 5 = OUT5
Bit 4 = OUT4
Bit 3 = OUT3
Bit 2 = OUT2
Bit 1 = OUT1
Bit 0 = OUT0

To set the outputs, set the corresponding bit to one of the following states:

0 = tristate operation disabled
1 = tristate operation enabled

EXAMPLE
digTriStateConfig(0x02); // OUT1 tristate is enabled,
 // Out0, OUT2–OUNT7 tristate are disabled

SEE ALSO
brdInit, digIn, digOutConfig, digOut, digOutTriState

void digTriStateConfig(char triState);
60 eDisplay (OP7200)

Sets the state of a digital output channel (OUT0–OUT7).

This function is intended to control a given channel as a tristate output, for example:

0 = Active low state (GND potential)
1 = Active High state (+K potential)
2 = High-Impedance state.

Since switching from one state to another has some software overhead, the switching delay should be
less than 1 µs.

A run-time error will occur for the following conditions:

1. channel or state out of range.

2. brdInit or digTriStateConfig was not executed before executing digOutTriState.

3. Your tried to use a channel that is not configured as a tristate output.

PARAMETERS
channel is the output channel number (0–7).

state is set to one of the following output states.

0 = Active Low.
1 = Active High
2 = High-Impedance state.

SEE ALSO
brdInit, digIn, digOutConfig, digOut, triStateConfig

Reads the state of an input channel (IN0–IN18 for OP7200, IN0–IN15 for OP7210).

A run-time error will occur for the following conditions:

1. channel out of range.

2. brdInit was not executed before executing digIn.

PARAMETER
channel is the input channel number (0–18 or 0–15)

RETURN VALUE
The logic state of the input (0 or 1).

SEE ALSO
brdInit, digOut

void digOutTriState(int channel, int state);

int digIn(int channel);
User’s Manual 61

4.5.3 LEDs

Turns LED DS1 (Microprocessor Bad) on or off.

NOTE: Once the brdInit function executes, then the Microprocessor Bad indicator is
available for other use in the application.

PARAMETERS
led is the LED to control

0 = LED DS1 (Microprocessor Bad indicator)

value is used to control whether the LED is on or off

0 = OFF
1 = ON

SEE ALSO
brdInit

void ledOut(int led, int value)
62 eDisplay (OP7200)

4.5.4 Serial Communication

Library files included with Dynamic C provide a full range of serial communication sup-
port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The
PACKET.LIB library provides packet-based serial functions where packets can be delim-
ited by the 9th bit, by transmission gaps, or with user-defined special characters. Both
libraries provide blocking functions, which do not return until they are finished transmit-
ting or receiving, and nonblocking functions, which must be called repeatedly until they
are finished. For more information, see the Dynamic C Function Reference Manual and
Technical Note 213, Rabbit 2000 Serial Port Software.

If you are planning to use any of the RS-232 serial ports and the RabbitNet port on the
OP7200, initialize the serial port(s) before you initialize the RabbitNet port. The follow-
ing sample code illustrates this sequence.

// Initialize Serial Port C, set baud rate to 19200
serCopen(19200);
serCwrFlush();
serCrdFlush();

// Initialize Serial Port D, set baud rate to 19200
serDopen(19200);
serDwrFlush();
serDrdFlush();

// Set serial mode...must be done after serXopen function(s)
and before Rabbitnet initialization
serMode(0);

// Initialize RabbitNet port
rn_init(RN_PORTS, 1);

Use the following function calls with the OP7200. Note that Serial Port B is used for both
RS-485 and the RabbitNet port, so that RS-485 is no longer available once you have con-
figured Serial Port B as a RabbitNet port.

User’s Manual 63

User interface to set up OP7200 serial communication lines. Call this function after serXOpen().

Whether you are opening one or multiple serial ports, this function must be executed after executing the last
serXOpen function AND before you start using any of the serial ports. This function is non-reentrant.

If Mode 1 or Mode 3 is selected, CTS/RTS flow control is exercised using the serCflowcontrolOn
and serCflowcontrolOff functions from the RS232.LIB library.

PARAMETER
 mode is the defined serial port configuration.

RETURN VALUE
0 if valid mode, 1 if not.

SEE ALSO
ser485Tx, ser485Rx

Enables the RS-485 transmitter. Transmitted data get echo'ed back into the receive data buffer. These
echo'ed data could be used to know when to disable the transmitter by using one of the following
methods:

Byte mode—disable the transmitter after the same byte that is transmitted is detected in the receive
data buffer.

Block data mode—disable the transmitter after the same number of bytes transmitted is detected in the
receive data buffer.

serMode() must be executed before running this function.

SEE ALSO
serMode, ser485Rx

Disables the RS-485 transmitter. This puts the OP7200 in listen mode, which allows it to receive data
from the RS-485 interface. serMode() must be executed before running this function.

SEE ALSO
serMode, ser485Tx

int serMode(int mode);

Mode
Serial Port

B C D

0 RS-485 RS-232, 3-wire RS-232, 3-wire

1 RS-485 RS-232, 5-wire CTS/RTS

2 not initialized*

* Use modes 2 and 3 when Serial Port B is going to used by other libraries
such as PACKET.LIB.

RS-232, 3-wire RS-232, 3-wire

3 not initialized* RS-232, 5-wire CTS/RTS

void ser485Tx(void);

void ser485Rx(void);
64 eDisplay (OP7200)

4.5.5 A/D Converter Inputs (OP7200 only)

Reads the state of an analog input channel.

PARAMETERS
channel is the analog input channel number (0 to 7) corresponding to AIN0–AIN7:

opmode is the mode of operation:
0 = SE_MODE—single-ended input line
1 = DIFF_MODE—differential input line
2 = mAMP_MODE—4–20 mA input line

gaincode is the gain code of 0 to 7 for both single-ended and differential measurements:

RETURN VALUE
A value corresponding to the voltage on the analog input channel, which will be:

0–2047 for 11-bit A/D conversions (signed 12th bit)

SEE ALSO
anaInVolts, anaInCalib, brdInit, anaInmAmps, anaInDiff

unsigned int anaIn(int channel, int opmode,
int gaincode);

channel Single-Ended Input Differential Input

0 +AIN0 +AIN0 -AIN1

1 +AIN1 —

2 +AIN2 +AIN2 -AIN3

3 +AIN3 —

4 +AIN4 +AIN4 -AIN5

5 +AIN5 —

6 +AIN6 +AIN6 -AIN7

7 +AIN7 —

Gain Code Macro Gain

0 GAIN_X1 ×1

1 GAIN_X2 ×2

2 GAIN_X4 ×4

3 GAIN_X5 ×5

4 GAIN_X8 ×8

5 GAIN_X10 ×10

6 GAIN_X16 ×16

7 GAIN_X20 ×20
User’s Manual 65

Calibrates the response of the A/D converter channel as a linear function using the two conversion points
provided. Four values are calculated and placed into global table _adcCalib to be stored later into
using the function anaInEEWr(). Each channel will have the following information:

a linear constant,

a voltage offset,

a calculation gain code used to calculate calibrations, and

a user gain code to set voltage range (defaults to the calculation gain code).

PARAMETERS
channel is the analog input channel number (0 to 7) corresponding to AIN0–AIN7:

opmode is the mode of operation:
0 = SE_MODE—single-ended input line
1 = DIFF_MODE—differential input line
2 = mAMP_MODE—4–20 mA input line

gaincode is the gain code of 0 to 7 for both single-ended and differential measurements:

int anaInCalib(int channel, int opmode,
int gaincode, int value1, float volts1,
int value2, float volts2);

channel Single-Ended Input Differential Input

0 +AIN0 +AIN0 -AIN1

1 +AIN1 —

2 +AIN2 +AIN2 -AIN3

3 +AIN3 —

4 +AIN4 +AIN4 -AIN5

5 +AIN5 —

6 +AIN6 +AIN6 -AIN7

7 +AIN7 —

Gain Code Macro Gain

0 GAIN_X1 ×1

1 GAIN_X2 ×2

2 GAIN_X4 ×4

3 GAIN_X5 ×5

4 GAIN_X8 ×8

5 GAIN_X10 ×10

6 GAIN_X16 ×16

7 GAIN_X20 ×20
66 eDisplay (OP7200)

value1 is the first A/D converter channel value (0–2047).

volts1 is the voltage or current corresponding to the first A/D converter channel value.

value2 is the second A/D converter channel value (0–2047).

volts2 is the voltage or current corresponding to the first A/D converter channel value.

RETURN VALUE
0 if successful.

-1 if not able to make calibration constants.

SEE ALSO
anaIn, anaInVolts, brdInit, anaInmAmps, anaInDiff, anaInEERd, anaInEEWr
User’s Manual 67

Reads the state of a single-ended analog input channel and uses the previously set calibration constants to
convert the reading to volts.

PARAMETERS
channel is the analog input channel number (0 to 7) corresponding to AIN0–AIN7:

gaincode is the gain code of 0 to 7 for both single-ended and differential measurements:

RETURN VALUE
A voltage value corresponding to the voltage on the analog input channel.

SEE ALSO
anaInCalib, anaIn, brdInit, anaInmAmps, anaInDiff

float anaInVolts(int channel, int gaincode);

channel Single-Ended Input

0 +AIN0

1 +AIN1

2 +AIN2

3 +AIN3

4 +AIN4

5 +AIN5

6 +AIN6

7 +AIN7

Gain Code Macro Gain Voltage
Range

0 GAIN_X1 ×1 0–20 V

1 GAIN_X2 ×2 0–10 V

2 GAIN_X4 ×4 0–5 V

3 GAIN_X5 ×5 0–4 V

4 GAIN_X8 ×8 0–2.5 V

5 GAIN_X10 ×10 0–2 V

6 GAIN_X16 ×16 0–1.25 V

7 GAIN_X20 ×20 0–1 V
68 eDisplay (OP7200)

Reads the state of a differential analog input channel and uses the previously set calibration constants to
convert it to volts.

PARAMETERS
channel is the channel number (0, 2, 4, 6):

gaincode is the gain code of 0 to 7:

RETURN VALUE
A voltage value corresponding to the voltage on the analog input channel.

SEE ALSO
brdInit, anaInCalib, anaIn, anaInVolts, anaInmAmps

float anaInDiff(unsigned int channel,
unsigned int gaincode);

Channel Differential
Input Lines

0 +AIN0 -AIN1

2 +AIN2 -AIN3

4 +AIN4 -AIN5

6 +AIN6 -AIN7

Gain Code Macro Gain Voltage
Range

0 GAIN_X1 ×1 -20 to 20 V

1 GAIN_X2 ×2 -10 to 10 V

2 GAIN_X4 ×4 -5 to 5 V

3 GAIN_X5 ×5 -4 to 4 V

4 GAIN_X8 ×8 -2.5 to 2.5 V

5 GAIN_X10 ×10 -2 to 2 V

6 GAIN_X16 ×16 -1.25 to 1.25 V

7 GAIN_X20 ×20 -1 to 1V
User’s Manual 69

Reads the state of an analog input channel and uses the previously set calibration constants to convert it
to current.

PARAMETER
channel is 0–7:

RETURN VALUE
A current value between 4–20 mA (0.004 and 0.020 A) corresponding to the current on the analog input
channel.

SEE ALSO
brdInit, anaInCalib, anaIn, anaInVolts, anaInDiff

int anaInmAmps(unsigned int channel);

Channel 4–20 mA
Input Lines

0 AIN0

1 AIN1

2 AIN2

3 AIN3

4 AIN4

5 AIN5

6 AIN6

7 AIN7
70 eDisplay (OP7200)

Reads the calibration constants, gain, and offset for an input based on its designated channel code
position into global table _adcCalib. The constants are stored in the top 1K of the reserved user
block memory area. Use the sample program USERBLOCKINFOR.C in SAMPLES\OP7200 to get
the addresses reserved for the calibration data constants and the addresses available for use by your
program.

NOTE: This function cannot be run in RAM.

PARAMETERS
channel is the analog input channel number (0 to 7) corresponding to AIN0–AIN7:

opmode is the mode of operation:
0 = SE_MODE—single-ended input line
1 = DIFF_MODE—differential input line
2 = mAMP_MODE—4–20 mA input line

gaincode is the gain code of 0 to 7 for both single-ended and differential measurements:

int anaInEERd(unsigned int channel, int opmode,
unsigned int gaincode);

channel Single-Ended Input Differential Input

0 +AIN0 +AIN0 -AIN1

1 +AIN1 —

2 +AIN2 +AIN2 -AIN3

3 +AIN3 —

4 +AIN4 +AIN4 -AIN5

5 +AIN5 —

6 +AIN6 +AIN6 -AIN7

7 +AIN7 —

-1 ALL_CHANNELS ALL_CHANNELS

Gain Code Macro Gain

0 GAIN_X1 ×1

1 GAIN_X2 ×2

2 GAIN_X4 ×4

3 GAIN_X5 ×5

4 GAIN_X8 ×8

5 GAIN_X10 ×10

6 GAIN_X16 ×16

7 GAIN_X20 ×20
User’s Manual 71

RETURN VALUE
0 if successful.
-1 if address is invalid or out of range.

SEE ALSO
anaInEEWr, anaInCalib, brdInit
72 eDisplay (OP7200)

Writes the calibration constants, gain, and offset for an input based on its designated channel code
position from global table _adcCalib. The constants are stored in the top 1K of the reserved user
block memory area. Use the sample program USERBLOCKINFOR.C in SAMPLES\OP7200 to get
the addresses reserved for the calibration data constants and the addresses available for use by your
program.

NOTE: This function cannot be run in RAM.

channel is the analog input channel number (0 to 7) corresponding to AIN0–AIN7:

opmode is the mode of operation:
0 = SE_MODE—single-ended input line
1 = DIFF_MODE—differential input line
2 = mAMP_MODE—4–20 mA input line

gaincode is the gain code of 0 to 7 for both single-ended and differential measurements:

int anaInEEWr(unsigned int channel, int opmode,
unsigned int gaincode);

channel Single-Ended Input Differential Input

0 +AIN0 +AIN0 -AIN1

1 +AIN1 —

2 +AIN2 +AIN2 -AIN3

3 +AIN3 —

4 +AIN4 +AIN4 -AIN5

5 +AIN5 —

6 +AIN6 +AIN6 -AIN7

7 +AIN7 —

-1 ALL_CHANNELS ALL_CHANNELS

Gain Code Macro Gain

0 GAIN_X1 ×1

1 GAIN_X2 ×2

2 GAIN_X4 ×4

3 GAIN_X5 ×5

4 GAIN_X8 ×8

5 GAIN_X10 ×10

6 GAIN_X16 ×16

7 GAIN_X20 ×20
User’s Manual 73

RETURN VALUE
0 if successful.
-1 if address is invalid or out of range.

SEE ALSO
anaInEERd, brdInit
74 eDisplay (OP7200)

4.5.6 Graphic Display Functions
4.5.6.1 On-Screen Menus

The GLMENU.LIB library in the LIB\DISPLAYS\GRAPHIC directory provides function
calls to display menus on the OP7200 LCD display. When x and y coordinates on the
display screen are specified, x can range from 0 to 319, and y can range from 0 to 239.
These numbers represent pixels counted from the top left corner of the display.

Initializes a menu structure with the required parameters to automatically build and display a text menu
when the glMenu function is executed.

PARAMETERS
menu is a pointer to the windowMenu descriptor

pFont is a pointer to the fontInfo descriptor

border describes the menu border options:
0 = NO_BORDER, no border drawn
1 = SINGLE_LINE, draw a single-line border around the text menu
2 = DOUBLE_LINE, draw a double-line border around the text menu

shadow describes the menu shadow options:
0 = NO_SHADOW, no shadowing provided
1 = SHADOWING, shadowing is provided on the menu

menu_options is a pointer to the list of menu options—here is an example of a list of options for the
menu system:

// Menu options........set as needed for your application

const char *main_menu [] =
 {
 "1.Increase Menu size",
 "2.Decrease Menu size",
 "3.Backlight menu",
 ""
 };

It is possible to insert or delete menu options. The highlight bar is set up to start with the first menu
option and stop at the last menu option in the menu.
When adding or deleting menu options you must match up the case statements to the menu option number.

title is the menu title
ASCII string = title
null string = no title

maxOptDisplayed indicates the maximum number of options to be displayed by the menu:
-1 = forces all options to be displayed
>0 = menu box will only display the number of options indicated, which will require the user to use

the scroll keys to bring an option into the menu box view area for the selection

int glMenuInit(windowMenu *menu, fontInfo *pFont,
int border, int shadow, char **menu_options,
char* title, maxOptDisplayed);
User’s Manual 75

RETURN VALUE
0 = success

-1 = border parameter value is invalid

SEE ALSO
glMenu, glMenuClear, glRefreshMenu

Displays a menu on the LCD display and get the menu options from the user.

NOTE: This function will display an error message on the LCD if the menu width or
height exceeds the LCD display boundaries.

