RABBI T~

=

RABBIT 3000™
ATS6CS5
A1D2583

0209

Rabbit 3000® Microprocessor

User’s Manual
019-0108 + 030516—K

Rabbit 3000 Microprocessor User’s Manual

Part Number 019-0108 « 030516-K « Printed in U.S.A.
©2002-2003 Rabhit Semiconductor < All rights reserved.

Rabhit Semiconductor reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabhit and Rabbit 3000 are registered trademarks of Rabbit Semiconductor.
Dynamic C isaregistered trademark of Z-World, Inc.

Rabbit Semiconductor

2932 Spafford Street
Davis, Cdlifornia 95616-6800
USA

Telephone: (530) 757-8400
Fax: (530) 757-8402

www.rabbitsemiconductor.com

Rabbit 3000 Microprocessor

TABLE OF CONTENTS

Chapter 1. Introduction 1
1.1 Features and Specifications Rabbit 3000...........cccveirieiirieiirieiree e st et 2
1.2 Summary of Rabbit 3000 AGVANTAJES.........ciirereriererierrie ettt st st sttt 6
1.3 Differences Rabbit 3000 vs. Rabbit 2000...........cccerririirerisierie s s e see e 7

Chapter 2. Rabbit 3000 Design Features 9
2.1 The Rabbit 8-bit Processor vS. Other PrOCESSOIS.........coierrieririeririe e 10
2.2 Overview of On-Chip PeripheralS and FEAIUIES........c..coveveeeiere s see e se e re e sre e e 11

2.2.1 5V TOIEANT INPULS ..uveeeeececeeie ettt sr et sre e e se s te e see e e e enae e eneesesneenesrenensneas 11
2.2.2 SN POITS ...viveiiieiiietiiee ettt ettt ettt b et R et Re e ae st R et bt rent e ntenen 11
A TS V£ (= 10 1 o S 12
2.2.4 32.768 KHZ OSCIHIGOr INPULccveieeeieeereceesteees s e e se e e ssesneste s sressenaenesseenens 12
ARSI - 1= N TSRS 13
2.2.8 SIAVE POIT ..ottt ettt bt bR et n s 14
2.2.7 AUXIIAIY O BUSoocviieiieiee et ettt sttt tes e e e s e ssessesaestetesaenaeneensenesneesessensnsnnns 15
A T 1111 £ TSSO SVRSRTRPRPRN 15
2.2.9 Input Capture ChanNELSoici et s e e neene e e e enesreneenne s 16
2.2.10 Quadrature ENCOUEr INPULSeeiviieriresieseiieesieseeseeresese s e saeseesteeeseeeeeense e eseeessessessessesnnns 17
2.2.11 Pulse Width MOdulation OULPULScceeerireriirienieieseneeesseseseese e s sieseeseeseesesessesneseeseesaeas 17
2.2.12 Spread SPECLIUM ClOCKcoviiiieiiriirieiesiee ettt sb b stenes 18
2.2.13 Separate Core and [/O POWES PINSccuoiiriiiriiieeeetiee et seese s seenes 18
2.3 DESION SEANUAIASuevereeieeieetere ettt eh et a bt ae bt e b et e be e e s b et e ee e e et ebe e e s aeebenbenee e 18
2.3.1 Programiming POITo.ooiiiieeene sttt bbbt se et e et e bbb nne 18
2.3.2 StANAArd BIOSooiiiiiiiisisererr ettt bbbt tenen 19
2.4 Dynamic C Support for the RaDDITcccvveeiieecicece e sne 19

Chapter 3. Details on Rabbit Microprocessor Features 21
3.1 PrOCESSON REGISLES ...ttt ettt sttt st ebe et ae b et ae b et e sbe s e s be e e see st et e neeneeae e e saeebesbenbeseen 21
R VL= aaTe VALY, = o] o 1 oo USSR 23

3.2.1 EXIENAE COUE SPACE ... eeuveeeeeeeieeieeeeie ettt sttt sttt ettt b e s b b s be st e st e e et e e et et ebesbesbesae 26
3.2.2 Separate | and D Space - Extending Data MEemMOrYccccceveeereeniene e seeseeeseseeresresee e 27
3.2.3 Using the Stack Segment for Data SOFagEcoccoueriererierieireeerese et 29
3.2.4 Practical Memory CONSIAEILIONScccoureeireririe st sbe st e et see e eneseene e 30
3.3 INSLIUCLION SEL OULIINE ..ottt et st sbe et see e 32
3.3.1 Load Immediate Datato a REGISIESccevvieeeireceee ettt esneenens 33
3.3.2 Load or Store Data from or t0 a Constant AdAreSScoererereriiniene e 33
3.3.3 Load or Store Data Using an INdexX REQISLENccuoiiieirerirererie e 34
3.3.4 ReQISEr-t0-REGISIEN IMOVEooeieeeiesii e see s e et st e ettt e e e nae e ene e e sneenesreneesnens 35
3.3.5 REQISIEr EXCRANGES ...eoiiiiiiiteee ettt sttt ettt ae e sbesbe b nae s 35
3.3.6 Push and POP INSLIUCTIONSccoiueriiiieiiiierie et s se e e e se e bbb sn s 36
3.3.7 16-bit Arithmetic and LOGIiCal OPSvecvevvieeirieririe e sese e seesesee s et see e seeesseeeeseenens 36
3.3.8 INPUL/OULPUL TNSEFUCLIONSeiieuirtirieeeeetesie sttt b e se st e e ne e et sae e e s sbesbesbesne 39
3.4 How to Do Itin Assembly Language—Tips and TrCKS ... 40
B4 L ZETO HL N4 ClLOCKS ...ttt ettt sttt e s et e e s s ete e e e eba e s ssa e s s sabaessabeessasensssraesssnbeesanes 40
3.4.2 Exchanges Not Directly Implementedccooeoeieiceere e 40
3.4.3 Manipulation of BoOI€an Variables ... e 40
3.4.4 CompPariSONS OF INTEJENSoiueiiieieieie ettt sttt st e et e et ae e e ae b sbenbesae 41
3.4.5 Atomic Movesfrom Memory t0 1/O SPACEcccvveriereerireeireeere et sae e se e ere e snens 43