PARAMETERS
mPtr is a pointer to structure that contains the information for the menu

state is a pointer to the menu control parameter. The state parameters are as follows:

0 = MENU_INIT, initialize and display menu

1 = MENU_NO_CHANGE, return to selected option, no changes to menu or highlight bar.

2 = MENU_REFRESH, display the last image of the menu, including the location of the highlight
bar.

x is the x coordinate of where the text menu is to start

y is the y coordinate of where the text menu is to start

RETURN VALUE
0 = no option is selected

>0 = option the user has selected

-1 = menu has exceeded LCD screen width

-2 = menu has exceeded LCD screen height

SEE ALSO
glMenuInit, glMenuClear, glRefreshMenu

Refreshes the menu indicated by the WindowMenu pointer.

PARAMETER
mPtr is a windowMenu descriptor pointer

RETURN VALUE
None.

SEE ALSO
glMenuInit, glMenu, glMenuClear

int glMenu(windowMenu *mPtr, int *state, int x,
int y);

void glRefreshMenu(windowMenu *mPtr);
76 eDisplay (OP7200)

Clears the menu indicated by the WindowMenu descriptor pointer.

PARAMETER
mPtr is a windowMenu descriptor pointer

RETURN VALUE
None.

SEE ALSO
glRefreshMenu, glMenu, glMenuInit

glMenuClear(windowMenu *mPtr);
User’s Manual 77

4.5.6.2 Graphic Drawing Routines

The GRAPHIC.LIB library in the DISPLAYS\GRAPHIC directory provides function calls
for primitive graphic drawing routines such as lines, circles, and polygons.

Initializes the display devices, clears the screen. This function call must be made prior to any other
graphic function calls.

SEE ALSO
glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotPolygon,
glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf, glPutChar,
glSetBrushType, glBuffLock, glBuffUnlock, glPlotLine

Increments LCD screen-locking counter. Graphics calls are recorded in the LCD memory buffer, and are
not transferred to the LCD if the counter is non-zero.

NOTE: Functions glBuffLock() and glBuffUnlock() can be nested up to a level
of 255, but be sure to balance the calls. It is not a requirement to use these procedures,
but a set of glBuffLock() and glBuffUnlock() bracketing a set of related
graphics calls significantly speeds up the rendering.

SEE ALSO
glBuffUnlock, glSwap

Decrements LCD screen-locking counter. The contents of the LCD buffer are transferred to the LCD if
the counter goes to zero.

SEE ALSO
glBuffLock, glSwap

Checks the LCD screen-locking counter. The contents of the LCD buffer are transferred to the LCD if the
counter is zero.

SEE ALSO
glBuffLock, glBuffUnlock

void glInit(void);

void glBuffLock(void);

void glBuffUnlock(void);

void glSwap(void);
78 eDisplay (OP7200)

Fills the LCD display screen with a pattern.

PARAMETER
pattern

0xFF = all black

0x00 = all white

anything else = vertical stripes

SEE ALSO
glBlock, glBlankScreen, glPlotPolygon, glPlotCircle

Blanks (sets to white) the LCD display screen.

SEE ALSO
glFillScreen, glBlock, glPlotPolygon, glPlotCircle

Sets the drawing method (or color) of pixels drawn by subsequent graphics calls.

PARAMETER
type is the value can be one of the following macros:

 PIXBLACK draws black pixels

PIXWHITE draws white pixels

PIXXOR draws old pixel XOR'ed with the new pixel

SEE ALSO
glGetBrushType

void glFillScreen(int pattern);

void glBlankScreen(void);

void glSetBrushType(int type);
User’s Manual 79

Gets the current method (or color) of pixels drawn by subsequent graphics calls.

RETURN VALUE
The current brush type.

SEE ALSO
glSetBrushType

Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked.

If the coordinates are outside the LCD display area, the dot will not be plotted.

PARAMETERS
x is the x coordinate of the dot

y is the y coordinate of the dot

SEE ALSO
glPlotline, glPlotPolygon, glPlotCircle

Draws a line in the LCD buffer, and on the LCD if the buffer is unlocked.

Any portion of the line that is beyond the LCD display area will be clipped.

PARAMETERS
x0 is the x coordinate of one endpoint of the line

y0 is the y coordinate of one endpoint of the line

x1 is the x coordinate of the other endpoint of the line

y1 is the y coordinate of the other endpoint of the line

SEE ALSO
glPlotDot, glPlotPolygon, glPlotCircle

void glGetBrushType(void);

void glPlotDot(int x, int y);

void glPlotLine(int x0, int y0, int x1, int y1);
80 eDisplay (OP7200)

Draws a rectangular block in the page buffer, and on the LCD if the buffer is unlocked.

Any portion of the block that is outside the LCD display area will be clipped.

PARAMETER
x is the x coordinate of the upper left corner of the block

y is the y coordinate of the left top corner of the block

bmWidth is the width of the block

bmHeight is the height of the block

SEE ALSO
glFillScreen, glBlankScreen, glPlotPolygon, glPlotCircle

Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is unlocked.

Any portion of the polygon that is outside the LCD display area will be clipped. The function will also
return, doing nothing, if there are less than 3 vertices.

PARAMETERS
n is the number of vertices

x1 is the x coordinate of the first vertex

y1 is the y coordinate of the first vertex

x2 is the x coordinate of the second vertex

y2 is the y coordinate of the second vertex

... coordinates of additional vertices

SEE ALSO
glPlotVPolygon, glFillPolygon, glFillVPolygon

void glBlock(int x, int y, int bmWidth, int
bmHeight);

void glPlotPolygon(int n, int x1, int y1, int x2,
int y2, ...);
User’s Manual 81

Draws a filled polygon in the LCD page buffer, and on the LCD if the buffer is unlocked.

Any portion of the polygon that is outside the LCD display area will be clipped. The function will also
return, doing nothing, if there are less than 3 vertices.

PARAMETERS
n is the number of vertices

x1 is the x coordinate of the first vertex

y1 is the y coordinate of the first vertex

x2 is the x coordinate of the second vertex

y2 is the y coordinate of the second vertex

... coordinates of additional vertices

SEE ALSO
glFillVPolygon, glPlotPolygon, glPlotVPolygon

Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is unlocked.

Any portion of the polygon that is outside the LCD display area will be clipped. The function will also
return, doing nothing, if there are less than 3 vertices.

PARAMETERS
n is the number of vertices

pFirstCoord is a pointer to an array of vertex coordinates x1,y1, x2,y2, x3,y3, ...

SEE ALSO
glPlotPolygon, glFillPolygon, glFillVPolygon

Draws a filled polygon in the LCD page buffer, and on the LCD if the buffer is unlocked.

Any portion of the polygon that is outside the LCD display area will be clipped. The function will also
return, doing nothing, if there are less than 3 vertices.

PARAMETERS
n is the number of vertices

pFirstCoord is a pointer to an array of vertex coordinates x1,y1, x2,y2, x3,y3, ...

SEE ALSO
glFillPolygon, glPlotPolygon, glPlotVPolygon

void glFillPolygon(int n, int x1, int y1, int x2,
int y2, ...);

void glPlotVPolygon(int n, int *pFirstCoord);

void glFillVPolygon(int n, int *pFirstCoord);
82 eDisplay (OP7200)

Draws a circle in the LCD page buffer, and on the LCD if the buffer is unlocked.

Any portion of the circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle

yc is the y coordinate of the center of the circle

rad is the radius of the circle (in pixels)

SEE ALSO
glFillCircle, glPlotPolygon, glFillPolygon

Draws a filled circle in the LCD page buffer, and on the LCD if the buffer is unlocked.

Any portion of the circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle

yc is the y coordinate of the center of the circle

rad is the radius of the circle (in pixels)

SEE ALSO
glPlotCircle, glPlotPolygon, glFillPolygon

Initializes the font descriptor structure, where the font is stored in xmem. Each font character's bitmap is
column-major and byte-aligned.

PARAMETERS
pInfo is a pointer to the font descriptor to be initialized

pixWidth is the width of each font item (in pixels)

pixHeight is the height of each font item (in pixels)

startChar is the value of the first printable character in the font character set

endChar is the value of the last printable character in the font character set

xmemBuffer is an xmem address of the pointer to a linear array of font bitmaps

SEE ALSO
glPrinf

void glPlotCircle(int xc, int yc, int rad);

void glFillCircle(int xc, int yc, int rad);

void glXFontInit(fontInfo *pInfo, char pixWidth,
char pixHeight, unsigned startChar, unsigned
endChar, unsigned long xmemBuffer);
User’s Manual 83

Prints a formatted string (much like printf) on the LCD screen. Only the character codes that exist in
the font set are printed, all others are skipped over. For example, '\b', '\t', '\n', and '\r'
(ASCII backspace, tab, new line, and carriage return, respectively) will be printed if they exist in the font
set, but will not have any effect as control characters.

Any portion of the bitmap character that is outside the LCD display area will be clipped.

PARAMETERS
x is the x coordinate (column) of the upper left corner of the text

y is the y coordinate (row) of the left top corner of the text

pInfo is a pointer to the window frame descriptor

fmt is a formatted string

... is a formatted string of conversion parameter(s)

EXAMPLE
glprintf(0,0, &fi12x16, "Test %d\n", count);

SEE ALSO
glXFontInit

Sets the glPrintf() printing step direction. The x and y step directions are independent signed val-
ues. The actual step increments depend on the height and width of the font being displayed, which are
multiplied by the step values.

Use glGetPfStep() to examine the current x and y printing step direction.

PARAMETERS
stepX is the glPrintf x step value

stepY is the glPrintf y step value

SEE ALSO
glGetPfStep

Gets the current glPrintf() printing step direction. Each step direction is independent of the other,
and is treated as an 8-bit signed value. The actual step increments depends on the height and width of the
font being displayed, which are multiplied by the step values.

Use glSetPfStep() to control the x and y printing step direction.

RETURN VALUE
The x step is returned in the MSB, and the y step is returned in the LSB of the integer result.

SEE ALSO
glSetPfStep

void glPrintf(int x, int y, fontInfo *pInfo,
char *fmt, ...);

void glSetPfStep(int stepX, int stepY);

void glGetPfStep(void);
84 eDisplay (OP7200)

Returns the xmem address of a character from the specified font set.

PARAMETERS
pInfo is the xmem address of the bitmap font set

latter is an ASCII character

RETURN VALUE
The xmem address of the bitmap character font, column-major and byte-aligned.

SEE ALSO
glPutFont, glPrintf

Puts an entry from the font table to the page buffer, and on the LCD if the buffer is unlocked. Each font
character's bitmap is column-major and byte-aligned.

Any portion of the bitmap character that is outside the LCD display area will be clipped.

PARAMETERS
x is the x coordinate (column) of the upper left corner of the text

y is the y coordinate (row) of the left top corner of the text

pInfo is a pointer to the window frame descriptor

code is the ASCII character to display

SEE ALSO
glFontCharAddr, glPrintf

Provides an interface between the STDIO string handling functions and the graphic library. The
STDIO string formatting function will call this function, one character at a time, until the entire format-
ted string has been parsed.

Any portion of the bitmap character that is outside the LCD display area will be clipped.

PARAMETERS
ch is the character to be displayed on the LCD

ptr is not used, and is a place holder due to the STDIO string functions

cnt is not used, and is a place holder due to the STDIO string functions

pInfo is a pointer to the window frame descriptor

SEE ALSO
glPrintf, glPutFont

unsigned long glFontCharAddr(fontInfo *pInfo,
char letter);

void glPutFont(int x, int y, fontInfo *pInfo,
char code);

void glPutChar(char ch, char *ptr, int *cnt,
glPutCharInst *pInst)
User’s Manual 85

Defines a text-only display window. This function provides a way to display characters within the text
window only using character row and column coordinates.

The text window feature provides end-of-line wrapping and clipping after the character in the last col-
umn and row is displayed.

NOTE: Be sure to execute the TextWindowFrame function before using any of the
text-only functions (TextGotoXY, TextPutChar, TextPrintf,
TextCursorLocation).

PARAMETERS
window is a pointer to the window frame

pFont is a pointer to the window frame descriptor

x is the x coordinate of where the text window frame is to start

y is the y coordinate where the text window frame is to start

winWidth is the width of the text window frame

winHeight is the height of the text window frame

RETURN VALUE
 0 = window frame was successfully created

-1 = x coordinate + width has exceeded the display boundary

-2 = y coordinate + height has exceeded the display boundary

SEE ALSO
TextPutChar, TextPrintf, TextCursorLocation, TextGotoXY

Sets the cursor location on the display of where to display the next character. The display location is
based on the height and width of the character to be displayed.

NOTE: Be sure to execute the TextWindowFrame function before using any of the
text-only functions (TextGotoXY, TextPutChar, TextPrintf,
TextCursorLocation).

PARAMETERS
window is a pointer to the window frame

col is the character column location

row is the character row location

SEE ALSO
TextPutChar, TextPrintf, TextWindowFrame, TextCursorLocation

int TextWindowFrame(windowFrame *window,
fontInfo *pFont, int x, int y, int winWidth,
int winHeight)

void TextGotoXY(windowFrame *window, int col,
int row);
86 eDisplay (OP7200)

Gets the current cursor location that was set by one of the graphic text functions.

NOTE: Be sure to execute the TextWindowFrame function before using any of the
text-only functions (TextGotoXY, TextPutChar, TextPrintf,
TextCursorLocation).

PARAMETERS
window is a pointer to the window frame

col is a pointer to the cursor column variable

row is a pointer to the cursor row variable

RETURN VALUE
lower word = cursor row location

upper word = cursor column location

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextPutChar

Displays a character on the display where the cursor is currently pointing. If any portion of the bitmap
character is outside the LCD display area, the character will not to be displayed.

NOTE: Be sure to execute the TextWindowFrame function before using any of the
text-only functions (TextGotoXY, TextPutChar, TextPrintf,
TextCursorLocation).

PARAMETERS
window is a pointer to the window frame

ch is the character to be displayed on the LCD

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

void TextCursorLocation(windowFrame *window,
int *col, int *row);

void TextPutChar(struct windowFrame *window,
char ch);
User’s Manual 87

This function prints a formatted string (much like printf) on the LCD screen. Only printable charac-
ters in the font set are printed; escape sequences '\r' and '\n' are also recognized. All other escape
sequences will be skipped over. For example, nothing will be displayed for '\b' and 't'.

The text window feature provides end-of-line wrapping and clipping after the character in the last col-
umn and row is displayed.

NOTE: Be sure to execute the TextWindowFrame function before using any of the
text-only functions (TextGotoXY, TextPutChar, TextPrintf,
TextCursorLocation).

PARAMETERS
window is a pointer to the window frame

fmt is a formatted string

... formatted-string conversion parameter(s)

EXAMPLE
TextPrintf(&TextWindow, "Test %d\n", count);

SEE ALSO
TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

Scrolls byte-aligned window left one pixel, right column filled by current pixel type (color).

PARAMETERS
left is the upper left corner of bitmap, must be evenly divisible by 8

top is the left top corner of the bitmap

cols is the number of columns in the window, must be evenly divisible by 8

rows is the number of rows in the window

SEE ALSO
glHScroll, glRight1

Scrolls byte-aligned window right one pixel, left column filled by current pixel type (color).

PARAMETERS
left is the upper left corner of bitmap, must be evenly divisible by 8

top is the left top corner of the bitmap

cols is the number of columns in the window, must be evenly divisible by 8

rows is the number of rows in the window

SEE ALSO
glHScroll, glLeft1

void TextPrintf(struct windowFrame *window,
char *fmt, ...);

void glLeft1(int left, int top, int cols, int rows);

void glRight1(int left, int top, int cols,
int rows);
88 eDisplay (OP7200)

Scrolls right or left within the defined window by nPix number of pixels. The opposite edge of the
scrolled window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and column parameters will be verified that they are evenly divisible by 8. If not,
they will be changed to be a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.

PARAMETERS
left is the upper left corner of bitmap, must be evenly divisible by 8

top is the left top corner of the bitmap

cols is the number of columns in the window, must be evenly divisible by 8

rows is the number of rows in the window

nPix is the number of pixels to scroll within the defined window (negative value to scroll left)

SEE ALSO
glVScroll

Scrolls byte-aligned window up one pixel, bottom row filled by current pixel type (color).

PARAMETERS
left is the upper left corner of bitmap, must be evenly divisible by 8

top is the left top corner of the bitmap

cols is the number of columns in the window, must be evenly divisible by 8

rows is the number of rows in the window

SEE ALSO
glVScroll, glDown1

Scrolls byte-aligned window down one pixel, top row filled by current pixel type (color).

PARAMETERS
left is the upper left corner of bitmap, must be evenly divisible by 8

top is the left top corner of the bitmap

cols is the number of columns in the window, must be evenly divisible by 8

rows is the number of rows in the window

SEE ALSO
glVScroll, glUp1

void glHScroll(int left, int top, int cols,
int rows, int nPix);

void glUp1(int left, int top, int cols, int rows);

void glDown1(int left, int top, int cols, int rows);
User’s Manual 89

Scrolls up or down within the defined window by nPix number of pixels. The opposite edge of the
scrolled window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and column parameters will be verified that they are evenly divisible by 8. If not,
they will be changed to be a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.

PARAMETERS
left is the upper left corner of bitmap, must be evenly divisible by 8

top is the left top corner of the bitmap

cols is the number of columns in the window, must be evenly divisible by 8

rows is the number of rows in the window

nPix is the number of pixels to scroll within the defined window (negative value to scroll up)

SEE ALSO
glHScroll

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function automat-
ically calls glXPutFastmap if the bitmap is byte-aligned (left edge and width are each evenly divis-
ible by 8).

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the upper left corner of bitmap, must be evenly divisible by 8

top is the left top corner of the bitmap

width is the width of the bitmap

height is the height of the bitmap

bitmap is the address of the bitmap in xmem

SEE ALSO
glXPutFastmap, glPrintf

void glVScroll(int left, int top, int cols,
int rows, int nPix);

void glXPutBitmap(int left, int top, int width,
int height, unsigned long bitmap);
90 eDisplay (OP7200)

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This is like
glXPutBitmap, except that it's faster. The restriction is that the bitmap must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the upper left corner of bitmap, must be evenly divisible by 8

top is the left top corner of the bitmap

width is the width of the bitmap

height is the height of the bitmap

bitmap is the address of the bitmap in xmem

SEE ALSO
glXPutBitmap, glPrintf

Gets a bitmap from the LCD page buffer and stores it in xmem RAM. This function automatically calls
glXGetFastmap if the bitmap is byte-aligned (left edge and width are each evenly divisible by 8).

PARAMETERS
x is the x coordinate of the left edge of the bitmap (in pixels)

y is the y coordinate of the top edge of the bitmap (in pixels)

bmWidth is the width of the bitmap (in pixels)

bmHeight is the height of the bitmap (in pixels)

xBm is the address of the bitmap in xmem RAM

SEE ALSO
glXPutFastmap, glPrintf

void glXPutFastmap(int left, int top, int width,
int height, unsigned long bitmap);

void glXGetBitmap(int x, int y, int bmWidth,
int bmHeight, unsigned long xBm);
User’s Manual 91

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This is like
glXPutBitmap, except that it's faster. The restriction is that the bitmap must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the upper left corner of bitmap, must be evenly divisible by 8

top is the left top corner of the bitmap

width is the width of the bitmap

height is the height of the bitmap

xmemptr is the address of the bitmap in xmem

SEE ALSO
glXPutBitmap, glPrintf

Initializes the window frame structure with the border and title information. The TextWindowFrame
function must be executed before running this function.

PARAMETERS
WindowFrame is a pointer to the window frame descriptor

border is the border style:

SINGLE_LINE—single-line border around the text window

DOUBLE_LINE—double-line border around the text window

title is a pointer to the title:

1. If a NULL string is detected, then no title is written to the text menu

2. If a string is detected, then it will be written to the top of the text menu box as the centered title

SEE ALSO
TextBorder, TextGotoXY, TextPutChar, TextWindowFrame,TextCursorLocation

Displays the border for a given window frame. The TextBorderInit function must be executed
before running this function.

This function will automatically adjust the text window parameters to accommodate the space taken by
the text border. This adjustment will only occur once after the TextBorderInit function executes.

PARAMETER
wPtr is a pointer to the window frame descriptor

SEE ALSO
TextBorderInit, TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

void glXGetFastmap(int left, int top, int width,
int height, unsigned long xmemptr);

void TextBorderInit(windowFrame *wPtr, int border,
char *title);

void TextBorder(windowFrame *wPtr);
92 eDisplay (OP7200)

Clears the entire area within the specified text window.

PARAMETER
wPtr is a pointer to the window frame descriptor

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

Returns the maximum number of characters that can be displayed within the text window. The Tex-
tWindowFrame function must be executed before running this function.

PARAMETER
wPtr is a pointer to the window frame descriptor

RETURN VALUE
The maximum number of characters that can be displayed within the text window.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

void TextWinClear(windowFrame *wPtr);

int TextMaxChars(windowFrame *wPtr);
User’s Manual 93

4.5.6.3 LCD Screen Control

The SED1335F.LIB library in the DISPLAYS\GRAPHIC\320x240 directory provides
low-level drivers for the SED1335F graphic chip.

NOTE: Remember to call glInit from GRAPHIC.LIB before calling any of the func-
tions described in this section.

Enables/disables the graphic animation mode. The animation mode is defaulted OFF when the graphic
driver is executed.

NOTE: The animation mode is intended to be used for special effects only. Raster lines may
appear in your display image when this mode is turned on.

PARAMETER
0 = animation mode disabled
1 = animation mode enabled

SEE ALSO
GRAPHIC.LIB

Enables/disables the real-time mode for the glPlotDot function. The glPlotDot real-time mode
is defaulted OFF when the graphic driver is executed.

PARAMETER
0 = real-time mode disabled
1 = real-time mode enabled

SEE ALSO
glPlotDot, GRAPHIC.LIB

Turns the backlight on or off. The backlight is off by default when the OP7200 powers up.

PARAMETER
0 = backlight off
1 = backlight on

SEE ALSO
glSetContrast

void glAnimation(int OnOff);

void glRealtime(int OnOff);

void glBackLight(int onOff);
94 eDisplay (OP7200)

Sets the LCD display contrast.

PARAMETER
contrast represents the contrast level (0 to 31 for low to high contrast), with a typical setting of 20.

SEE ALSO
glBacklight

This function is not supported at the present time.

void glSetContrast(int contrast);

void glDispOnOff(int onOff);
User’s Manual 95

4.5.7 Keypad Functions

The KEYPAD9.LIB library in the Keypads directory provides function calls to keypad
menus for the OP7200 keypad.

Initializes keypad process

Assigns each key with key press and release codes, and hold and repeat ticks for auto repeat and
debouncing.

PARAMETERS
cRaw is a raw key code index.

3 × 4 keypad matrix with raw key code index assignments (in brackets):

User Keypad Interface

cPress is a key press code

An 8-bit value is returned when a key is pressed.
0 = Unused.

See keypadDef() for default press codes.

cRelease is a key release code.

An 8-bit value is returned when a key is pressed.
0 = Unused.

cCntHold is a hold tick.

How long to hold before repeating.
0 = No Repeat.

cSpdLo is a low-speed repeat tick.

How many times to repeat.
0 = None.

cCntLo is a low-speed hold tick.

How long to hold before going to high-speed repeat.
0 = Slow Only.

void keyInit(void);

void keyConfig(char cRaw, char cPress,
char cRelease, char cCntHold, char cSpdLo,
char cCntLo, char cSpdHi);

[0] [1] [2] [3] [4]

[5] [6] [7]

[8]
96 eDisplay (OP7200)

cSpdHi is a high-speed repeat tick.

How many times to repeat after low speed repeat.
0 = None.

RETURN VALUE
None.

SEE ALSO
keyProcess, keyGet, keypadDef

Scans and processes keypad data for key assignment, debouncing, press and release, and repeat.

NOTE: This function is also able to process an 8 × 8 matrix keypad.

RETURN VALUE
None

SEE ALSO
keyConfig, keyGet, keypadDef

Get next keypress

RETURN VALUE
The next keypress, or 0 if none

SEE ALSO
keyConfig, keyProcess, keypadDef

void keyProcess(void);

char keyGet(void);
User’s Manual 97

Configures the physical layout of the keypad with the desired ASCII return key codes.

Keypad physical mapping 3 × 4

where
'E' represents the ENTER key
‘+’ represents Page Up
‘-’ represents Page Down
'D' represents Scroll Down
'U' represents Scroll Up
'L' represents Scroll Left
'R' represents Scroll Right
'S' represents Space
‘B’ represents Backspace

Example: Do the following for the above physical vs. ASCII return key codes.

keyConfig (6,'E',0, 0, 0, 0, 0);
keyConfig (3,'-',0, 0, 0, 0, 0);
keyConfig (1,'+',0, 0, 0, 0, 0);
keyConfig (8,'D',0, 0, 0, 0, 0);
keyConfig (2,'U',0, 0, 0, 0, 0);
keyConfig (5,'L',0, 0, 0, 0, 0);
keyConfig (7,'R',0, 0, 0, 0, 0);
keyConfig (0,'B',0, 0, 0, 0, 0);
keyConfig (4,'S',0, 0, 0, 0, 0);

Characters are returned upon keypress with no repeat.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keyProcess

Writes "1" to each row and reads the value. The position of a keypress is indicated by a zero value in a bit
position.

PARAMETER
*pcKeys is the address of the value read.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keypadDef, keyProcess

void keypadDef();

[B] [+] [U] [-] [S]

[L] [E] [R]

[D]

void keyScan(char *pcKeys);
98 eDisplay (OP7200)

4.6 Touchscreen (OP7200 only)
The GLTOUCHSCREEN.LIB library in the TouchScreens directory allows the user to
link adjacent pixel locations on the LCD to create a button. The button can then be trans-
lated by the touchscreen when pressed.When x and y coordinates on the display screen are
specified, x can range from 0 to 319, and y can range from 0 to 239. These numbers repre-
sent pixels from the top left corner of the display.

Initializes the GLTOUCHSCREEN.LIB library, must be called at power-up before any other
GLTOUCHSCREEN.LIB library functions can be used. This function allocates xmem SRAM for the
storage of the button parameters.

PARAMETER
MaxButtons is the number of buttons to initialize

RETURN VALUE
The unsigned long memory location of the BtnData area

SEE ALSO
btnCreateText, btnCreateBitmap, btnRecall, btnStore, btnDisplay,
btnDisplayLevel, btnClear, btnClearLevel, btnAttributes, btnMsgBox,
btnDisplayText, btnClearRegion

Stores the btnData structure in xmem SRAM. This function is normally called by
btnCreateText or by btnCreateBmp.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

BtnID is the button ID number of wherethe structure will be stored

RETURN VALUE
1 when completed

SEE ALSO
btnRecall, btnInit, btnCreateText, btnCreateBitmap

unsigned long btnInit(int MaxButtons);

int btnStore(unsigned long xmemPtr, int BtnID);
User’s Manual 99

Retrieves a btnData structure that was stored in xmem SRAM. This is function is normally called by
the other functions as needed.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

BtnID is the button ID number to retrieve from xmem

RETURN VALUE
1 when completed

SEE ALSO
btnStore, btnInit, btnDisplay, btnDisplayLevel, btnClear, btnClearLevel

int btnRecall(unsigned long xmemPtr, int BtnID);
100 eDisplay (OP7200)

Creates a button with a text label.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

BtnID is the button ID number of the button being created

xStart is the coordinate of the starting horizontal pixel

yStart is the coordinate of the starting vertical pixel

xSize is the horizontal size of the button

ySize is the vertical size of the button

Attribs are the button attributes:

bit 0: 1 = oval shaped, 0 = square shaped
bit 1 to 7 (reserved).

Level is the level to associate the button with (buttons with the same level can be displayed together
using the function btnDisplayLevel, or they can be removed together using the function
btnClearLevel.)

bFont is a pointer to the font descriptor

Text is a pointer to the text to display centered in the button

RETURN VALUE
1 when completed

EXAMPLE
The text displayed can be multiline by inserting '\n' within the text:

"Hello\nfrom\nZ-World" will produce

SEE ALSO
btnCreateBitmap, btnInit, btnDisplay, btnDisplayLevel, btnClear,
btnClearLevel

int btnCreateText(unsigned long xmemPtr, int BtnID,
int xStart, int yStart,int xSize, int ySize, char
Attribs, char Level, fontInfo *bFont, char
*Text);

Hello
from

Z-World
User’s Manual 101

Creates a button with a bitmap.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

BtnID is the button ID number of the button being created

xStart is the coordinate of the starting horizontal pixel

yStart is the coordinate of the starting vertical pixel

Attribs are the button attributes:

bit 0: 1 = oval shaped, 0 = square shaped
bit 1: 1 = beep when pressed, 0 = disable beep
bit 2 to 7 (reserved).

Level is the level to associate the button with (buttons with the same level can be displayed together
using the function btnDisplayLevel, or they can be removed together using the function
btnClearLevel.)

bmp is a pointer to the bitmap to use

bmpWidth is the horizontal size of the bitmap

bmpHeight is the vertical size of the bitmap

RETURN VALUE
1 when completed

NOTE: The button will be the bitmap size + 16 pixels, and will be centered with 8 pixels on each
side, and 8 pixels each, top and bottom.

SEE ALSO
btnCreateText, btnDisplay, btnClear, btnDisplayLevel, btnClearLevel, btnInit

int btnCreateBitmap(unsigned long xmemPtr,
int BtnID, int xStart, int yStart, char Attribs,
char Level, unsigned long bmp, int bmpWidth,
int bmpHeight);
102 eDisplay (OP7200)

Displays text on the LCD. The text will be centered automatically both horizontally and vertically. '\n'
within the text will give you the capability for multiline text. For example,

"Hello\nfrom\nZ-World" will produce

PARAMETERS
xStart is the coordinate of the starting horizontal pixel

yStart is the coordinate of the starting vertical pixel

xSize is the width of the display area in pixels

ySize is the height of the display area in pixels

pInfo is a pointer to the font descriptor

Text is a pointer to the text to be displayed

RETURN VALUE
1 when completed

SEE ALSO
btnMsgBox, btnDisplay

Blanks a region of the LCD. Do not use this function call to remove buttons—if you use this function to
remove a button from the LCD, the button will still be enabled. Instead, use btnClear or
btnClearLevel to remove buttons from the LCD.

PARAMETERS
xStart is the pixel coordinate of the starting horizontal pixel

yStart is the pixel coordinate of the starting vertical pixel

xSize is the width of the display area in pixels

ySize is the height of the display area in pixels

RETURN VALUE
1 when completed

SEE ALSO
btnClear, btnClearLevel

int btnDisplayText(int xStart, int yStart,
int xSize, int ySize, fontInfo *pInfo,
char *Text);

Hello
from

Z-World

int btnClearRegion(int xStart, int yStart,
int xSize, int ySize);
User’s Manual 103

Displays a message or text box on the LCD. The box can be square or oval-framed, and it can be
inverted. The text will be centered automatically both horizontally and vertically. '\n' within the text will
give you the capability of multiline text. For example,

"Hello\nfrom\nZ-World" will produce

PARAMETERS
xStart is the pixel coordinate of the starting horizontal pixel

yStart is the pixel coordinate of the starting vertical pixel

xSize is the width of the box in pixels

ySize is the height of the box in pixels

pInfo is a pointer to the font descriptor

Text is a pointer to the text to be displayed

Frame is the frame type (1 = oval, 0 = square)

Invert inverts the selection (0 = normal display, 1 = inverted display)

RETURN VALUE
1 when completed

SEE ALSO
btnDisplayText

Displays a predefined button on the LCD. The attributes, the text/bitmap displayed, and the location of
the button are predefined by either btnCreateText or btnCreateBmp. Once the button is dis-
played, the touchscreen will monitor it for presses. Call btnClear to remove the button.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

BtnID is the button ID number of the button to display

RETURN VALUE
1 when completed

SEE ALSO
btnDisplayLevel, btnClearLevel, btnClear

int btnMsgBox(int xStart, int yStart, int xSize,
int ySize, fontInfo *pInfo, char *Text,
int Frame, int Invert);

Hello
from

Z-World

int btnDisplay(unsigned long xmemPtr, int BtnID);
104 eDisplay (OP7200)

Displays predefined buttons having the same level setting. The level is defined by either btnCreate-
Text or btnCreateBmp. btnDisplayLevel allows you to display a group of buttons with a
single function call.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

Level is the button level to display

RETURN VALUE
1 when completed

SEE ALSO
btnClearLevel, btnDisplay, btnClear

Removes a button displayed on the LCD.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

BtnID is the button ID number of the button to remove

RETURN VALUE
1 when completed

SEE ALSO
btnDisplayLevel, btnDisplay, btnClearLevel

Removes a group of buttons having the same level. This function is called as many times as necessary
until BTN_SUCCESS is returned.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

Level is the button level to remove; use BTN_ALL_L to remove all the buttons

RETURN VALUE
BTN_SUCCESS when completed, otherwise BTN_PENDING

SEE ALSO
btnDisplayLevel, btnDisplay, btnClear

int btnDisplayLevel(unsigned long xmemPtr,
char Level);

int btnClear(unsigned long xmemPtr, int BtnID);

int btnClearLevel(unsigned long xmemPtr,
char Level);
User’s Manual 105

Sets the button attributes for the action to be taken when the button is pressed.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

btn is the button ID number

RepeatCntrl sets repeat enable/disable (0 = repeat off, 1 = repeat on)

InitRepeatDelay sets the initial delay in milliseconds for the repeat when the repeat is enabled

RepeatDelay sets the repeat delay in milliseconds between repeats

BuzzerCntrl enables/disables the buzzer sound when the button is pressed (0 = buzzer off,
1 = buzzer on)

RETURN VALUE
1 when completed

.