User’s Manual

3.5 INEEITUPL SITUCKUIE ...ttt b e et eae e besae e se e s aeeneesae e e e seeeneenneeaeenneanis 44

BN R g 0= 1 0oL o) YRR a4
3.5.2 Multiple External Interrupting DEVICEScoeiirierieieieeeeieeie ettt 46
3.5.3 Privileged Instructions, Critical Sections and SEMapPhOresccovvvveveveserenee e 46
3.5.4 CritICAl SECLIONS ..ottt ettt et e e s e aa e b e s s bt e s ssaeessabeesebesssbaessabesssabesssnneessbeneaas 47
3.5.5 Semaphores USing Bit B,(HL) ..o et s 47

3.5.6 Computed Long CallS and JUMPSccvreerririnerreiesresreee e nene s 48
Chapter 4. Rabbit Capabilities 49
4.1 Precisely Timed OULPUL PUISESccvcieieeeiie sttt e e st se e e ene e sne e nsenes 49
4.1.1 Pulse Width Modulation to Reduce Rel@y POWEYccccoovviiiinereninereseeereseeee e 50

4.2 Open-Drain Outputs Used fOr KEY SCaAN........coeiereeireerire s se s e e see e se s sre e sre st naessenes 51
I I @] [0 =T oo TSRS 52
4.4 TRE SIBVE PON ...ttt e e n et ren s 53
4.4.1 Slave Rabbit ASA ProtoCOl UART ..o s 54
Chapter 5. Pin Assignments and Functions 55
LN I 1 =o€ [S 56
Lo I 10 To T TSSO P 56
5.1.2 Mechanical Dimensions and Land Pattern ..o 57

5.2 Ball GIid Array PaCKBgEcoeieireie ettt sttt st sb et sbe e nnas 59
L0t R 1 001U OOV OTRTRPRR 59
5.2.2 Mechanical Dimensions and Land Pattern ... 60
5.2.3 SOIdering GUIEIINEScooreiiireiiriee e 62

5.3 Rabbit PiN DESCITPLIONS.......ciueriiieeiisierie sttt b et bbb e e st e e e et e ae et saeseesbeseeseeneas 64
Lo 10 L3N Yo 11 o PR RUR 66
5.5 Description of Pinswith Alternate FUNCLIONScoiiiiinieie et 67
X DO @47 = o = 1= 1 o= SRR 69
5.7 1/0O Buffer Sourcing and SINKiNg LiMit.........ccocioiiiiininieee e 70
Chapter 6. Rabbit Internal I/O Registers 71
6.1 Default Valuesfor all the Peripheral Control REQISLEIS.......cccvevuieeeririe e se e 73
Chapter 7. Miscellaneous Functions 79
7.1 ProcessOr IAENEIFICAION.........cue ettt ettt b e bbb see e enas 79
7.2 Rabbit OsCillators @nd CIOCKS........ccoeiiieere ettt s eb e b 80
7.3 CIOCK DOUDIES ...t ettt e h bbbt b se e s b et s ee e et et et saeebesbesbeseennan 83
7.4 ClOCK SPECLIUM SPIEAMEYeiuiitiitiiterie ettt ettt b et bbbt e e e et e e et ebe et saesbesbesbeseennas 86
7.5 Chip Select OptionNS fOr LOW POWETcoiiiiiiieie et sre b e e seas 87
7.6 Output Pins CLK, STATUS, /WDTOUT, /BUFENcccoooiiiiininnieeereieie e s 0
7.7 Time/Date Clock (Real-Time ClIOCK)coiiuiieeiiieeeeeetee et 91
EA T A= (e o (oo B T 0= OSSR 93
7.9 SYSIEM RESEL ...ttt bbbt bbb bbbt st e bbb bt e ek b e e b bt e e 95
7.10 Rabbit INLEITUPL SETUCTUFE. ..ottt bbb ettt sr et see e nnas 97
7.10.1 EXTErNEAl INTEITUDLS ..ottt sttt st e se e et b et e b et e sae e e benes 99
7.10.2 Interrupt Vectors: INTO - EIR,00h/INTL - EIR,08Nccceierieieie e 100

7.11 BOOUSIIAD OPEIELIONcuereeriesesrereeeere et r e s s s s e e s e reren et rer e s nnenene s 101
7.12 PUISE WIdth MOQUIBEOLcevreiiereietce e 103
80 o UL = o[=TS 105
7.14 QUAIAEUrE DECOTEYcveeveieeceee sttt ettt ettt et te et e s ae e saeebesbe e besbeestesbeenbeeaeanbesteensesaeeseesanan 111
Chapter 8. Memory Interface and Mapping 115
8.1 Interface for Static MemMOIY ChiS.......c oottt et s be e sbe b e e 115
8.2 MemOory MappinNg OVEIVIEWccceiuereiuieeirieseesieeeneeeeeesesesaesbesbesaeseesbeseessenseseeseenessesnesnessessesseseens 117
8.3 MemMOry-MapPing UNITcoiiiiiiitirie sttt see bt e et e e s e e et se e sbe e e saeebesbeseeseens 117

Rabbit 3000 Microprocessor

8.4 MemOory INLEIfaCe UNITcoo ittt bbb 119

8.5 Memory Bank Control REQISLEIS.......ouii ettt ettt e e e e ene e eaas 120
8.5.1 Optional A16, A19 Inversions by Segment (/CS1 Enable)ccccooeiiiiieniiiinine e 121

8.6 Allocation of Extended Code and Data..........cccocreriiuiiiiiieenieie e 123
8.7 Instruction and Data SPaCE SUPPOIT......ccceuererueririeriereiree e see et et sbe st e sbes e see s e sbe e e ssne s e saesaesees 124
8.8 How the Compiler COmMPIlESTO MEMOIYcccoiiiiiiiriere ettt s 127
Chapter 9. Parallel Ports 129
9.1 Par@lle] POt A ...ttt ns 130
9.2 Paralle] PO Bececeeresecicieseseni ettt 131
9.3 Par@lle] PO C......oceiirireeietie ettt 132
9.4 PaArallE] PO Dovceiierireeieiise sttt 133
9.5 PaAralle] PO E ..ottt 137
9.6 Paralle]l PO ...t 140
9.6.1 Using Parallel Port A and Parallel POrt Fooeoeiieece et 141