Searches the list of buttons in use for a button that matches the x,y coordinates from the touchscreen.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

x is the x coordinate of the location on the touchscreen

y is the y coordinate of the location on the touchscreen

RETURN VALUE
The button ID of the button corresponding to the button being pressed. If no such button is found, the
function returns a negative number.

SEE ALSO
btnVerifyXY, btnGet

int btnAttributes(unsigned long xmemPtr, int btn,
int RepeatCntrl,int InitRepeatDelay,
int RepeatDelay, int BuzzerCntrl);

int btnSearchXY(unsigned long xmemPtr, int x, int y);
106 eDisplay (OP7200)

Searches the list of buttons in use for a button that matches the x,y coordinates from the touchscreen.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

btn is the button ID code of the button to be verified

x is the x coordinate of the location on the touchscreen

y is the y coordinate of the location on the touchscreen

RETURN VALUE
The button ID of the button corresponding to the button being verified. If the button is not the correct
button, the function returns a negative number.

SEE ALSO
btnSearchXY, btnGet

Checks the touchscreen x,y coordinates against a given set of buttons being displayed to look for a match.
If a match is found, then the button ID code for the button will be returned.

PARAMETERS
xmemPtr is the xmem address of the pointer to an array of button descriptors

RETURN VALUE
The button ID code of the button corresponding to the button being pressed. If no such button is found,
the function returns a negative number.

SEE ALSO
btnSearchXY, btnVerifyXY

int btnVerifyXY(unsigned long xmemPtr, int btn,
int x, int y);

int btnGet(unsigned long xmemPtr);
User’s Manual 107

The TS_R4096.LIB library in the TouchScreens directory provides low-level touch-
screen function calls.

Calibrates the touchscreen as a linear function using the two sets of x,y coordinates provided. Gain and
offset constants are calculated and placed into the global table _adcCalibTS.

PARAMETERS
x1 is the x coordinate of the upper left-hand corner of the touchscreen

y1 is the y coordinate of the upper left-hand corner of the touchscreen

x2 is the x coordinate of the lower right-hand corner of the touchscreen

y2 is the y coordinate of the lower right-hand corner of the touchscreen

RETURN VALUE
0 if sucessful
-1 if not able to make calibration constants

SEE ALSO
TsCalibEERd, TsCalibEEWr, TsXYvector, brdInit

Reads the calibration constants, gain, and offset from the simulated EEPROM in flash. The constants are
stored in the top 1K of the reserved user block memory area. Use the sample program
USERBLOCKINFOR.C in SAMPLES\OP7200 to get the addresses reserved for the calibration data
constants and the addresses available for use by your application program.

RETURN VALUE
0 if sucessful
-1 if invalid address or range

SEE ALSO
TsCalib, TsCalibEEWr, TsXYvector, brdInit

Writes the calibration constants, gain, and offset to the simulated EEPROM in flash. The constants are
stored in the top 1K of the reserved user block memory area. Use the sample program
USERBLOCKINFOR.C in SAMPLES\OP7200 to get the addresses reserved for the calibration data
constants and the addresses available for use by your application program.

RETURN VALUE
0 if sucessful
-1 if invalid address or range

SEE ALSO
TsCalib, TsCalibEERd, TsXYvector, brdInit

int TsCalib(int x1, int y1, int x2, int y2);

int TsCalibEERd(void);

int TsCalibEEWr(void);
108 eDisplay (OP7200)

Reads the current x,y coordinates of the touchscreen

PARAMETERS
xkey is a pointer to the x coordinate

ykey is a pointer to the y coordinate

mode is the mode of operation:

0 (RAW_MODE)—raw mode, returns touchscreen x, y coordinate's true raw data value

1 (CAL_MODE)—calibration mode, returns touchscreen x, y coordinates as normalized data values to
match the LCD display resolution

SEE ALSO
TsActive, TsScanState, TsXYBuffer, brdInit

This function returns the status of whether the touchscreen is being pressed or touched.

RETURN VALUE
0—touchscreen is not being pressed
1—touchscreen is being pressed

SEE ALSO
TsXYvector, TsScanState, TsXYBuffer, brdInit

This function processes the current state of the touchscreen. The results can then be read with the
TsXYBuffer function, which will return one of the following.

1. The current x,y location of where the touchscreen is being pressed

2. A value indicating that the touchscreen press has ended

3. A value of -1 to indicate no activity has occurred

NOTE: When this function is called, the information should be processed before calling
this function again to avoid losing the information.

SEE ALSO
TsXYvector, TsActive, TsXYBuffer, brdInit

void TsXYvector(int *xkey, int *ykey, int mode);

int TsActive(void);

void TsScanState(void);
User’s Manual 109

This function returns either the x,y coordinates or the touchscreen BTN_RELEASE status code that was
processed by the TsScanState function.

RETURN VALUE
The x coordinate is returned in the MSB, and the y coordinate is returned in the LSB of the long integer
value.

SEE ALSO
TsXYvector, TsActive, TsScanState, brdInit

long TsXYBuffer(void);
110 eDisplay (OP7200)

4.7 RabbitNet Port
The function calls described in this section are used to configure the OP7200 for use with
RabbitNet peripheral boards. The user’s manual for the specific peripheral board you are
using contains additional function calls related to the RabbitNet protocol and the individ-
ual peripheral board.

Add the following lines at the start of your program.

#define RN_MAX_DEV 10 // max number of devices
#define RN_MAX_DATA 16 // max number of data bytes in any transaction
#define RN_MAX_PORT 1 // max number of serial ports

Set the following bits in RNSTATUSABORT to abort transmitting data after the status byte is
returned. This does not affect the status byte and still can be interpreted. Set any bit com-
bination to abort:

bit 7—device busy is hard-coded into driver
bit 5—identifies router or slave
bits 4,3,2—peripheral-board-specific bits
bit 1—command rejected
bit 0—watchdog timeout

#define RNSTATUSABORT 0x80
 // hard-coded driver default to abort if the peripheral board is busy

Provides rn_init() with the serial port control information needed for OP7200 series controllers.

RETURN VALUE
None.

Deactivates the OP7200 RabbitNet port as a clocked serial port and restores the RS-485 driver for
RS-485 communication. This call is also used by rn_init().

PARAMETERS
portnum = 0

RETURN VALUE
None

void rn_sp_info();

void rn_sp_close(int port);
User’s Manual 111

This is a macro that enables or asserts the OP7200 RabbitNet port select prior to data transfer.

PARAMETERS
portnum = 0

RETURN VALUE
None

This is a macro that disables or deasserts the OP7200 RabbitNet port select to invalidate data transfer.

PARAMETERS
portnum = 0

RETURN VALUE
None.

void rn_sp_enable(int portnum);

void rn_sp_disable(int portnum);
112 eDisplay (OP7200)

5. USING THE TCP/IP FEATURES

Chapter 5 discusses using the TCP/IP features on the OP7200
boards.

5.1 TCP/IP Connections
Before proceeding you will need to have the following items.
• If you don’t have an Ethernet connection, you will need to install a 10Base-T Ethernet

card (available from your favorite computer supplier) in your PC.
• Two RJ-45 straight-through Ethernet cables and a hub, or an RJ-45 crossover Ethernet

cable.
The Ethernet cables and Ethernet hub are available from Rabbit in a TCP/IP tool kit. More
information is available at www.rabbit.com.

1. Connect the AC adapter and the programming cable as shown in Chapter 2, “Getting
Started.”

2. Ethernet Connections

• If you do not have access to an Ethernet network, use a crossover Ethernet cable to con-
nect the OP7200 to a PC that at least has a 10Base-T Ethernet card.

• If you have an Ethernet connection, use a straight-through Ethernet cable to establish
an Ethernet connection to the OP7200 from an Ethernet hub. These connections are
shown in Figure 22.

Figure 22. Ethernet Connections

OP7200

User’s PC

Ethernet
crossover
cable

Direct Connection
(network of 2 computers)

OP7200

Hub

Ethernet
cables

To additional
network
elements

Direct Connection Using a Hub

Board
Board
User’s Manual 113

http://www.rabbit.com/

3. Apply Power

Plug in the AC adapter. The OP7200 is now ready to be used.

NOTE: A hardware RESET is accomplished by unplugging the AC adapter, then plug-
ging it back in, or by momentarily grounding the board reset input at pin 5 on screw-
terminal header J10.

When the PROG connector of the programming cable connects the OP7200 to your PC,
and Dynamic C is running, a RESET occurs when you press <Ctrl-Y>.

The green LNK light on the OP7200 RabbitCore module is on when the OP7200 is prop-
erly connected either to an Ethernet hub or to an active Ethernet card. The orange ACT
light flashes each time a packet is received.
114 eDisplay (OP7200)

5.2 TCP/IP Sample Programs
We have provided a number of sample programs demonstrating various uses of TCP/IP for
networking embedded systems. These programs require that you connect your PC and the
OP7200 together on the same network. This network can be a local private network (pre-
ferred for initial experimentation and debugging), or a connection via the Internet.

5.2.1 How to Set IP Addresses in the Sample Programs

Most of the sample programs such as shown in the example below use macros to define the
IP address assigned to the board and the IP address of the gateway, if there is a gateway.

#define MY_IP_ADDRESS "10.10.6.170"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"

In order to do a direct connection, the following IP addresses can be used for the OP7200:

#define MY_IP_ADDRESS "10.1.1.2"
#define MY_NETMASK "255.255.255.0"
// #define MY_GATEWAY "10.10.6.1"
// #define MY_NAMESERVER "10.10.6.1"

In this case, the gateway and nameserver are not used, and are commented out. The IP
address of the board is defined to be 10.1.1.2. The IP address of you PC can be defined
as 10.1.1.1.

IP Addresses After Dynamic C 7.30

With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run
many of our sample programs. Instead of the MY_IP_ADDRESS and other macros, you will
see a TCPCONFIG macro. This macro tells Dynamic C to select your configuration from a
list of default configurations. You will have three choices when you encounter a sample
program with the TCPCONFIG macro.

1. You can replace the TCPCONFIG macro with individual MY_IP_ADDRESS,
MY_NETMASK, MY_GATEWAY, and MY_NAMESERVER macros in each program.

2. You can leave TCPCONFIG at the usual default of 1, which will set the IP configurations
to 10.10.6.100, the netmask to 255.255.255.0, and the nameserver and gateway
to 10.10.6.1. If you would like to change the default values, for example, to use an IP
address of 10.1.1.2 for the RCM3200 board, and 10.1.1.1 for your PC, you can edit
the values in the section that directly follows the “General Configuration” comment in
the TCP_CONFIG.LIB library. You will find this library in the LIB\TCPIP directory.

3. You can create a CUSTOM_CONFIG.LIB library and use a TCPCONFIG value greater
than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB file.

There are some other “standard” configurations for TCPCONFIG that let you select differ-
ent features such as DHCP. Their values are documented at the top of the
TCP_CONFIG.LIB library. More information is available in the Dynamic C TCP/IP
User’s Manual.
User’s Manual 115

5.2.2 How to Set Up Your Computer for Direct Connect

Follow these instructions to set up your PC or notebook. Check with your administrator if
you are unable to change the settings as described here since you may need administrator
privileges. The instructions are specifically for Windows 2000, but the interface is similar
for other versions of Windows.

TIP: If you are using a PC that is already on a network, you will disconnect the PC from
that network to run these sample programs. Write down the existing settings before
changing them to facilitate restoring them when you are finished with the sample pro-
grams and are ready to reconnect your PC to the network.

1. Go to the control panel (Start > Settings > Control Panel), and double-click the
Network icon.

2. Select the network interface card used for the Ethernet interface you intend to use (e.g.,
TCP/IP Xircom Credit Card Network Adapter) and click on the “Properties” button.
Depending on which version of Windows your PC is running, you may have to select
the “Local Area Connection” first, and then click on the “Properties” button to bring up
the Ethernet interface dialog. Then “Configure” your interface card for a “10Base-T
Half-Duplex” or an “Auto-Negotiation” connection on the “Advanced” tab.

NOTE: Your network interface card will likely have a different name.

3. Now select the IP Address tab, and check Specify an IP Address, or select TCP/IP and
click on “Properties” to assign an IP address to your computer (this will disable “obtain
an IP address automatically”):

IP Address : 10.10.6.101

Netmask : 255.255.255.0

Default gateway : 10.10.6.1

4. Click <OK> or <Close> to exit the various dialog boxes.

OP7200

User’s PC

Ethernet
crossover
cable

IP 10.10.6.101
Netmask
255.255.255.0

Direct Connection PC to OP7200 Board

Board
116 eDisplay (OP7200)

5.2.3 Run the PINGME.C Demo

Connect the crossover cable from your computer’s Ethernet port to the OP7200’s RJ-45
Ethernet connector. Open this sample program from the SAMPLES\TCPIP\ICMP folder,
compile the program, and start it running under Dynamic C. When the program starts run-
ning, the green LNK light on the OP7200 should be on to indicate an Ethernet connection
is made. (Note: If the LNK light does not light, you may not have a crossover cable, or if
you are using a hub perhaps the power is off on the hub.)

The next step is to ping the board from your PC. This can be done by bringing up the MS-
DOS window and running the ping program:

ping 10.10.6.100

or by Start > Run

and typing the command

ping 10.10.6.100

Notice that the orange ACT light flashes on the OP7200 while the ping is taking place, and
indicates the transfer of data. The ping routine will ping the board four times and write a
summary message on the screen describing the operation.
User’s Manual 117

5.2.4 Running More Demo Programs With a Direct Connection

The sample programs discussed in this section use the Demonstration Board from the
OP7200 Tool Kit to illustrate their operation. Appendix C, “Demonstration Board Con-
nections,” contains diagrams of typical connections between the OP7200 and the Demon-
stration Board used to run these sample programs.

The program FLASH_XML.C (SAMPLES\OP7200\TCPIP\) runs a Web server that has
a Web page with a Macromedia Flash movie. You will need the Macromedia Flash plug-in
installed on your browser to use this sample program.

The program SMPTP.C (SAMPLES\OP7200\TCPIP\) uses the SMTP library to send an
e-mail when a switch on the Demonstration Board is pressed.

The program SSI.C (SAMPLES\OP7200\TCPIP\) demonstrates how to make the
OP7200 a Web server. This program allows you to turn the LEDs on an attached Demon-
stration Board from the Tool Kit on and off from a remote Web browser. LED1 and LED2
on the Demonstration Board will match those on the Web page. As long as you have not
modified the TCPCONFIG 1 macro in the sample program, enter the following server
address in your Web browser to bring up the Web page served by the sample program.

http://10.10.6.100

Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

The sample program TELNET.C (SAMPLES\OP7200\TCPIP\) allows you to communi-
cate with the OP7200 using the Telnet protocol. This program takes anything that comes in
on a port and sends it out Serial Port B. It uses digital input IN0 to indicate that the TCP/IP
connection should be closed and high-current output OUT0 to indicate that there is an active
connection.You may change the digital input and output to suit your application needs.

Follow the instructions included with the sample program. Run the Telnet program on
your PC (Start > Run telnet 10.10.6.100). As long as you have not modified the
TCPCONFIG 1 macro in the sample program, the IP address is 10.10.6.100 as shown;
otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library. Each
character you type will be printed in Dynamic C's STDIO window, indicating that the
board is receiving the characters typed via TCP/IP.
118 eDisplay (OP7200)

5.3 Where Do I Go From Here?
NOTE: If you purchased your OP7200 through a distributor or Rabbit partner, contact

the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

• Use the Technical Support e-mail form at www.rabbit.com/support/.

If the sample programs ran fine, you are now ready to go on.

Additional sample programs are described in the Dynamic C TCP/IP User’s Manual.

Refer to the Dynamic C TCP/IP User’s Manual to develop your own applications. An
Introduction to TCP/IP provides background information on TCP/IP, and is available on
our Web site.
User’s Manual 119

http://www.rabbit.com/
http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbitsemiconductor.com/forums/

120 eDisplay (OP7200)

6. INSTALLATION, MOUNTING, AND
CARE GUIDELINES

Chapter 6 describes some considerations for mounting the
OP7200 in a panel, and includes detailed mounting instructions,
protective grounding instructions, and care guidelines for clean-
ing the screen overlay.

6.1 Grounding
CAUTION: Many of the OP7200 ICs are sensitive to static. Use extra caution when han-

dling units in high-static areas.

To meet electromagnetic compatibility requirements, and in particular to prevent misoper-
ation or damage from electrostatic discharges, the bezel must be connected to a protective
ground via a low-impedance path.

A protective building ground is recommended once the OP7200 is installed at the location
where it will be used. In addition to providing protection against an unexpected electric
shock, the connection to building ground also mitigates any problems from external elec-
trostatic discharges and transients, and dampens any RF emissions.

The metal case is already connected electrically to the bezel, and so does not require a sep-
arate ground connection.

The recommended way to connect an OP7200 to a building ground is to mount the unit in a
metal panel that is already grounded. Use a wire with a size of at least 20AWG (0.5 mm2),
preferably stranded, to establish a connection between one of the screws holding the back
cover in place and the protective building ground. This wire should be as short as possible
to keep its impedance low.

There is an electrical connection between the OP7200 bezel/casing and the connections
marked GND or AGND on the OP7200 headers. This connection is the return for the I/O
signals, and should not be used for a protective ground connection.
User’s Manual 121

6.2 Installation Guidelines
When possible, following these guidelines when mounting an OP7200.

1. Leave sufficient ventilation space, at least 1" (2 cm) around the unit on all sides.

2. Do not install the OP7200 directly above machinery that radiates a lot of heat (for
example, heaters, transformers, and high-power resistors).

3. Leave at least 8" (20 cm) distance from electric power lines and even more from high-
voltage devices.

4. When installing the OP7200 near devices with strong electrical or magnetic fields (such
as solenoids), allow a least 3" (8 cm), more if necessary.

The OP7200 has strong environmental resistance and high reliability, but you can maxi-
mize system reliability by avoiding or eliminating the following conditions at the installa-
tion site.

• Abrupt temperature changes and condensation

• Ambient temperatures exceeding a range of 0°C to 50°C

• Relative humidity exceeding a range of 20% to 70%

• Strong magnetism or high voltage

• Corrosive gasses

• Direct vibration or shock

• Excessive iron dust or salt

• Spray from harsh chemicals
122 eDisplay (OP7200)

6.3 Mounting Instructions
The OP7200 comes with a gasket attached to the bezel. When properly mounted in a
panel, the OP7200 bezel/gasket are designed to meet NEMA 4 specifications for water
resistance.

Since the OP7200 employs an LCD display, the viewing angle must be considered when
mounting the display. The viewing angle is affected by the software-controlled contrast.
Install the OP7200 at a height and angle that makes it easy for the operator to see the
screen.

6.3.1 Bezel-Mount Installation

This section describes and illustrates how to bezel-mount the OP7200. Follow these steps
for bezel-mount installation.

1. Cut a mounting hole in the mounting panel in accordance with the recommended dimen-
sions in Figure 23, then use the bezel faceplate to mount the OP7200 onto the panel.

Figure 23. Recommended Cutout Dimensions

�;
��

D�
��
E

;��
D� E

	�!+�!

�;
��

D�

E

��8��

�;��
D���E

�;
�

D�
��

E

User’s Manual 123

2. Remove the OP7200 back cover. Set the screws and back cover aside since the back
cover will be re-attached after the OP7200 is inserted through the cutout.

3. Carefully insert the OP7200.

4. Fasten the unit to the panel with the back cover and the four 4-40 screws that attach the
back cover to the OP7200. If your panel is more than 0.1" (2.5 mm) thick, you will
need to supply longer 4-40 screws.

Figure 24. OP7200 Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed by the bezel faceplate.

Do not tighten each screw fully before moving on to the next screw. Apply only one or
two turns to each screw in sequence until all are tightened manually as far as they can
be so that the gasket is compressed by the bezel faceplate.

+�7"##���8��9���4��

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�
�
�

�
�
��

��
��
��

�
�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�
��
�

�
��
�

�
�
�

��
�

���

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

��
�

��

�

��
�

�����

��
�

��

�

��
�

��

��
�

��

�

��
��

��

��

�
�
�

�
�
�

��
��

�

��

� �

� �
���
���
���

���

���

��

���

�

�

��	�

�����

��

�

�
�

�
�

�
�

��

�
��

��

�
�

�

�
��

��

�

�

�

�

��

�

�

���

�
��

���

�
��

�
�

�
�

�
�

�
��

�
��

�
��

�
��

�
��

�
�
���

��
���

��
��

�

���
���

�
$
�
�

�
��

��
�
���

�
���

�
��

�
��

�
���

���

����� ��������	
��
����
�	�����
������	������	��	��������
��������	
����
������
�

�

�

�����

�

�

�

�

����	 ����	

�

���������������

���������������

�
�

124 eDisplay (OP7200)

6.4 Care Guidelines
If it becomes necessary to clean the screen overlay, use a mild detergent, then rinse with
lukewarm water using a clean sponge or a soft cloth. Dry thoroughly with a chamois or a
moist cellulose sponge to prevent water spots. Do not use abrasives, which will scratch the
hard coating on the overlay.

Fresh paint splashes, grease, and smeared glazing compounds can be removed by rubbing
gently with a grade of VM&P naphta, Windex®, or isopropyl alcohol. Never use gasoline,
acetone, carbon tetrachloride, or highly alkaline cleaners. Rinse afterwards with lukewarm
water as described above.

Cleaning is not recommended when the OP7200 is exposed to the hot sun or elevated tem-
peratures.
User’s Manual 125

126 eDisplay (OP7200)

APPENDIX A. SPECIFICATIONS

Appendix A provides the specifications for the OP7200.
User’s Manual 127

A.1 Electrical and Mechanical Specifications
Figure A-1 shows the mechanical dimensions for the OP7200.

Figure A-1. OP7200 Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.

�;
�

D�
��
E

�;��
D���E

�;

D���E

�;
��

D�
�E �;
��

D�

;
�E

�;�
D� E

�;�

D��E

�;�

D��E

�;�
D� E

�;
 �

D�

E

�;

�

D

�E
128 eDisplay (OP7200)

Table A-1 lists the electrical, mechanical, and environmental specifications for the OP7200.

Table A-1. OP7200 Specifications

Feature OP7200 OP7210

Microprocessor Rabbit® 2000 at 22.1 MHz

Ethernet Port 10/100-compatible with 10Base-T interface, RJ-45

Flash Memory 256K

SRAM 128K

Backup Battery Socketed 3 V lithium coin type, 265 mA·h

Keypad/Display
¼ VGA (320 × 240 pixels) with programmable white LED backlight,

black on white display, transflective FSTN LCD, 6 o’clock viewing angle;
9-key keypad

Touchscreen 4096 × 4096 resistive touchscreen No

LEDs 4: Power On, Microprocessor Error, Ethernet Link, Ethernet Activity

Digital Inputs 19: protected to ±36 V DC 16: protected to ±36 V DC

Digital Outputs 8: individually configurable in software to sink up to 350 mA each, 36 V
DC max., or source up to 250 mA each, 40 V DC max.

Analog Inputs

8 single-ended or 4 differential,
200 kΩ input impedance,
1.5 ksamples/s sampling rate
• software-controlled ranges:

0–1 V, 2 V, 5 V 10 V, 20 V DC
(11-bit single-ended, 12-bit dif-
ferential)

None

Connectors Four 12-position screw-terminal
headers, 0.1" pitch

Three 12-position screw-terminal
headers, 0.1" pitch

Serial Ports

4 serial ports:
• two RS-232 or one RS-232 (with CTS/RTS)
• one RS-485 with onboard network termination and bias resistors

or one RS-422 SPI master port
• one 5 V CMOS-compatible programming port

Serial Rate Max. burst rate = CLK/32,
Max. sustained rate = CLK/64

Real-Time Clock Yes

Timers Five 8-bit timers (four cascadable from the first),
one 10-bit timer with 2 match registers

Watchdog/Supervisor Yes

Power 9–40 V DC or 22–26 V AC, 4 W max.

Temperature Operating Range: -10°C to +65°C
Storage Range: –30°C to +80°C

Humidity 20% to 70%, noncondensing

Unit Size 4.41" × 5.67" × 1.70"
(112 mm × 144 mm × 43 mm)
User’s Manual 129

A.1.1 Physical Mounting

Figure A-2 shows position information to assist with interfacing other boards with the
OP7200.

Figure A-2. User Board Footprint for OP7200

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�
�
�

�
�
��

��
��
��

�
�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

��
�

�
��

�

�
�
�

��
�

�
�
���

���

������

�
��

�
��

�
�
���

�
�

���

���

�

��
�

�
��

�
��

�
�

�

�

������

���

�
�

�
� �
��

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

�
�� �
�

�
��

�
�

�
�

�
�

��
�

�
�

�
��

�
��

�
��

!�

�
�

�
��

�

��

"�

�
�

���

�
 �

�
 �

�

�
 �

�
 �

�
 �

�

�

��
�

��

��
�

��

�

��
�

�����

��
�

��

�

��
�

��

��
�

��

�

��
��

��

��

��

��� �
��

�
�

�
��

��

�
��

���

����
����
����

�
��

�
�

�
��

�
��

�
��

�
��

���

��

���

� �

� �
���
���
���

���

�
��

��
�

��
�

�
��

�

�
��

��
�

���

����

�
��

���

�

��

�
�

���

��

#�

�
��

#��

��
�� �

�

�

��	�

�����

��

�

�
�

�
�

�
�

��

�
��

�
�

�
�

�

�
��

�
�

�

�

�

�

�
�

�

�

�
��

�
��

�
��

�
��

�
�

�
�

�
�

�
��

�
��

�
�� �
��

���

�

�

���

�
�

���

�
�

��

�

��� ���

�
�
�

�
�
�

�
$
�
�

�
��

��

�
��

�
�
��

�

�
��

�
��

�
��

�

��

���

��
��

�

���

���

��� ���

#� �
�

�
�

�� �
���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� �

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��

���� ���
����

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

��
��

��
��

�
�

����

�%&&'()

��� ����
���

���

�
��

�
�

�
��

�
��

�
�
��

�
��

���

�
��

�

�� ��

�

 ��

� �
�

��
�
�

���

�
��

�

�

�

��

�

� !� �� �� "� " "

"�

�

���

���

�������

#�
�

���

�
�
�

���

�
 �� ��

��

��
!� ��

��

��
��

�
�
 �
��

"�
���

���

���
��

���
��

!

���
������ ���

��� �
��

���

�

��

��
�

��

���
���

�
�
���

���

���
"�

!"
#$

�
�
�
�
%

�;
�

�
D
;�
E

�;
��

�
D�

;
�E

�;
��

�
D�
��
E

�;
��

�
D�
��
E

�;� �
D�;�E

;���
D��;�E

;� �
D��;�E

�;
��

�
D�
�;
�E

�;
�

�
D�
��
E

; ��
D��;
E

�;
��

�
D

;�
E

130 eDisplay (OP7200)

A.2 Conformal Coating
The areas around the crystal oscillator and the battery backup circuit on the OP7200’s
RabbitCore module have had the Dow Corning silicone-based 1-2620 conformal coating
applied. The conformally coated areas are shown in Figure A-3. The conformal coating
protects these high-impedance circuits from the effects of moisture and contaminants over
time, and helps to maintain the accuracy of the real-time clock.

Figure A-3. OP7200’s RabbitCore Module Areas Receiving Conformal Coating

Any components in the conformally coated area may be replaced using standard soldering
procedures for surface-mounted components. A new conformal coating should then be
applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Rabbit Technical Note 303,
Conformal Coatings.

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�
�
�

�
�
��

��
��
��

�
�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

��
�

�
��

�

�
�
�

��
�

�
�
���

���

������

�
��

�
��

�
�
���

�
�

���

���

�

��
�

�
��

�
��

�
�

�

�

������

���

�
�

�
� �
��

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

�
�� �
�

�
��

�
�

�
�

�
�

��
�

�
�

�
��

�
��

�
��

!�

�
�

�
��

�

��

"�

�
�

���

�
 �

�
 �

�

�
 �

�
 �

�
 �

�

�

��
�

��

��
�

��

�

��
�

�����

��
�

��

�

��
�

��

��
�

��

�

��
��

��

��

��

��� �
��

�
�

�
��

��

�
��

���

����
����
����

�
��

�
�

�
��

�
��

�
��

�
��

���

��

���

� �

� �
���
���
���

���

�
��

��
�

��
�

�
��

�

�
��

��
�

���

����

�
��

���

�
��

�
�

���

��

#�

�
��

#��

��
�� �

�

�

��	�

�����

��

�

�
�

�
�

�
�

��

�
��

�
�

�
�

�

�
��

�
�

�

�

�

�

�
�

�

�

�
��

�
��

�
��

�
��

�
�

�
�

�
�

�
��

�
��

�
�� �
��

���

�

�

���

�
�

���

�
�

��

�

��� ���

�
�
�

�
�
�

�
$
�
�

�
��

��

�
��

�
�
��

�

�
��

�
��

�
��

�

��

���

��
��

�

���

���

��� ���

#� �
�

�
�

�� �
���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� �

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��

���� ���
����

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

��
��

��
��

�
�

����

�%&&'()

��� ����
���

���

�
��

�
�

�
��

�
��

�
�
��

�
��

���

�
��

�

�� ��

�

 ��

� �
�

��
�
�

���

�
��

�

�

�

��

�

� !� �� �� "� " "

"�

�

���

���

�������

#�
�

���

�
�
�

���

�
 �� ��

��

��
!� ��

��

��
��

�
�
 �
��

"�
���

���

���
��

���
��

!

���
������ ���

��� �
��

���

�

��

��
�

��

���
���

�
�
���

���

���
"�

!"#$

�
�
�
�
%

	��2������)
�����������
User’s Manual 131

A.3 Jumper Configurations
Figure A-4 shows the header and jumper locations used to configure the various OP7200 options.

Figure A-4. Location of OP7200 Configurable Positions
(RabbitCore module is not shown)

Table A-2 lists the configuration options. 0 Ω surface mount resistors are used for all the
positions except JP10 and J8, which use standard pluggable jumpers.

Table A-2. OP7200 Jumper Configurations

Header Description Pins Connected Factory
Default

JP1 IN16–IN18
1–2 Pulled up to Vcc ×
2–3 Pulled down

JP2 IN00–IN07
1–2 Pulled up to Vcc ×
2–3 Pulled down

���

���

���

���

��

���

��

���

��

����

���

�
��

�
��

�
��

��
��

��
��

��
��

��
�

���� ����

�%&&'()

� �
132 eDisplay (OP7200)

JP3 IN8–IN15
1–2 Pulled up to Vcc ×
2–3 Pulled down

JP4 AIN0–AIN1
1–2 Tied to 2.048 V

2–3 Tied to analog ground ×

JP5 AIN2–AIN3
1–2 Tied to 2.048 V

2–3 Tied to analog ground ×

JP6 AIN4–AIN5
1–2 Tied to 2.048 V

2–3 Tied to analog ground ×

JP7 AIN6–AIN7
1–2 Tied to 2.048 V

2–3 Tied to analog ground ×

JP8 Analog Reference Voltage
1–2 Based on A/D converter chip ×
2–3 Based on ratiometric or ext. reference

JP9 LCD Controller I/O bit VA16
1–2 VA16 not used ×
2–3 VA16 used—additional 64K video

SRAM

JP10 RabbitNet Master/Slave Control

1–2 Reserved for future use

3–4 Reserved for future use

n.c. OP7200 in “master” role ×

JP11 LCD Oscillator
1–2

2–3 OSC/4 ×

JP12 LCD Oscillator
1–2

2–3 OSC/4 ×

JP13 Board ID Bit 0 (LSB)
1–2 Pulled up to Vcc

2–3 Pulled down ×

Table A-2. OP7200 Jumper Configurations (continued)

Header Description Pins Connected Factory
Default
User’s Manual 133

NOTE: Jumper positions JP11–JP16 were introduced in January, 2006, to accommodate
a new LCD controller chip. See Section 4.1.2.1 for additional information.

JP14 Board ID Bit 1
1–2 Pulled up to Vcc

2–3 Pulled down ×

JP15 Board ID Bit 2
1–2 Pulled up to Vcc

2–3 Pulled down ×

JP16 Board ID Bit 3 (MSB)
1–2 Pulled up to Vcc

2–3 Pulled down ×

J8 RS-485 Bias and Termination
Resistors

1–2
4–6

Bias and termination resistors
connected ×

1–3
5–6

Bias and termination resistors not
connected (parking position for
jumpers)

— OUT0–OUT7

R64 Pulled up to Vcc ×
R65 Pulled up to +K

R62 Pulled down

— IN15 or Vcc on J10:4
— IN15 on J10:4 ×

R71 Vcc on J10:4

Table A-2. OP7200 Jumper Configurations (continued)

Header Description Pins Connected Factory
Default
134 eDisplay (OP7200)

A.4 Use of Rabbit 2000 Parallel Ports
Figure A-5 shows the Rabbit 2000 parallel ports.

Figure A-5. OP7200 Rabbit-Based Subsystems

Table A-3 lists the Rabbit 2000 parallel ports and their use in the OP7200.