9.7 PaAr@lle] POt G......oceiieiieiiieie sttt bbbt st eb e s bbbt s bt ee bbb e e b 143
Chapter 10. I/O Bank Control Registers 145
Chapter 11. Timers 147
TLLL THMIEE Al ettt b et b ket b bbb s £ b b e b st s H b bRt eE A e b bt e £ e e b b eae A b b e et b b bt et b e 148
1121 Timer A 1/O REGISIES ..ttt sttt e et b e ene e 149
11.1.2 Practical USE of TIMEN A ..o s 151

N T 407 TSPV TTRTTN 153
11.2.1 USING TIMEN B ..ot en e 155
Chapter 12. Rabbit Serial Ports 157
12.1 Serial Port REQISIEr LAYOUL........cviiieieriesesieseieseeeeseeeeseesestesessessestesreseessessessensesseeensnsesssssessenses 160
12.2 Serial POrt REQISIEIS. ..o vieeieeeietirise sttt s se e e e st s e ese b e stesreneese e e nseneeeeneensnneenennnenenres 162
IS o (= 1 0 o) 175
12.4 Transmit Serial Data TiMINGcooveereierireeereeeee s se s e e s sseesessessesaesresbesaeseensensesesnnssesses 176
12.5 Receive Serial Data TimMiNGccoereeeerereeesesieseseeseseeseeseesseseesessessessessessessessessensessesessesesssssessesses 177
12.6 ClOCKEA SENT@Al POIS......ccereeiereiresiereiee st 178
12.7 Clocked Serial TiMINGcoiceiereeerieecieres s se s e see s se e e e ere s e s sesreseesteseesteneeneeneensnsennesnnesenees 181
12.7.1 Clocked Serial Timing With Internal ClOCKccovveeeveiieeeeere e 181
12.7.2 Clocked Serial Timing with EXternal ClOCK ..o 181

12.8 Synchronous Communications 0N POMS E and ..o 183
12.9 Serial Port SOftWare SUGQESIIONS........coieririiririe ettt st s e et eae e seas 188
12.9.1 Controlling an RS-485 Driver and RECEIVEScoi i e 189
12.9.2 Transmitting DUMMY CRaraCErScevirererreiireerete e 189
12.9.3 Transmitting and DEteCting @aBreakccccvveviii e 190
12.9.4 Using A Serial Port to Generate a Periodic INTErTUPLccoereiirene e 190
12.9.5 Extra Stop Bits, Sending Parity, 9th Bit Communication SChemescccccovveeeevereseneene 190
12.9.6 Parity, Extra Stop Bitswith 7-Data-Bit Characterscc.cccveneee. ...191
12.9.7 Parity, Extra Stop Bits with 8-Data-Bit Characters191
12.9.8 Supporting 9th Bit Communication ProtOCOISccccceeevereceeecere e 192
12.9.9 Rabbit-Only Master/SIave ProtoColcccoveiornnreiireeenesreeese e 192
12.9.10 Data Framing/MOADUSoooooiiiriiiiiiiere et et 192
Chapter 13. Rabbit Slave Port 195
13.1 Hardware Design of Slave Port INterCONNECIONcovireireriirenerie e 200
13.2 SIAVE POIt REGISIES ... ettt ettt ettt b e bbb e e et e e e seese et st et ebe e e sneeaeeeas 200
13.3 Applications and Communications ProtocolS for SIQVES...........ccie e 202
SIS b= Yoy A o] o] Yo (o] S OSSR 202
13.3.2 Master-Slave Messaging ProtOCOl ..o 203

User’s Manual

Chapter 14. Rabbit 3000 Clocks

14.1 LOW-POWEr DESIQN...c.iiuiiiieiieienie et

Chapter 15. EMI Control

15.1 Power Supply Connections and Board Layoutcccce.ee...
15.2 Using the Clock Spectrum Spreadercceevvvvivveveneveesennns

Chapter 16. AC Timing Specifications

16.1 MemOory ACCESS TIMEccuiiueieeieieeeeeee e
16.2 1/O ACCESS TIME....cueiuiriirieie sttt ebe e
16.3 Further Discussion of Busand Clock Timing.........c.cceceveenuenee.
16.4 Maximum Clock SPeeds..........coeireenririneee e
16.5 Power and Current CoNSUMPLIONcccceeereerieniererieneenie e
16.6 Current Consumption Mechanisms.........cccccvevvvverencciereeinennns
16.7 Sleepy Mode Current ConSUMPLiON........cccvvererereereereereereenens
16.8 Memory Current CONSUMPLIONcccervereriereriereeseereeaeseeeenens
16.9 Battery-Backed Clock Current Consumptioncceeeveveenee.
16.10 Reduced-Power External Main Oscillator..........ccccvvevecenne.

Chapter 17. Rabbit BIOS and Virtual Driver

17.1 ThEBIOS.....co ittt
17.1.1 BIOS SEIVICES ...oovcviuiiirieieniesieisieseresise e et sesessesssene s
17.1.2 BIOS ASSUMPLIONS ...oovveeeeereierseesieseeseeseeseeseseeeesseseeseenes

17.2 Virtual DEVES ...ttt
17.2.1 Periodic INTEITUPLoeiiieieee e
17.2.2 Watchdog Timer SUPPOITccveveeeerereereneene e

Chapter 18. Other Rabbit Software

18.1 Power Management SUPPOITccoeeeieeerenieeneenee e
18.2 Reading and Writing 1/O REQISIENS.......coovereiine e
18.2.1 Using Assembly Languagecccceverereereeneeenenieeeeeees
18.2.2 Using Library FUNCLIONScccccevvveriereeee e
18.3 Shadow REQISLES.....civiceeieeeeree et eenens

18.3.1 Updating Shadow ReQIStErScccceveveereeererecrsevee s
18.3.2 Interrupt While Updating Registersccccoovveeneneniennn.

18.3.3 Write-only Registers Without Shadow Registers

18.4 Timer and ClOCK USQE.......cccvrveiereireeie et

Chapter 19. Rabbit Instructions

19.1 Load Immediate Data..........ccveeeeeiveeireeecieecieecreecree e
19.2 Load & Storeto Immediate AAress.........covveveeceeeieeccieenenns
19.3 8-hit Indexed Load and StOre.........cccveeeeeveeviveccieesee e
19.4 16-bit Indexed Loads and SLOres.........ccovveeveeiveeceeeieeeceeenenns
19.5 16-bit Load and Store 20-bit Address.........cococveeeeevieeccieeneenns
19.6 Register to Register MOVES........ccoereeiiererie e
19.7 EXchange INSLIUCHIONS........c.cooiueeireiesiese e
19.8 Stack Manipulation INSLUCLIONS.........coeveriereeieeeeeeseeee e
19.9 16-bit Arithmetic and Logical OpS........ccoereenrenienenenesie e
19.10 8-bit Arithmetic and Logical OpS.......ccevveerereeneenieieeseeeeeees
19.11 8-bit Bit Set, Reset and TeSt.......ccveveevveeeecriciece e,
19.12 8-bit Increment and Decrement...........ccoeveeiveeceeeceeeceeeeenns
19.13 8-bit Fast A Register Operations............ccoereeeeierenenieneseenens
19.14 8-bit Shiftsand ROtALES.........cccueevveiieeeceeciecteecee e
19.15 INStruCtion PrefiXES ..ccuue ettt

Rabbit 3000 Microprocessor

19.16 BIOCK MOVE INSIFUCLIONS......ccecitiiiieieieie ettt sttt s
19.17 Control Instructions - JUMPS and CallS...........cceoiriiinine e e
19.18 MisCallan@ouS INSLIUCTIONSc..oiueieieeeeeeieeie ettt e ae e s b e s see e s
19.19 Privileged INSITUCLIONS.......ceiiieeeieieee ettt st sb e eaeeas

Chapter 20. Differences Rabbit vs. Z80/Z2180 Instructions

Chapter 21. Instructions in Alphabetical Order With Binary Encoding

Appendix A.

A.1 The Rabbit Programming POrtcccceieiiviriierreceeeesesesee e s se e ne e e sre s
A.2 Use of the Programming Port as a Diagnostic/Setup POrtcccceveveeeresieeiesese e seene s
A.3 Alternate Programming POItccoeieieeiieiniece st s
A.4 Suggested Rabbit Crystal FrEQUENCIES........cuerveeeireiiresere e s seste e eee s e e sseene s

Notice to Users

Index

User’s Manual

Rabbit 3000 Microprocessor

1. INTRODUCTION

Rabbit Semiconductor was formed expressly to design a a better microprocessor for usein
small and medium-scale controllers. The first microprocessor was the Rabbit 2000. The
second microprocessor, now available, is the Rabbit 3000. Rabbit microprocessor design-
ers have had years of experience using Z80, Z180, and HD64180 microprocessorsin small
controllers. The Rabbit shares a similar architecture and a high degree of compatibility
with these microprocessors, but it is avast improvement.

The Rabbit 3000 has been designed in close cooperation with Z-World, Inc., along-time
manufacturer of low-cost single-board computers. Z-World's products are supported by an
innovative C-language development system (Dynamic C). Z-World is providing the soft-
ware development tools for the Rabbit 3000.

The Rabbit 3000 is easy to use. Hardware and software interfaces are as uncluttered and
are as foolproof as possible. The Rabbit has outstanding computation speed for a micro-
processor with an 8-bit bus. Thisis because the Z80-derived instruction set is very com-
pact, and the timing of the memory interface allows higher clock speeds for a given
memory speed.

Microprocessor hardware and software development is easy for Rabbit users. In-circuit
emulators are not needed and will not be missed by the Rabbit developer. Software devel -
opment is accomplished by connecting asimpleinterface cable from aPC serial port to the
Rabbit-based target system or by performing software devel opment and debugging over a
network or the Internet using interfaces and tools provided by Rabbit Semiconductor.

User’s Manual 1

1.1 Features and Specifications Rabbit 3000

» 128-pin LQFP package. Operating voltage 1.8 V to 3.6 V. Clock speed to 54+ MHz. All
specifications are given for both industrial and commercial temperature and voltage
ranges. Rabbit microprocessors are low-cost.

* Industrial specificationsare for 3.3V +10% and a temperature range from -40°C to
+85°C. Modified commercial specifications are for a voltage variation of 5% and a
temperature range from -40°C to 70°C.

» 1-megabyte code-data space alows C programs with 50,000+ lines of code. The
extended Z80-style instruction set is C-friendly, with short and fast opcodes for the
most important C operations.

e Four levels of interrupt priority make afast interrupt response practical for critical
applications. The maximum time to the first instruction of an interrupt routine is about
0.5 psat aclock speed of 50 MHz.

» Accessto I/O devicesis accomplished by using memory accessinstructionswith an 1/0
prefix. Accessto 1/O devicesisthus faster and easier compared to processors with a
distinct and narrow 1/0 instruction set. As an option the auxiliary 1/0 bus can be
enabled to use separate pins for address and data, allowing the I/O bus to have a greater
physical extent with less EMI and less conflict with the requirements of the fast mem-
ory bus.(Further described below.)

e Hardware design issimple. Up to six static memory chips (such as RAM and flash
memory) connect directly to the microprocessor with no glue logic. A memory-access
time of 55 ns suffices to support up to a 30 MHz clock with no wait states; with a 30 ns
memory-access time, a clock speed of up to 50 MHz is possible with no wait states.
Most 1/0 devices may be connected without glue logic.