Table A-3. Use of Rabbit 2000 Parallel Ports

Port I/O Signal Notes
PA0 Input IN00 Pulled up to Vcc

PA1 Input IN01 Pulled up to Vcc

PA2 Input IN02 Pulled up to Vcc

PA3 Input IN03 Pulled up to Vcc

PA4 Input IN04 Pulled up to Vcc

PA5 Input IN05 Pulled up to Vcc

PA6 Input IN06 Pulled up to Vcc

PA7 Input IN07 Pulled up to Vcc

PB0 Input SS_CLK Pulled up to Vcc

PB1 Input Programming Port Clock Pulled up to Vcc

PB2 Input SS_CS Pulled up to Vcc

PB3 Input SS_Mode Pulled up to Vcc

PB4 Input Touchscreen status Pulled up to Vcc

PB5 Input ADC_SD0 Pulled up to Vcc

PB6 Output Not Used High
PB7 Output Microprocessor Bad LED High

�,)	�� �,)	�>
?�#6�'$���)�"!��,)	�>@

�,)	��
?���)�"!��,)	�>@

�,)	��

������ ���0
���0
���0
��� ��

�������0
���

����

����
��>�

����
������

�"	"�����#

�77)�##�����#

41���,�),!

�"	'$7,3
;���9�)#

�!,'-��,�(!�)
�!"2���,)	

��"!���9���!,'-

��% >"'-���>"		�)6
����,)	 !"#$

�,)	��
?���)�"!��,)	#���A��@

�),3)"99��3
�,)	

?��)�"!��,)	��@

�	$�)��	
�,)	

%�#'=�41�

�
�&8'(2'&
-162%.-
�
#��
+5&45&-

���
�
�
*+('
+5&45&
���0
�� 0
���B��

�
�
*+('
1245&-

���0
���

���0
��

�������

������ �����!�:
"###
User’s Manual 135

PC0 Output RTS/TXD RS-232
Serial Port D

Inactive high
PC1 Input CTS/RXD RS-232 Inactive high
PC2 Output TXC RS-232

Serial Port C
Inactive high

PC3 Input RXC RS-232 Inactive high
PC4 Output Realtek Reset Initialized by sock_init
PC5 Input Realtek INT0 Pulled up to Vcc

PC6 Output TXA Programming Port
Serial Port A

Inactive high
PC7 Input RXA Programming Port Inactive high
PD0 Input Realtek CLK Initialized by sock_init
PD1 Input Realtek SD0 Initialized by sock_init
PD2 Output Not Used High
PD3 Output ADC and Touchscreen Chip Select High
PD4 Output ATXB RS-485

Serial Port B
Inactive high

PD5 Input ARXB RS-485 Inactive high
PD6 Output Not Used High
PD7 Output Not Used High
PE0 Output ADC and Touchscreen Serial Clock High
PE1 Output ADC and Touchscreen Data In High
PE2 Output Realtek IORB Strobe Initialized by sock_init
PE3 Output Realtek SDI Line Initialized by sock_init
PE4 Output CPLD Chip Select 0 High
PE5 Output CPLD Chip Select 1 High
PE6 Output Realtek I/O Write Initialized by sock_init
PE7 Output SED1335 Chip Select High

Table A-3. Use of Rabbit 2000 Parallel Ports (continued)

Port I/O Signal Notes
136 eDisplay (OP7200)

A.5 I/O Address Assignments
Table A-4 lists the external I/O address assignments.

Table A-4. Display and Keypad I/O Addresses

External Address Signal Name Function
PBDR (Write) PB7 Port Pin

0 = LED off, 1 = LED on PB7-Up_Good LCD indicator

PBDR (Read) PB5
serial data from device PB5_ADC_SDO Data from A/D converter or touchscreen

PDDR (Write) PD3
0 = ADC chip selected,
1 = touchscreen chip selected

/PD3_ADC_CS CS for A/D converter or touchscreen

PEDR (Write) PE0
clock data to device on 0/1 trans. PE0_ADC_SK CLK for A/D converter or touchscreen

PEDR (Write) PE1
serial data to the device PE1_ADC_SDI Data to A/D converter or touchscreen

PBDR (Read) PB4
0 = touchscreen active,
1 = touchscreen not active

/PB4_TSC_PIRQ Touchscreen status

PADR (Read) PA0–PA7 port pins IN0–IN7 Digital inputs IN0–IN7
0x8000 (Read) D0–D7 data lines IN8–IN15 Digital inputs IN8–IN15

0x8000–0x8007 (Write)
0 = driver enabled,
1 = driver disabled

SINK0–SINK7 Sinking driver control lines

0x8008–0x800F (Write)
0 = driver enabled,
1 = driver disabled

SOURCE0–
SOURCE7

Sourcing driver control lines

0xA000 (Read) Data line D5,
0 = key active, 1 = no active keys K0 Keypad row 0

0xA000 (Read) Data line D6,
0 = key active, 1 = no active keys K1 Keypad row 1

0xA000 (Read) Data line D7,
0 = key active, 1 = no active keys K2 Keypad row 2

0xA000 (Write)
1 = assert key scan line,
0 = deassert key scan line

/KB-S0 Keypad column 0

0xA001 (Write)
1 = assert key scan line,
0 = deassert key scan line

/KB-S1 Keypad column 1

0xA002 (Write)
1 = assert key scan line,
0 = deassert key scan line

/KB-S2 Keypad column 2

0xA003 (Write)
1 = assert key scan line,
0 = deassert key scan line

/KB-S3 Keypad column 3
User’s Manual 137

0xA004 (Write)
1 = backlight on,
0 = backlight off

BKLT-ON Backlight on/off control

0xA005 (Write)
1 = Xmit on, 0 = Xmit off RS-485EN RS-485 transmitter control

0xA006 (Write)
1 = buzzer on, 0 = buzzer off ALARM Buzzer on/off control

0xA007 (Write)
1 = assert LCD address A16,
0 = deassert LCD address A16

VA16 LCD address line A16

0xA008 (Write)
1 = assert X9013 chip select,
0 = deassert X9013 chip select

/CS Contrast control chip select

0xA009 (Write)
1 = set X9013 to count up,
0 = set X9013 to count down

U_D Contrast control count mode

0xA00A (Write) increment
X9013 counter when accessed,

data = don’t care
INC Contrast control CLK line

0xA00B–0xA00F Reserved Not used
0xE000 (W/R)

command data byte /PE7-LCDM-CS SED1335 command register

0xE001 (W/R)
data register byte /PE7-LCDM-CS SED1335 data register

Table A-4. Display and Keypad I/O Addresses (continued)

External Address Signal Name Function
138 eDisplay (OP7200)

APPENDIX B. POWER SUPPLY

Appendix B describes the power circuitry provided on the
OP7200.

B.1 Power Supplies
Power is supplied to the OP7200 via pins 1 and 2 of screw-terminal header J3. The OP7200
is protected against reverse polarity by a full-wave bridge rectifier as shown in Figure B-1.
The full-wave bridge rectifier also allows the OP7200 to be powered from 24 V AC.

Figure B-1. OP7200 Power Supply

The input voltage range is from 9 V to 40 V DC. A switching power regulator is used to
provide a Vcc of +5 V for the OP7200 logic circuits. Vcc is can be made accessible to the
user by installing a 0 Ω resistor at R71. Vcc will then be available instead of digital input
IN15 on pin 4 of screw-terminal header J10.

The OP7200 can alternatively be powered by 24 V AC. In this case the full-wave bridge
rectifier produces approximately 30 V DC at the input of the switching regulator.
Although a significant drop will be measured at the input to the switching regulator, the
voltage will never drop below +9 V DC. As long as the minimum input level is maintained
at the input to the regulator, Vcc will be held at +5 V DC.

There is provision on the printed-circuit board for a transorb to be installed at TVS1 in
parallel with C49 to provide suppression for positive noise pulses above 51 V. This part is
only needed when the OP7200 will be used in industrial environments where a clean
source of power cannot be guaranteed, and is not part of the normal factory build.

�
�
>
�
�

��

�

�
F?

�
F?

"�

$//

#�

�
����

�
FA

���
������

��

��
�

�

��

�

��

��

�

�

�

�>���A���
��>��
���"#����

$��

#	�� �

��>�

��>�
�$��
User’s Manual 139

B.1.1 Power for Analog Circuits

Power to the analog circuits is provided by way of a single-stage low-pass filter, which
isolates the analog section from digital noise generated by the other components. The ana-
log power voltage +V powers the A/D converter chip, the touchscreen controller, and the
reference circuit. The maximum current draw on +V is less than 10 mA. +V is not acces-
sible to the user.

B.1.2 Grounds

There are three grounds, one digital ground on screw-terminal headers J3 (pin 12) and J10
(pin 12), and an analog ground on screw-terminal header J2 (pin 12). The digital and ana-
log grounds share a single split ground plane on the printed-circuit board. Keeping the
grounds separate isolates the noise of the digital section from the analog circuits, provid-
ing for improved performance of the A/D converter chip and the touchscreen controller.

The analog ground is connected at a single point to the digital ground by a single copper
bridge to eliminate the possibility of ground loops. Analog ground should be used as the
return path for inputs connected to the A/D converter chip via pins 4–11 of screw-terminal
header J2.

B.1.3 RabbitNet Power Supplies

There is no provision on the OP7200 to supply power to any RabbitNet peripheral cards
that together with the OP7200 make up a RabbitNet LAN.
140 eDisplay (OP7200)

B.2 Batteries and External Battery Connections
The SRAM and the real-time clock have battery backup. Power to the SRAM and the real-
time clock (VRAM) on the OP7200’s RabbitCore module is provided by two different
sources, depending on whether the main part of the OP7200 is powered or not. When the
OP7200 is powered normally, and Vcc is within operating limits, the SRAM and the real-
time clock are powered from Vcc. If power to the board is lost or falls below 4.63 V, the
VRAM and real-time clock power will come from the battery. The reset generator circuit
controls the source of power by way of its /RESET output signal.

A replaceable 265 mA·h lithium battery provides power to the real-time clock and SRAM
when external power is removed from the circuit board. The drain on the battery is typically
less than 10 µA when there is no external power applied to the OP7200, and so the expected
shelf life of the battery is

The drain on the battery is typically less than 4 µA when external power is applied, and so
the expected battery in-service life is

B.2.1 Replacing the Backup Battery

The battery is user-replaceable, and is fitted in a battery holder. To replace the battery, lift
up on the spring clip and slide out the old battery. Use only a Panasonic BR2330 or equiv-
alent replacement battery, and insert it into the battery holder with the + side facing up.

NOTE: The SRAM contents and the real-time clock settings will be lost if the battery is
replaced with no power applied to the OP7200. Exercise care if you replace the battery
while external power is applied to the OP7200.

CAUTION: There is an explosion danger if the battery is short-circuited, recharged,
or replaced incorrectly. Replace the battery only with the same type or an equivalent
type recommended by the battery manufacturer. Dispose of used batteries according
to the battery manufacturer’s instructions.

265 mA·h
10 µA

------------------------ 3.0 years.=

265 mA·h
4 µA------------------------ 7.5 years.=
User’s Manual 141

B.2.2 External Battery

As an alternative to preserving the SRAM contents and the real-time clock settings while
changing the backup battery, you may connect an external battery temporarily at header J7. The
pins on header J7 have ground on the ends and positive in the center to allow the external
battery to be connected without the potential of reversing its polarity. Connect the positive
terminal of the external battery to pin 2 and the negative terminal to either pin 1 or pin 3 of
header J7.

The onboard battery does not have to be removed as it is protected against overvoltage by
resistors R80–R81. By having both batteries connected, either can be replaced from time
to time without losing the data stored in the SRAM and the real-time clock. The external
battery should be no more than 6.3 V.

Figure B-2. OP7200 External Battery Connections

$%

$/#

$"

$0

$7

�%&&'()

�� ��

�

 ��

� �
�

��
�
�

���

�
��

�

�

�

��

�

� !� �� �� "� " "

"�

�

���

���

�������

#�
�

���

�
�
�

���

�
 �� ��

��

��
!� ��

��

��
��

�
�
 �
��

"�
���

���

���
��

���
��

!

���
������ ���

��� �
��

���

�

��

��
�

��

���
���

�
�
���

���

���
"�

!"
#$

�
�
�
�
%

�
C&
'(
2%
.

�
%&
&'
()

�

$���

���

�
9�

���
�

�

142 eDisplay (OP7200)

B.2.3 Battery-Backup Circuit

Figure B-3 shows the battery-backup circuit located on the OP7200’s RabbitCore module.

Figure B-3. OP7200 Backup Battery Circuit

The battery-backup circuit serves three purposes:

• It reduces the battery voltage to the SRAM and to the real-time clock, thereby limiting
the current consumed by the real-time clock and lengthening the battery life.

• It ensures that current can flow only out of the battery to prevent charging the battery.

• A voltage, VOSC, is supplied to U6, which keeps the 32.768 kHz oscillator working
when the voltage begins to drop.

VRAM and Vcc are nearly equal (<100 mV, typically 10 mV) when power is supplied to
the OP7200.

�
�
��
9�

$��	
$���

���
��
9�

�
9�

�
�

$���

$//

��
9�

�

�
9�
$���

�
�
��

�

��

��
��
2?

��
��
2?
User’s Manual 143

B.2.4 Power to VRAM Switch

The VRAM switch on the OP7200’s RabbitCore module, shown in Figure B-4, allows the
battery backup to provide power when the external power goes off. The switch provides an
isolation between Vcc and the battery when Vcc goes low. This prevents the Vcc line from
draining the battery.

Figure B-4. VRAM Switch

Field-effect transistor Q5 is needed to provide a very small voltage drop between Vcc and
VRAM (<100 mV, typically 10 mV) so that the board components powered by Vcc will
not have a significantly different voltage than VRAM.

When the OP7200 is not in reset, the /RES_OUT line will be high. This turns on Q2, caus-
ing its collector to go low. This turns on Q5, allowing VRAM to nearly equal Vcc.

When the OP7200 is in reset, the /RES_OUT line will go low. This turns off Q2 and Q5,
providing an isolation between Vcc and VRAM.

B.2.5 Reset Generator

The OP7200’s RabbitCore module uses a reset generator on the module, U1, to reset the
Rabbit 2000 microprocessor when the voltage drops below the voltage necessary for reli-
able operation. The reset occurs between 4.50 V and 4.75 V, typically 4.63 V.

?�$
���
��

�

��

�
�

$��	$��

��
		��
�����
9�

�
�

����B�"�

��
9�
144 eDisplay (OP7200)

B.3 Chip Select Circuit
Figure B-5 shows a schematic of the chip select circuit on the OP7200’s RabbitCore module.

Figure B-5. Chip Select Circuit

The current drain on the battery in a battery-backed circuit must be kept at a minimum.
When the OP7200 is not powered, the battery keeps the SRAM memory contents and the
real-time clock (RTC) going. The SRAM has a powerdown mode that greatly reduces
power consumption. This powerdown mode is activated by raising the chip select (CS)
signal line. Normally the SRAM requires Vcc to operate. However, only 2 V is required
for data retention in powerdown mode. Thus, when power is removed from the circuit, the
battery voltage needs to be provided to both the SRAM power pin and to the CS signal
line. The CS control circuit accomplishes this task for the SRAM’s chip select signal line.

In a powered-up condition, the CS control circuit must allow the processor’s chip select
signal /CS1 to control the SRAM’s CS signal /CSRAM. So, with power applied, /CSRAM
must be the same signal as /CS1, and with power removed, /CSRAM must be held high
(but only needs to be battery voltage high). Q3 and Q4 are MOSFET transistors with com-
plementary polarity. They are both turned on when power is applied to the circuit. They
allow the CS signal to pass from the processor to the SRAM so that the processor can peri-
odically access the SRAM. When power is removed from the circuit, the transistors will
turn off and isolate /CSRAM from the processor. The isolated /CSRAM line has a 100 kΩ
pullup resistor to VRAM (R28). This pullup resistor keeps /CSRAM at the VRAM voltage
level (which under no power condition is the backup battery’s regulated voltage at a little
more than 2 V).

Transistors Q3 and Q4 are of opposite polarity so that a rail-to-rail voltage can be passed.
When the /CS1 voltage is low, Q3 will conduct. When the /CS1 voltage is high, Q4 con-
ducts. It takes time for the transistors to turn on, creating a propagation delay. This propa-
gation delay is typically very small, about 10 ns to 15 ns.

����

�����	

����B�"�

�

��

���

$��	

���
9�

$��	
�>���A
User’s Manual 145

146 eDisplay (OP7200)

APPENDIX C.
DEMONSTRATION BOARD CONNECTIONS

Appendix C shows how to connect the Demonstration Board to
the OP7200.

C.1 Connecting Demonstration Board
Before running sample programs based on the Demonstration Board, you will have to con-
nect the Demonstration Board from the OP7200 Tool Kit to the OP7200 board. Proceed as
follows.

1. Use the wires included in the OP7200 Tool Kit to connect header J1 on the Demonstra-
tion Board to the OP7200. The connections are shown in Figure C-1 for sample program
DIGIN.C, in Figure C-2 for sample program DIGOUT.C, and in Figure C-3 for the
OP7200\TCPIP TCP/IP sample programs.