The memory read cycle istwo clocks long. The write cycle is 3 clockslong. A clean
memory and 1/O cycle completely avoid the possibility of bus fights. Peripheral 1/0
devices can usually beinterfaced in a glueless fashion using the common /IORD and
/IOWR strobes in addition to the user-configurable 10 strobes on Parallel Port E. The
Parallel Port E pins can be configured as /O read, write, read/write, or chip select when
they are used as /O strobes.

« EMI reduction features reduce EMI levels by as much as 25 dB compared to other sim-
ilar microprocessors. Separate power pinsfor the on-chip I/O buffers prevent high-fre-
guency noise generated in the processor core from propagating to the signal output
pins. A built-in clock spectrum spreader reduces el ectromagnetic interference and facil-
itates passing EM| tests to prove compliance with government regulatory requirements.
As a consequence, the designer of a Rabbit-3000-based system can be assured of pass-
ing FCC or CE EMI tests aslong as minimal design precautions are followed.

» The Rabbit may be cold-booted viaa seria port or the parallel access slave port. This
means that flash program memory may be soldered in unprogrammed, and can be
reprogrammed at any time without any assumption of an existing program or BIOS.

2 Rabbit 3000 Microprocessor

A Rabbit that is daved to a master processor can operate entirely with volatile RAM,
depending on the master for a cold program boot.

There are 56 parallel 1/0O lines (shared with serial ports). Some I/O lines are timer syn-
chronized, which permits precisely timed edges and pulses to be generated under com-
bined hardware and software control. Pulse-width modul ation outputs are implemented
in addition to the timer-synchronization feature (see below).

Four pulse width modulated (PWM) outputs are implemented by special hardware. The
repetition frequency and the duty cycle can be varied over awide range. The resolution
of the duty cycleis 1 partin 1024.

Thereare six serid ports. All six serial ports can operate asynchronously in avariety of
commonly used operating modes. Four of the six ports (designated A, B, C, D) support
clocked seria communications suitable for interfacing with “ SPI” devices and various
similar devices such as A/D converters and memories that use a clocked serial protocol.
Two of the ports, E and F, support HDLC/SDL C synchronous communication. These
ports have a 4-byte FIFO and can operate at a high datarate. PortsE and F a'so have a
digital phase-locked loop for clock recovery, and support popular data-encoding meth-
ods. High data rates are supported by all six serial ports. The asynchronous ports aso
support the 9th bit network scheme aswell asinfrared transmission using the IRDA pro-
tocol. The IRDA protocol is aso supported in SDLC format by the two ports that sup-
port SDLC.

A dlave port allows the Rabbit to be used as an intelligent peripheral device slavedto a
master processor. The 8-bit slave port has six 8-bit registers, 3 for each direction of
communication. | ndependent strobes and interrupts are used to control the slave port in
both directions. Only a Rabbit and a RAM chip are needed to construct a complete
slave system, if the clock and reset control are shared with the master processor

Thereis an option to enable an auxiliary I/0O busthat is separate from the memory bus.
The auxiliary 1/0 bustoggles only on /O instructions. It reduces EMI and speeds the
operation of the memory bus, which only has to connect to memory chips when the
auxiliary 1/0 busis used to connect 1/O devices. Thisimportant feature makes memory
design easy and allows a more relaxed approach to interfacing I/O devices.

The built-in battery-backabl e time/date clock uses an external 32.768 kHz crystal oscil-
lator. The suggested model circuit for the external oscillator utilizes asingle “tiny
logic” active component. The time/date clock can be used to provide periodic interrupts
every 488 us. Typical battery current consumption is about 3 pA.

Numerous timers and counters can be used to generate interrupts, baud rate clocks, and
timing for pulse generation.

Two input-capture channel s can be used to measure the width of pulses or to record the
times at which a series of events take place. Each capture channel has a 16-bit counter
and can take input from one or two pins selected from any of 16 pins.

Two quadrature decoder units accept input from incremental optical shaft encoders.
These units can be used to track the motion of arotating shaft or similar device.

User’s Manual

A built-in clock doubler allows ¥2-frequency crystals to be used.

The built-in main clock oscillator uses an external crystal or a ceramic resonator. Typical
crystal or resonator frequencies are in the range of 1.8 MHz to 30 MHz. Since precision
timing is available from the separate 32.768 kHz oscillator, alow-cost ceramic resonator
with %2 percent error is generally satisfactory. The clock can be doubled or divided down
to modify speed and power dynamically. The I/O clock, which clocks the serial ports, is
divided separately so as not to affect baud rates and timers when the processor clock is
divided or multiplied. For ultralow power operation, the processor clock can be driven
from the separate 32.768 kHz oscillator and the main oscillator can be powered down.
This alows the processor to operate at approximately between 20 and 100 pA and still
execute instructions at the rate of up to 10,000 instructions per second. The 32.768 kHz
clock can also be divided by 2, 4, 8 or 16 to reduce power. This“deepy mode” isa pow-
erful alternative to slegp modes of operation used by other processors.

Processor current requirement is approximately 65 mA at 30 MHz and 3.3 V. The cur-
rent is proportional to voltage and clock speed—at 1.8 V and 3.84 MHz the current
would be about 5 mA, and at 1 MHz the current is reduced to about 1 mA.

To allow extreme low power operation there are options to reduce the duty cycle of
memories when running at low clock speeds by only enabling the chip select for a brief
period, long enough to complete aread. This greatly reduces the power used by flash
memory when operating at low clock speeds.

The excellent floating-point performance is due to atightly coded library and powerful
processing capability. For example, a50 MHz clock takes 7 usfor afloating add, 7 ps
for amultiply, and 20 usfor a square root. In comparison, a 386EX processor running

with an 8-bit bus at 25 MHz and using Borland C is about 20 times slower.

Thereis abuilt-in watchdog timer.

The standard 10-pin programming port eliminates the need for in-circuit emulators. A
very simple 10-pin connector can be used to download and debug software using
Z-World's Dynamic C and a ssimple connection to a PC serial port. Theincremental cost
of the programming port is extremely small.

Figure 1-1 shows a block diagram of the Rabbit.

Rabbit 3000 Microprocessor

- o - o 5
3 b ¢ o & & 8 2 B8
L 2 & L o 9 < o X
[72] w 2
uw ¢ 2 9 @ 5 » b 2 O
D[7: Data ' ' Ext | Interf: 7 7
[7:0] Buffer xternal Interface
AN PaN
R et L - R
1 | : :
: Memory | | '
. Address ! i 1 ICS2,/CS1,/CS0
A[19~°]<:'|: Buffer <: Management/ . : M?mg;f);gglp —T—>/OE1, /OE0
1 Control)) ' 1 E1, IWEO
1 | 2 !
m ! 1
: Spectrum DCIOI:?IK : P : Parallel Ports |
Spreader oubler n . .
: p : §£ : Port A «——>PA[7:0]
1 | =~ 1
' T l X 9 ! Port B <———>PBI7:0]
XTALA1—' > Fast ! < !
1 c Global Power , !
XTALAZ <L Oscillator Save & Clock | , | _PotC <> Fcrol
ve & L !
X Distribution I(: Port D — > PD[7:0]
1 1 |
1
| T N ! Port E l«——>PE[7:0]
1 1 1
I X :}: Port F e———>PF[7:0]
1 1 |
! ! ' Port G le——>PG[7:0]
! Timer A 1 ' 1
- 1
' ! 1 |Serial PortA | |
1
X i 1 [Asyncn T synch ! TXA, RXA, CLKA,
| 1 | Serial Serial | ATXA, ARXA
! Timer B 1 | Asynch | synch ,
1 1 | [Bootstrap|Bootstrap h
: : ! |Asynch Serial IrDA 1
CLK32K—>] 32.768 kHz ! : IrDA Bootstrap :
"1 Clock Input l<:> I X
: : ! | Serial Ports 1 TXB, RXB, CLKB,
' , I \ .C, T ATXB, ARXE
: Real-Time 7] I | Asynch | Synch |&—+——> TXC, RXC, CLKC
| Clock : g,‘? | Serial | Serial |
! 1 <E : Asynch Serial IrDA [€ X > TXD, RXD, CLKD
! 1 =2
1 L < : - 1
! Watchdog 1 0 1 | Serial Ports !
! Timer T N sl ey , ,
TXE, RXE
! ! 1| Asynch | HOLC [T TCLKE, RCLKE
X ! ! Serial | SDLC '
1 N
! Asynch Serial IrDA ! TXF, RXF
| Periodic : ! i " TCLKF, RCLKF
. Interrupt . ! | HDLCISDLC kDA !
1 1 |
! [1 | Pulse width ||
ID[7:0] : ' ! Modulation | PWM[3:0]
1
IA[5:0] <« C'i?;ﬁﬂi”gé ! [| QD1A, QD1B
i , ' | Quadrature 1 QD2A, QD2B
I07:0] «———| ! 1 Decoder | AQD1A, AQD1B
! X ! ! AQD2A, AQD2B
! I X nput ' PC[7,5,3,1]
\ X u “«——_PD[7,53/1]
INTOA, INTIA | ! ' Capture PF[7,5,3,1]
) 1 N External |) ! PG[7,5,3,1]
INTOB, INT1B™ Interrupts | X !
: ! 1 | Slave Port X SD[7:0]
! ! Slave Interface [€—+——> SA[1:0],
! ! ! e \ ISCS, /SRD, /SWR,
: 1 1 Bootstrap Interface | ISLAVEATTN
_________________________ ! L L] o _ o _ _____.

Figure 1-1. Rabbit 3000 Block Diagram

User’s Manual

1.2 Summary of Rabbit 3000 Advantages

The glueless architecture makesit is easy to design the hardware system.
There are alot of seria ports and they can communicate very fast.
Precision pulse and edge generation is a standard feature.

EMI is at extremely low levels.

Interrupts can have multiple priorities.

Processor speed and power consumption are under program control.

The ultralow power mode can perform computations and execute logical tests since the
processor continues to execute, albeit at 32 kHz or even as slow as 2 kHz.

The Rabbit may be used to create an intelligent peripheral or a slave processor. For
example, protocol stacks can be off loaded to a Rabbit slave. The master can be any
Processor.

The Rabbit can be cold-booted so unprogrammed flash memory can be soldered in
place.

You can write serious software, be it 1,000 or 50,000 lines of C code. Thetools are
there and they are low in cost.

If you know the Z80 or Z180, you know most of the Rabbit.

A simple 10-pin programming interface replaces in-circuit emulators and PROM pro-
grammers.

The battery-backable time/date clock isincluded.
The standard Rabbit chip is made to industrial temperature and voltage specifications.

The Rabbit 3000 is backed by extensive software devel opment tools and libraries, espe-
cialy in the area of networking and embedded Internet.

Rabbit 3000 Microprocessor

1.3 Differences Rabbit 3000 vs. Rabbit 2000

For the benefit of readers who are familiar with the Rabbit 2000 microprocessor the Rab-
bit 3000 is contrasted with the Rabbit 2000 in the table below.

Feature Rabbit 3000 Rabbit 2000

Maximum clock speed 54 MHz 30 MHz
dMoiﬁlrgéjmtc;r)%?ly;requency main oscillator (may be 30 MHz 32 MHz
32.768 kHz crystal oscillator External Internal
Maximum operating voltage 3.6V 55V
Maximum 1/O input voltage 55V 55V
Current consumption 2mA/MHz @ 3.3V 4 mA/MHz @5V
Number of package pins 128 100

Size of package

16 x 16 x 1.5 mm LQFP

10 x 10 x 1.2 mm
TFBGA

24 x 18 x 3 mm PQFP

Spacing between package pins

0.4 mm (16 mils) LQFP

0.65 mm (26 mils) PQFP

0.8 mm TFBGA
Separa_lte power and ground for 1/0O buffers (EMI Yes No
reduction)
Clock Spectrum Spreader (EMI reduction) Yes Toberetrofittedin future

version.