2. Make sure that your OP7200 is connected to your PC and that the power supply is con-
nected to the OP7200 and plugged in as described in Chapter 2, “Getting Started.”
User’s Manual 147

Figure C-1. Connections Between OP7200 and Demonstration Board
for DIGIN.C Sample Program

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�
�
�

�
�
��

��
��
��

�
�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

��
�

�
��

�

�
�
�

��
�

�
�

��
�

���

���
���

�
��

�
��

�
�
���

�
�

����
��

�

��
��

��
�
��

�
�

�

�

���
���

���

�
�

�
�

�
��

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

�
��

�
�

�
��

�
�

�
�

�
�

��
�

��
 ��� ��� ���

�
�

!�

�
��

�
��

��

"��

��

�
�

���

�
 �

�
 �

�

�
 �

�
 �

�
 �

�

�

��
�

��

��
�

��

�

��
�

�����

��
�

��

�

��
�

��

��
�

��

�

��
��

��

��

��

���

�
��

�
�

�
��

��

�
��

���

����
����

����

�
��

�
�

�
��

�
��

�
��

���

���

��

���

� �

� �
���
���
���

���

�
��

��
�

��
�

�
��� �

��

��
�

���

����

�
��

���

�

��

�
�
���

��

#�

���

#��

����
�

�

�

��	�

�����

��

�

�
�

�
�

�
�

��

�
��

��

�
�

�

�
��

��

�

�

�

�

��

�

�

���

�
��

���

�
��

�
�

�
�

�
�

�
��

�
��

�
��

�
��

�
��

�
�
���

��
���

��
��

�

���
���

�
�
�

�
�
�

�
$
�
�

�
��

��
�
���

�
���

�
��

�
��

�
���

��

���

��
��

�

��

�

�

�
�

����

��� ���

���

�
�

�
�#�

���

��

�%&&'()

��������	
��
����
�	�����
������	������	��	��������
��������	
����
������
�

�

�

�����

�

�

�

�

����	 ����	

�

���������������

���������������

�
�

�
����� �

"
G
G
�
�

�
����� #�

�
�

�
����
 #�

�

�
����� #�

�
�

�
����� #�

�
�

�
����� �

�
����� ��$

�
����� �

>
�

�
����� �

>

�
����� �

>
�

�
����� �

>
�

�
����� �

�
�

�"GG��

A
�

��

A�
������=�

�����
=�

������=�

#���

#���

#��

#���

�>�

�>�

�>

�>�

�9��)#&
A�H
�+2'

A�H
�-
-8+:2

��;���
?*�"7�)#�
�1
��@

��>�
���
����
���

����
����

��9,�#)"	�,��>,")7
?*�"7�)�
�@

�
���
�>�
�>�
�>

�>�

�

�
��
������
�����
�����
����

�����

���
����
����
���

����
����

�
��

����=

�
��

����=�

�
��

��� �=

�
��

����=�

��	�
�����
148 eDisplay (OP7200)

Figure C-2. Connections Between OP7200 and Demonstration Board
for DIGOUT.C Sample Program

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�
�
�

�
�
��

��
��
��

�
�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

��
�

�
��

�

�
�
�

��
�

�
�

��
�

���

���
���

�
��

�
��

�
�
���

�
�

����
��

�

��
��

��
�
��

�
�

�

�

���
���

���

�
�

�
�

�
��

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

�
��

�
�

�
��

�
�

�
�

�
�

��
�

��
 ��� ��� ���

�
�

!�

�
��

�
��

��

"��

��

�
�

���

�
 �

�
 �

�

�
 �

�
 �

�
 �

�

�

��
�

��

��
�

��

�

��
�

�����

��
�

��

�

��
�

��

��
�

��

�

��
��

��

��

��

���

�
��

�
�

�
��

��

�
��

���

����
����

����

�
��

�
�

�
��

�
��

�
��

���

���

��

���

� �

� �
���
���
���

���

�
��

��
�

��
�

�
��� �

��

��
�

���

����

�
��

���

�

��

�
�
���

��

#�

���

#��

����
�

�

�

��	�

�����

��

�

�
�

�
�

�
�

��

�
��

��

�
�

�

�
��

��

�

�

�

�

��

�

�

���

�
��

���

�
��

�
�

�
�

�
�

�
��

�
��

�
��

�
��

�
��

�
�
���

��
���

��
��

�

���
���

�
�
�

�
�
�

�
$
�
�

�
��

��
�
���

�
���

�
��

�
��

�
���

��

���

��
��

�

��

�

�
�

����

��� ���

���

�
�

�
�#�

���

��

�%&&'()

��������	
��
����
�	�����
������	������	��	��������
��������	
����
������
�

�

�

�����

�

�

�

�

����	 ����	

�

���������������

���������������

�
�

�
����� �

"
G
G
�
�

�
����� #�

�
�

�
����� #�

�

�
����� #�

�
�

�
����� #�

�
�

�
����� �

�
����� ��$

�
����� �

>
�

�
����� �

>

�
����� �

>
�

�
����� �

>
�

�
����� �

�
�

�"GG��

A
�

��

A�
������=�

�����
=�

������=�

#���

#���

#��

#���

�>�

�>�

�>

�>�

�9��)#&
A�H
�+2'

A�H
�-
-8+:2

�

�"���
���

��>����
�"���
�"���
�"��

�"���

��;���
?*�"7�)#�
�1
��@

��9,�#)"	�,��>,")7
?*�"7�)�
�@

�
���

#���
#���
#��

#���

�
��
������

�
��I�
�

�
��
�
��
�
�
�
��

���
����

����
����
�����
�����

�
��

����=

�
��

����=�

�
��

��� �=

�
��

����=�

��	�
�����

�

User’s Manual 149

Figure C-3. Connections Between OP7200 and Demonstration Board
for TCP/IP Sample Programs

��
 ���

��
�

�

�

��
�

��

�

��
�	

�

�	
�

�

�	
�

�

�	

�

�	
�

�

�	
�

�

�	
�

�

�	
�

�

�
�

��
��

�
�
�

�
�
��

��
��
��

�
�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

��
�

�
��

�

�
�
�

��
�

�
�

��
�

���

���
���

�
��

�
��

�
�
���

�
�

����
��

�

��
��

��
�
��

�
�

�

�

���
���

���

�
�

�
�

�
��

��
��

��

�

��
��

���

��
�

�

��
�

�

��
�

�

��

�

��
�

�

��
�

�

��
�

�

��

�

�
�
�

�
��

�
�

�
��

�
�

�
�

�
�

��
�

��
 ��� ��� ���

�
�

!�

�
��

�
��

��

"��

��

�
�

���

�
 �

�
 �

�

�
 �

�
 �

�
 �

�

�

��
�

��

��
�

��

�

��
�

�����

��
�

��

�

��
�

��

��
�

��

�

��
��

��

��

��

���

�
��

�
�

�
��

��

�
��

���

����
����

����

�
��

�
�

�
��

�
��

�
��

���

���

��

���

� �

� �
���
���
���

���

�
��

��
�

��
�

�
��� �

��

��
�

���

����

�
��

���

�

��

�
�
���

��

#�

���

#��

����
�

�

�

��	�

�����

��

�

�
�

�
�

�
�

��

�
��

��

�
�

�

�
��

��

�

�

�

�

��

�

�

���

�
��

���

�
��

�
�

�
�

�
�

�
��

�
��

�
��

�
��

�
��

�
�
���

��
���

��
��

�

���
���

�
�
�

�
�
�

�
$
�
�

�
��

��
�
���

�
���

�
��

�
��

�
���

��

���

��
��

�

��

�
�

����

��� ���

���

�
�

�
�#�

���

��

�%&&'()

��������	
��
����
�	�����
������	������	��	��������
��������	
����
������
�

�

�

�����

�

�

�

�

����	 ����	

�

���������������

���������������

�
�

�
����
 �

"
G
G
�
�

�
����
 #�

�
�

�
����
 #�

�

�
����
 #�

�
�

�
����
 #�

�
�

�
����
 �

�
����
 ��$

�
����
 �

>
�

�
����
 �

>

�
����
 �

>
�

�
����
 �

>
�

�
����
 �

�
�

�"GG��

A
�

��

A�
������=�

�����
=�

������=�

#���

#���

#��

#���

�>�

�>�

�>

�>�

�9��)#&
A�H
�+2'

A�H
�-
-8+:2

��

���
���
���

�>�
�>�
�>

�>�

�

�
��

����=

�
��

����=�

�
��

��� �=

�
��

����=�

��	�
�����

��;���
?*�"7�)#�
�1
��@

��>�
=�>�
���
���
���
��

�"��
�"��
�"��
�"�

��9,�#)"	�,��>,")7
?*�"7�)�
�@

�
���
�>�
�>�
�>

�>�
#���
#���
#��

#���

�

�

�
��
�
��
����
����
���

����
�
��
�
��
�
��
�
�

���
����
����
���

����
����
����
����
�����
�����
150 eDisplay (OP7200)

APPENDIX D. RABBITNET

D.1 General RabbitNet Description
RabbitNet is a high-speed synchronous protocol developed by Rabbit to connect periph-
eral cards to a master and to allow them to communicate with each other.

D.1.1 RabbitNet Connections

All RabbitNet connections are made point to point. A RabbitNet master port can only be
connected directly to a peripheral card, and the number of peripheral cards is limited by
the number of available RabbitNet ports on the master.

Figure D-1. Connecting Peripheral Cards to a Master

 �
!&�

3�5&

 �
!&�
3�5&

�"((�	�����8
%�'),�),'�##,)

�������(�������
&����������
��

�������(�������
&����������
��
User’s Manual 151

Use a straight-through Ethernet cable to connect the master to slave peripheral cards, unless
you are using a device such as the OP7200 that could be used either as a master or a slave.
In this case you would use a crossover cable to connect an OP7200 that is being used as a
slave (note that Dynamic C does not support the operation of the OP7200 as a slave at the
present time).

Distances between a master unit and peripheral cards can be up to 10 m or 33 ft.

D.1.2 RabbitNet Peripheral Cards

• Digital I/O

24 inputs, 16 push/pull outputs, 4 channels of 10-bit A/D conversion with ranges of 0 to
10 V, 0 to 1 V, and -0.25 to +0.25 V. The following connectors are used:

Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

• A/D converter

8 channels of programmable-gain 12-bit A/D conversion, configurable as current mea-
surement and differential-input pairs. 2.5 V reference voltage is available on the connec-
tor. The following connectors are used:

Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

• D/A converter

8 channels of 0–10 V 12-bit D/A conversion. The following connectors are used:
Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

• Display/Keypad interface

allows you to connect your own keypad with up to 64 keys and one character liquid crys-
tal display from 1 × 8 to 4 × 40 characters with or without backlight using standard
1 × 16 or 2 × 8 connectors. The following connectors are used:

Signal = 0.1" headers or sockets
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

• Relay card
6 relays rated at 250 V AC, 1200 V·A or 100 V DC up to 240 W. The following connectors are
used:

Relay contacts = screw-terminal connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

Visit our Web site for up-to-date information about additional cards and features as they
become available. The Web site also has the latest revision of this user’s manual.
152 eDisplay (OP7200)

http://www.rabbit.com/

D.2 Physical Implementation
There are four signaling functions associated with a RabbitNet connection. From the mas-
ter’s point of view, the transmit function carries information and commands to the periph-
eral board. The receive function is used to read back information sent to the master by the
peripheral board. A clock is used to synchronize data going between the two devices at
high speed. The master is the source of this clock. A slave select (SS) function originates
at the master, and when detected by a peripheral board causes it to become selected and
respond to commands received from the master.

The signals themselves are differential RS-422, which are series-terminated at the source.
With this type of termination, the maximum frequency is limited by the round-trip delay
time of the cable. Although a peripheral board could theoretically be up to 45 m (150 ft)
from the master for a data rate of 1 MHz, Rabbit recommends a practical limit of 10 m
(33 ft).

Connections between peripheral boards and masters are done using standard 8-conductor
Ethernet cables. Masters and peripheral cards are equipped with RJ-45 8-pin female con-
nectors. The cables are nonpolarized in that they may be swapped end for end without
affecting any functionality.

D.2.1 Control and Routing

Control starts at the master when the master asserts the slave select signal (SS). Then it
simultaneously sends a serial command and clock. The first byte of a command contains
the address of the peripheral card if more than one peripheral card is connected.

A peripheral card assumes it is selected as soon as it receives the select signal. For direct
master-to-peripheral-card connections, this is as soon as the master asserts the select
signal. The connection is established once the select signal reaches the addressed slave. At
this point communication between the master and the selected peripheral card is estab-
lished, and data can flow in both directions simultaneously. The connection is maintained
so long as the master asserts the select signal.
User’s Manual 153

D.3 Function Calls
The function calls described in this section are used with all RabbitNet peripheral boards,
and are available in the RNET.LIB library in the Dynamic C RABBITNET folder.

If you are planning to use any of the RS-232 serial ports and the RabbitNet port on the
OP7200, initialize the serial port(s) before you initialize the RabbitNet port. The follow-
ing sample code illustrates this sequence.

// Initialize Serial Port C, set baud rate to 19200
serCopen(19200);
serCwrFlush();
serCrdFlush();

// Initialize Serial Port D, set baud rate to 19200
serDopen(19200);
serDwrFlush();
serDrdFlush();

// Set serial mode...must be done after serXopen function(s)
and before Rabbitnet initialization
serMode(0);

// Initialize RabbitNet port
rn_init(RN_PORTS, 1);

Resets, initializes, or disables a specified RabbitNet port on the master single-board computer. During
initialization, the network is enumerated and relevant tables are filled in. If the port is already initialized,
calling this function forces a re-enumeration of all devices on that port.

Call this function first before using other RabbitNet functions.

PARAMETERS
portflag is a bit that represents a RabbitNet port on the master single-board computer (from 0 to the
maximum number of ports). A set bit requires a service. If portflag = 0x03, both RabbitNet ports 0
and 1 will need to be serviced.

servicetype enables or disables each RabbitNet port as set by the port flags.

0 = disable port
1 = enable port

RETURN VALUE
0

int rn_init(char portflag, char servicetype);
154 eDisplay (OP7200)

Returns an address index to device information from a given physical node address. This function will
check device information to determine that the peripheral board is connected to a master.

PARAMETER
pna is the physical node address, indicated as a byte.

7,6—Port number
5,4,3—Level 1 downstream port
2,1,0—Level 2 downstream port

RETURN VALUE
Pointer to device information. -1 indicates that the peripheral board either cannot be identified or is not
connected to the master.

SEE ALSO
rn_find

Locates the first active device that matches the search criteria.

PARAMETER
srch is the search criteria structure rn_search:

unsigned int flags; // status flags see MATCH macros below
unsigned int ports; // port bitmask
char productid; // product id
char productrev; // product rev
char coderev; // code rev
long serialnum; // serial number

Use a maximum of 3 macros for the search criteria:

RN_MATCH_PORT // match port bitmask
RN_MATCH_PNA // match physical node address
RN_MATCH_HANDLE // match instance (reg 3)
RN_MATCH_PRDID // match id/version (reg 1)
RN_MATCH_PRDREV // match product revision
RN_MATCH_CODEREV // match code revision
RN_MATCH_SN // match serial number

For example:

rn_search newdev;
newdev.flags = RN_MATCH_PORT|RN_MATCH_SN;
newdev.ports = 0x03; //search ports 0 and 1
newdev.serialnum = E3446C01L;
handle = rn_find(&newdev);

RETURN VALUE
Returns the handle of the first device matching the criteria. 0 indicates no such devices were found.

SEE ALSO
rn_device

int rn_device(char pna);

int rn_find(rn_search *srch);
User’s Manual 155

The peripheral board sends back the character the master sent. This function will check device information
to determine that the peripheral board is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

sendecho is the character to echo back.

recdata is a pointer to the return address of the character from the device.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
board is not connected to the master.

Writes a string to the specified device and register. Waits for results. This function will check device infor-
mation to determine that the peripheral board is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

regno is the command register number as designated by each device.

data is a pointer to the address of the string to write to the device.

datalen is the number of bytes to write (0–15).

NOTE: A data length of 0 will transmit the one-byte command register number.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
board is not connected to the master, and -2 means that the data length was greater than 15.

SEE ALSO
rn_read

int rn_echo(int handle, char sendecho,
char *recdata);

int rn_write(int handle, int regno, char *data,
int datalen);
156 eDisplay (OP7200)

Reads a string from the specified device and register. Waits for results. This function will check device
information to determine that the peripheral board is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

regno is the command register number as designated by each device.

recdata is a pointer to the address of the string to read from the device.

datalen is the number of bytes to read (0–15).

NOTE: A data length of 0 will transmit the one-byte command register number.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
board is not connected to the master, and -2 means that the data length was greater than 15.

SEE ALSO
rn_write

Sends a reset sequence to the specified peripheral board. The reset takes approximately 25 ms before the
peripheral board will once again execute the application. Allow 1.5 seconds after the reset has completed
before accessing the peripheral board. This function will check peripheral board information to deter-
mine that the peripheral board is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

resettype describes the type of reset.