Clock Modes 1x, 2x, 12, 13,14, 16, 18 1x, 2x, /4, 18

Sleepy (32 kHz)
Power Down Modes Ultra-Sleepy Sleepy (32 kHz)

(16, 8, 2 kHz)
Short CS (CLK /4 /6 /8)

Low Power Memory Control (Chip Select) Self Timed None

(32,16,8,2 kHz)
Extended memory timing for high freq. operation Yes No
Number of 8-bit I/O ports 7 5
Auxiliary 1/O Data/Address bus Yes None
Number of serial ports 6 4
Serial ports capable of SPI/clocked serial 4(A,B,C,D) 2(A,B)
Serial ports capable of SDLC/HDLC 2(EF) None
Asynch serial ports with support for [rDA 6 None

communications

User’s Manual

Feature Rabbit 3000 Rabbit 2000
Serial ports with support for SDLC/HDLC IrDA
L 2 None
communications
Maximum asynchronous baud rate clock speed/8 clock speed/32
Input capture unit 2 None

Rabbit 3000 Microprocessor

2. RABBIT 3000 DESIGN FEATURES

The Rabbit 3000 is an evolutionary design. The processor and instruction set are nearly
identical to the immediate predecessor processor, the Rabbit 2000. Both the Rabbit 3000
and the Rabbit 2000 follow in broad outline the instruction set and the register layout of
the Z80 and Z180. Compared to the Z180 the instruction set has been augmented by a sub-
stantial number of new instructions. Some obsolete or redundant Z180 instructions have
been dropped to make available efficient 1-byte opcodes for important new instructions.
(see Chapter 20, “ Differences Rabbit vs. Z80/2180 Instructions,”.) The advantage of this
evolutionary approach is that users familiar with the Z80 or Z180 can immediately under-
stand Rabbit assembly language. Existing Z80 or Z180 source code can be assembled or
compiled for the Rabbit with minimal changes.

Changing technology has made some features of the Z80/2180 family obsolete, and these
features have been dropped in the Rabbit. For example, the Rabbit has no special support
for dynamic RAM but it has extensive support for static memory. Thisis because the price
of static memory has decreased to the point that it has become the preferred choice for
medium-scale embedded systems. The Rabbit has no support for DMA (direct memory
access) because most of the uses for which DMA is traditionally used do not apply to
embedded systems, or they can be accomplished better in other ways, such as fast inter-
rupt routines, external state machines or slave processors.

Our experience in writing C compilers has revealed the shortcomings of the Z80 instruc-
tion set for executing the C language. The main problem isthe lack of instructions for han-
dling 16-bit words and for accessing data at a computed address, especially when the stack
contains that data. New instructions correct these problems.

Another problem with many 8-bit processorsistheir slow execution and alack of number-
crunching ability. Good floating-point arithmetic is an important productivity featurein
smaller systems. It is easy to solve many programming problems if an adequate floating-
point capability is available. The Rabbit’s improved instruction set provides fast floating-
point and fast integer math capabilities.

The Rabbit supports four levels of interrupt priorities. Thisis an important feature that
alowsthe effective use of fast interrupt routines for real-time tasks.

User’s Manual 9

2.1 The Rabbit 8-bit Processor vs. Other Processors

The Rabbit 3000 processor has been designed with the objective of creating practical sys-
temsto solve real world problems in an economical fashion. A cursory comparison of the
Rabbit 3000 compared to other processors with similar capabilities may miss certain Rab-
bit strong points.

The Rabbit is a processor that can be used to build a system in which EMI is nearly
absent, even at clock frequencies in excess of 40 MHz. Thisis due to the split power
supply, the clock doubler, the clock spectrum spreader and the PC board layout advice
(or processor core modules) that we provide. Low EMI is a huge timesaver for the
designer pressed to meet schedules and pass government EMI tests of the final product.

Execution speed with the Rabbit is usually a pleasant surprise compared to other pro-
cessors. Thisis due to the well-chosen and compact instruction set partnered with and
excellent compiler and library. We have many benchmarks, comparing the Rabbit to
186, 386, 8051, Z180 and ez80 families of processors that prove the point.

The Rabbit memory busisan exceptionally efficient and very clean design. No external
logic is required to support static memory chips. Battery-backed external memory is
supported by built-in functionality. During reduced-power slow-clock operation the
memory duty cycle can be correspondingly reduced using built-in hardware, resulting
in low power consumption by the memories.

The Rabbit external bus uses 2 clocksfor read cyclesand 3 clocksfor write cycles. This
has many advantages compared to a single-clock design, and on closer examination the
advantages of the single-clock system turn out to be mostly chimerical. The advantages
include: easy design to avoid bus fights, clean write cycles with solid data and address
hold times, flexibility to have memory output enable access times greater than %2 of the
bus cycle, and the ability to use an asymmetric clock generated by aclock doubler. The
supposed advantage that single-clock systems have of double-speed bus operation is
not possible with real-world memories unless the memory is backed with fast-cache
RAM.

The Rabbit 3000 operates at 3.6 V or less, but it has 5 V tolerant inputs and has a sec-
ond complete bus for I/0O operations that is separate from the memory bus. This second
auxiliary bus can be enabled by the application as a designer option. These features
make it easy to design systemsthat mix 3V and 5V components, and avoid the loading
problems and the EMI problems that result if the memory busis extended to connect
with many 1/O devices.

The Rabbit may be remotely programmed, including complete cold-boot, via a serial
link, Ethernet, or even viaanetwork or the Internet using built in capabilities and/or the
RabbitLink ethernet network accessory device. These capabilities proven and inexpen-
sive to implement.

The Rabbit 3000 on-chip periphera complement is huge compared to competitive pro-
CESsors.

10

Rabbit 3000 Microprocessor

The Rabbit isan 8-bit processor with an 8-bit external data bus and an 8-bit internal data
bus. Because the Rabbit makes the most of its external 8-bit bus and because it has a com-
pact instruction set, its performance is as good as many 16-bit processors.

We hesitate to compare the Rabbit to 32-bit processors, but there are undoubtedly occa-
sions where the user can use a Rabbit instead of a 32-bit processor and save a vast amount
of money. Many Rabbit instructions are 1 byte long. In contrast, the minimum instruction
length on most 32-bit RISC processorsis 32 hits.