0 = hard reset—equivalent to power-up. All logic is reset.
1 = soft reset—only the microprocessor logic is reset.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
board is not connected to the master.

int rn_read(int handle, int regno, char *recdata,
int datalen);

int rn_reset(int handle, int resettype);
User’s Manual 157

Sets software watchdog timeout period. Call this function prior to enabling the software watchdog timer.
This function will check device information to determine that the peripheral board is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

timeout is a timeout period from 0.025 to 6.375 seconds in increments of 0.025 seconds. Entering a
zero value will disable the software watchdog timer.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
board is not connected to the master.

Enables the hardware and/or software watchdog timers on a peripheral board. The software on the
peripheral board will keep the hardware watchdog timer updated, but will hard reset if the time expires.
The hardware watchdog cannot be disabled except by a hard reset on the peripheral board. The software
watchdog timer must be updated by software on the master. The peripheral board will soft reset if the
timeout set by rn_sw_wdt() expires. This function will check device information to determine that the
peripheral board is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

wdttype

0 enables both hardware and software watchdog timers
1 enables hardware watchdog timer
2 enables software watchdog timer

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
board is not connected to the master.

SEE ALSO
rn_hitwd, rn_sw_wdt

int rn_sw_wdt(int handle, float timeout);

int rn_enable_wdt(int handle, int wdttype);
158 eDisplay (OP7200)

Hits software watchdog. Set the timeout period and enable the software watchdog prior to using this
function. This function will check device information to determine that the peripheral board is connected
to a master.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

count is a pointer to return the present count of the software watchdog timer. The equivalent time left in
seconds can be determined from count × 0.025 seconds.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates the peripheral
board is not connected to the master.

SEE ALSO
rn_enable_wdt, rn_sw_wdt

Reads the status of which reset occurred and whether any watchdogs are enabled.

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

retdata is a pointer to the return address of the communication byte. A set bit indicates which error
occurred. This register is cleared when read.

7—HW reset has occurred
6—SW reset has occurred
5—HW watchdog enabled
4—SW watchdog enabled
3,2,1,0—Reserved

RETURN VALUE
The status byte from the previous command.

int rn_hitwd(int handle, char *count);

int rn_rst_status(int handle, char *retdata);
User’s Manual 159

PARAMETERS
handle is an address index to device information. Use rn_device() or rn_find() to establish the
handle.

retdata is a pointer to the return address of the communication byte. A set bit indicates which error
occurred. This register is cleared when read.

7—Data available and waiting to be processed MOSI (master out, slave in)
6—Write collision MISO (master in, slave out)
5—Overrun MOSI (master out, slave in)
4—Mode fault, device detected hardware fault
3—Data compare error detected by device
2,1,0—Reserved

RETURN VALUE
The status byte from the previous command.

D.3.1 Status Byte

Unless otherwise specified, functions returning a status byte will have the following format
for each designated bit.

int rn_comm_status(int handle, char *retdata);

7 6 5 4 3 2 1 0

× ×

00 = Reserved
01 = Ready
02 = Busy
03 = Device not connected

×
0 = Device
1 = Hub

× Reserved for devices

× Reserved for devices

× Reserved for devices

×
0 = Last command accepted
1 = Last command unexecuted

×
0 = Not expired
1 = HW or SW watchdog timer

expired*

* Use the function rn_rst_status() to determine which timer expired.
160 eDisplay (OP7200)

INDEX

A
A/D converter 24

4–20 mA current measure-
ments 27

analog reference voltage
................................. 31, 32

bipolar voltages 27
calibration constants

board serial number 56
function calls

anaIn 65
anaInCalib 66
anaInEERd 71
anaInEEwR 73
anaInmAmps 70
anaInVolts 68

negative voltages 25
single-ended measure-

ments 25
analog inputs See A/D converter

B
battery connections 141

battery tab 15
board initialization

function calls 58
brdInit 58

board serial number 56

C
CE compliance 6

design guidelines 7
chip select circuit 145
connections

Ethernet cable 113

D
Demonstration Board

hookup instructions 147
digital I/O sample programs

................................... 148

demonstration program 11
digital I/O

function calls
digIn 61
digOut 59

SMODE0 38
SMODE1 38

digital inputs 20
digital outputs 21

pullup/pulldown options ... 22
tristate 22

dimensions
OP7200 128

Dynamic C 4, 48
add-on modules 4, 49
changing programming baud

rate in BIOS 13
debugging features 48
downloading updates 50
installation 13
sample programs 52
standard features 48

debugging 48
starting 13
telephone-based technical

support 4, 49
upgrades and patches 49
USB port settings 13

E
electrostatic precautions 121
EMI

spectrum spreader feature . 45
Ethernet cables 113
Ethernet connections 113

steps 113
Ethernet port 37

handling EMI and noise 37
pinout 37

F
features 1
flash memory

liefetime write cycles 47
using second 256K flash

memory 47
flash memory bank select 39

G
grounding 121

bezel 121
GND vs. protective ground

..................................... 121
metal casing 121

H
headers

JP1 35

I
I/O address assignments 137
installation guidelines 122
introduction 1
IP addresses

how to set 115
how to set PC IP address 116

J
jumper configurations 132

digital inputs 132, 133
JP1 (RS-485 bias and termina-

tion resistors) 35, 134
JP2 (configure IN16–IN23 as

digital inputs or outputs) ...
132

jumper locations 132
User’s Manual 161

K
keypad

function calls
keyConfig96
keyGet97
keyInit96
keypadDef98
keyProcess97
keyScan98

L
LCD

function calls
glBlankScreen79
glBlock81
glBuffUnlock78
glFillCircle83
glFillPolygon82
glFillVPolygon82
glFontCharAddr85
glGetBrushType80
glGetPfStep84
glHScroll89
glInit78
glLeft188
glMenu76
glMenuClear77
glMenuInit75
glPlotCircle83
glPlotDot80
glPlotLine80
glPlotPolygon81
glPlotVPolygon82
glPrintf84
glPutChar85
glPutFont85
glRefreshMenu76
glRight188
glSetPfStep84
glSwap78
glUp189
glVScroll90
glXFontInit83
glXGetBitmap91
glXGetFastmap92
glXPutBitmap90
glXPutFastmap91
TextBorder92
TextBorderInit92

TextCursorLocation87
TextGotoXY86
TextMaxChars93
TextPrintf88
TextPutChar87
TextWindowFrame86

LCD controller40, 50
handling applications devel-

oped for older chip50
identifying new part40

LCD screen control
function calls

glAnimation94
glBackLight94
glDispOnOff95
glRealtime94
glSetContrast95

M
memory39
models2

OP72002
OP72102

mounting and installation
.............................123, 124

O
OP7200

introduction1
overlay

cleaning instructions125

P
peripheral cards5

connection to master 151, 152
physical mounting130
pinout

Ethernet port37
OP7200 headers18

power management139
power supply3, 139

backup battery circuit143
battery backup141
chip select circuit145
connections10
switching voltage regulator ...

139
VRAM switch144

power-up
demonstration program11

programming
flash vs. RAM47
programming cable3
programming port38

programming cable3
connections12
PROG connector44

programming port38

R
Rabbit 2000

parallel ports135
RabbitNet5

Ethernet cables to connect
peripheral cards ...151, 152

function calls
rn_comm_status160
rn_device155
rn_echo156
rn_find155
rn_hitwd159
rn_init154
rn_read157
rn_reset157
rn_rst_status159
rn_write156

general description151
hardware configuration36
peripheral cards152
physical implementation .153
RabbitNet port36
use of Serial Port B36

RabbitNet port
function calls111

rn_sp_close111
rn_sp_disable112
rn_sp_enable112
rn_sp_info111

macros111
real-time clock

how to set15
reset10

hardware10
reset generator144

RS-485 network34
termination and bias resis-

tors35
162 eDisplay (OP7200)

S
sample programs 52

A/D converter
ADCAL_DIFF_2V.C 54
ADCAL_DIFF_GND.C 54
ADCAL_MA_CH.C 54
ADCAL_SE_ALL.C 54
ADCAL_SE_CH.C 54
ADRD_DIFF_2V.C 54
ADRD_DIFF_GND.C

............................... 30, 54
ADRD_MA_CH.C .. 30, 54
ADRD_SE_ALL.C 54
ADRD_SE_CH.C 54

BOARD_ID.C 52
calibration constants

GETCALIB.C 56
SAVECALIB.C 56

digital I/O
BUZZER.C 52
DIGBANKOUT.C 52
DIGIN.C 52, 147, 148
DIGOUT.C 52, 147, 149
LED.C 52
PWM.C 52

FUN.C 11, 52
graphic display

BUFFLOCK.C 55
CONTRAST.C 55
PRIMITIVES.C 55
SCROLLING.C 55
TEXT.C 55

how to set IP address 115
keypad

KP_16KEY.C 55
KP_ANALOG.C 55
KP_BASIC.C 55
KP_MENU.C 55

OP7200 features 14
PONG.C 14
power-up demonstration

program 11
real-time clock

RTC_TEST.C 15
SETRTCKB.C 15

serial communication
SIMPLE3WIRE.C 53
SIMPLE485MASTER.C 54
SIMPLE485SLAVE.C .. 54

TCP/IP 115, 147, 150
FLASH_XML.C 118
PINGME.C 117
SSI.C 118
TELNET.C 118

touchscreen
BTN_16KEY.C 55
BTN_BASICS.C 55
BTN_KEYBOARD.C ... 55
CAL_TOUCHSCREEN.C

..................................... 55
RD_TOUCHSCREEN.C

..................................... 55
TSCUST16KEY.LIB 55
TSCUSTKEYBOARD.LIB

..................................... 55
user block

USERBLOCK_CLEAR.C
..................................... 56

USERBLOCK_INFO.C 56
serial communication

flow control 64
function calls

ser485Rx 64
ser485Tx 64
serCflowcontrolOff 64
serCflowcontrolOn 64
serMode 64

programming port 38
RS-232 description 34
RS-485 network 34
RS-485 termination and bias

resistors 35
serial ports

Ethernet port 37
RabbitNet port 36

setup 10
power supply connections . 10
programming cable connec-

tions 12
software 4

libraries 57
displays 57
keypads 57
OP7200 57
OP72xx.LIB 57
PACKET.LIB 33, 63, 64
RabbitNet 57
RN_CFG_OP72.LIB 57
RNET.LIB 154
RS232.LIB 63, 64
touchscreens 57

macros
USE_2NDFLASH_CODE

..................................... 47
using second 256K flash

memory 47
specifications

header footprint 130

OP7200
dimensions 128
electrical 129
temperature 129

physical mounting 130
relative pin 1 locations 130

spectrum spreader 45
subsystems 17

T
TCP/IP connections 113

10Base-T Ethernet card .. 113
additional resources 119
Ethernet hub 113
steps 113

Tool Kit 3
AC adapter 3
DC power supply 3
Dynamic C software 3
programming cable 3
software 3
User’s Manual 3
wire assembly 3

touchscreen
function calls

btnAttributes 106
btnClear 105
btnClearLevel 105
btnClearRegion 103
btnCreateBitmap 102
btnCreateText 101
btnDisplay 104
btnDisplayLevel 105
btnDisplayText 103
btnGet 107
btnInit 99
btnMsgBox 104
btnRecall 100
btnSearchXY 106
btnStore 99
btnVerifyXY 107
TsActive 109
TsCalib 108
TsCalibEERd 108
TsCalibEEWr 108
TsScanState 109
TsXYBuffer 110
TsXYvector 109

touchscreen operation 31

U
USB/serial port converter 12

Dynamic C settings 13
User’s Manual 163

164 eDisplay (OP7200)

SCHEMATICS

090-0120 RCM2200 Schematic
www.rabbit.com/documentation/schemat/090-0120.pdf

090-0138 OP7200 Schematic
www.rabbit.com/documentation/schemat/090-0138.pdf

090-0042 Demonstration Board Schematic
www.rabbit.com/documentation/schemat/090-0042.pdf

090-0128 Programming Cable Schematic
www.rabbit.com/documentation/schemat/090-0128.pdf

You may use the URL information provided above to access the latest schematics directly.
User’s Manual 165

http://www.rabbit.com/documentation/schemat/090-0138.pdf
http://www.rabbit.com/documentation/schemat/090-0042.pdf
http://www.rabbit.com/documentation/schemat/090-0128.pdf
http://www.rabbit.com/documentation/schemat/090-0120.pdf

	eDisplay (OP7200) User's Manual
	Table of Contents
	1. Introduction
	1.1 Features
	1.2 Development and Evaluation Tools
	1.2.1 Tool Kit
	1.2.2 Software

	1.3 RabbitNet Peripheral Cards
	1.4 CE Compliance
	1.4.1 Design Guidelines
	1.4.2 Interfacing the OP7200 to Other Devices

	2. Getting Started
	2.1 Power Supply Connections
	2.2 Demonstration Program on Power-Up
	2.3 Programming Cable Connections
	2.4 Installing Dynamic C
	2.5 Starting Dynamic C
	2.6 PONG.C
	2.7 Where Do I Go From Here?
	2.8 Remove Battery Tab

	3. Subsystems
	3.1 OP7200 Pinouts
	3.1.1 Headers and Screw Terminals

	3.2 Indicators
	3.2.1 LEDs
	3.2.2 Buzzer

	3.3 Digital I/O
	3.3.1 Digital Inputs
	3.3.2 Digital Outputs

	3.4 Analog Features (OP7200 only)
	3.4.1 A/D Converter Inputs
	3.4.2 Analog Current Measurements
	3.4.3 Calibrating the A/D Converter Chip
	3.4.4 Touchscreen
	3.4.5 Analog Supply Voltage
	3.4.6 A/D Converter Reference Voltage (+V)

	3.5 Serial Communication
	3.5.1 RS-232
	3.5.2 RS-485
	3.5.3 RabbitNet Port
	3.5.4 Ethernet Port
	3.5.5 Programming Port

	3.6 Memory
	3.6.1 SRAM
	3.6.2 Flash Memory

	3.7 Liquid Crystal Display Controller
	3.8 Keypad
	3.9 OP7200 CPLD
	3.10 Programming Cable
	3.10.1 Changing Between Program Mode and Run Mode

	3.11 Other Hardware
	3.11.1 Spectrum Spreader

	4. Software
	4.1 Running Dynamic C
	4.1.1 Upgrading Dynamic C
	4.1.2 Accessing and Downloading Dynamic C Libraries

	4.2 Font and Bitmap Converter
	4.3 Sample Programs
	4.3.1 General OP7200 Sample Programs
	4.3.2 Digital I/O
	4.3.3 Serial Communication
	4.3.4 A/D Converter Inputs
	4.3.5 Graphic Display
	4.3.6 Keypad
	4.3.7 Touchscreen (OP7200 only)
	4.3.8 Using System Information from the RabbitCore Module

	4.4 OP7200 Libraries
	4.5 OP7200 Function APIs
	4.5.1 Board Initialization
	4.5.2 Digital I/O
	4.5.3 LEDs
	4.5.4 Serial Communication
	4.5.5 A/D Converter Inputs (OP7200 only)
	4.5.6 Graphic Display Functions
	4.5.7 Keypad Functions

	4.6 Touchscreen (OP7200 only)
	4.7 RabbitNet Port

	5. Using the TCP/IP Features
	5.1 TCP/IP Connections
	5.2 TCP/IP Sample Programs
	5.2.1 How to Set IP Addresses in the Sample Programs
	5.2.2 How to Set Up Your Computer for Direct Connect
	5.2.3 Run the PINGME.C Demo
	5.2.4 Running More Demo Programs With a Direct Connection

	5.3 Where Do I Go From Here?

	6. Installation, Mounting, and Care Guidelines
	6.1 Grounding
	6.2 Installation Guidelines
	6.3 Mounting Instructions
	6.3.1 Bezel-Mount Installation

	6.4 Care Guidelines

	Appendix A. Specifications
	A.1 Electrical and Mechanical Specifications
	A.1.1 Physical Mounting

	A.2 Conformal Coating
	A.3 Jumper Configurations
	A.4 Use of Rabbit 2000 Parallel Ports
	A.5 I/O Address Assignments

	Appendix B. Power Supply
	B.1 Power Supplies
	B.1.1 Power for Analog Circuits
	B.1.2 Grounds
	B.1.3 RabbitNet Power Supplies

	B.2 Batteries and External Battery Connections
	B.2.1 Replacing the Backup Battery
	B.2.2 External Battery
	B.2.3 Battery-Backup Circuit
	B.2.4 Power to VRAM Switch
	B.2.5 Reset Generator

	B.3 Chip Select Circuit

	Appendix C. Demonstration Board Connections
	C.1 Connecting Demonstration Board

	Appendix D. RabbitNet
	D.1 General RabbitNet Description
	D.1.1 RabbitNet Connections
	D.1.2 RabbitNet Peripheral Cards

	D.2 Physical Implementation
	D.2.1 Control and Routing

	D.3 Function Calls
	D.3.1 Status Byte

	Index
	Schematics