2.2 Overview of On-Chip Peripherals and Features

The on-chip peripherals were chosen based on our experience as to what types of periph-
eral devices are most useful in small embedded systems. The major on-chip peripherals
are the serial ports, system clock, time/date oscillator, paralel 1/0, slave port, motion
encoders, pulse width modulators, pulse measurement, and timers. These and other fea-
tures are described below.

2.2.1 5V Tolerant Inputs

The Rabbit 3000 operates on avoltage in the range of 1.8 V to 3.6 V, but most Rabbit 3000
input pinsare 5 V tolerant. The exceptions are the power supply pins, and the oscillator
buffer pins. Whena5V signad isappliedto 5V tolerant pins, they present a high impedance
even if the Rabbit power is off. The 5V tolerant feature allows 5 V devicesthat have a
suitable switching threshold to be directly connected to the Rabbit. Thisincludes HCT
family parts operated at 5V that have an input threshold between 0.8 and 2 V.

NOTE: CMOS devices operated at 5V that have athreshold at 2.5V are not suitable for
direct connection because the Rabbit outputs do not rise above VDD, which cannot
exceed 3.6 V, and is often specified as 3.3 V. Although a CMOS input witha 2.5V
threshold may switch at 3.3V, it will consume excessive current and switch slowly.

In order to trandate between 5V and 3.3 V, HCT family parts powered from 5V can be
used, and are often the best solution. Thereisaso the“LVT” family of parts that operate
from 2.0V to 3.3V, but that have 5 V tolerant inputs and are available from many suppli-
ers. True level-trandating parts are available with separate 3.3V and 5V supply pins, but
these parts are not usually needed, and have design traps involving power sequencing.
Many charge pump chipsthat perform DC to DC voltage conversion at |low cost have been
introduced in recent years. These are convenient for systems with dual voltage requirements.

2.2.2 Serial Ports

There are six serial ports designated ports A, B, C, D, E, and F. All six serial ports can
operate in an asynchronous mode up to a baud rate equal to the system clock divided by 8.
The asynchronous ports use 7-bit or 8-bit data formats, with or without parity. A 9th bit
address scheme, where an additional bit is set or cleared to mark the first byte of a mes-
sage, is also supported.

The serial port software driver can tell when the last byte of a message has finished trans-
mitting from the output shift register - correcting an important defect of the Z180. Thisis

User’s Manual 11

important for RS-485 communication because a half duplex line driver cannot have the
direction of transmission reversed until the last data bit has been sent. In many UARTS,
including those on the Z180, it is difficult to generate an interrupt after the last bit is sent.
A so called address bit can be transmitted as either high or low after the last data bit. The
address bit, if used, isfollowed by a high stop bit. This facility can be used to transmit 2
stop bits or a parity bit if desired. The ability to directly transmit a high voltage level
address bit was not included in the original revision of the Rabbit 2000 processor.

Serial ports A, B, C and D can be operated in the clocked serial mode. In this mode, a
clock line synchronoudly clocks the datain or out. Either the Rabbit seria port or the
remote device can supply the clock. When the Rabbit providesthe clock, the baud rate can
be up to 1/2 of the system clock frequency. When the clock is provided by another device
the maximum data rate is system clock divided by 6 due to the need to synchronize the
externally supplied clock with the internal clock. The clocked serial mode may be used to
support “SPI” bus devices.

Serial Port A has special features. It can be used to cold-boot the system after reset. Serial
Port A isthe normal port that is used for software development under Dynamic C.

All the serial ports have aspecial timing mode that supports infrared data communications
standards.

2.2.3 System Clock

The main oscillator uses an external crystal with afrequency typically in the range from
1.8 MHz to 26 MHz. The processor clock is derived from the oscillator output by either
doubling the frequency, using the frequency directly, or dividing the frequency by 2, 4, 6
or by 8. The processor clock can also be driven by the 32.768 kHz real-time clock oscilla-
tor for very low power operation, in which case the main oscillator can be shut down
under software control.

2.2.4 32.768 kHz Oscillator Input

The 32.768 kHz oscillator input is designed to accept a 32.768 kHz clock. A suggested low-
power clock circuit using “tiny logic” partsis documented and low in cost. The 32.768 kHz
clock is used to drive a battery-backable (there is a separate power pin) internal 48-bit
counter that serves asarea-time clock (RTC). The counter can be set and read by software
and isintended for keeping the date and time. There are enough bits to keep the date for
more than 100 years. The 32.768 kHz oscillator input is aso used to drive the watchdog
timer and to generate the baud clock for Serial Port A during the cold-boot sequence.

12 Rabbit 3000 Microprocessor

2.2.5 Parallel I/O

There are 56 parallel input/output lines divided among seven 8-bit ports designated A
through G. Most of the port lines have aternate functions, such as serial dataor chip select
strobes. Parallel Ports D, E, F, and G have the capability of timer-synchronized outputs.
The output registers are cascaded as shown in Figure 2-1.

Load Data Output Port

Load Clock
Timer Clock —‘

Figure 2-1. Cascaded Output Registers for Parallel Ports D and E

Storesto the port are loaded in the first-level register. That register in turn istransferred to
the output register on a selected timer clock. The clock can be selected to be the output of
Timer A1, B1, B2 or the peripheral clock (divided by 2?). The timer signal can also cause
an interrupt that can be used to set up the next bit to be output on the next timer pulse. This
feature can be used to generate precisely controlled pul ses whose edges are positioned
with high accuracy in time. Applications include communications signaling, pulse width
modulation and driving stepper motors. (A separate pulse width modulation facility isalso
included in the Rabbit 3000.)

External Input Q D Q D Q Filtered Input

eripheral
glocrli |/

Figure 2-2. Digital Filtering Input Pins

Input pinsto the parallel portsarefiltered by cascaded D flip flops as shownin Figure 2-2.
This prevents pul ses shorter then the peripheral clock from being recognized, synchro-
nizes external pulsesto the internal clock, and avoids problems with meta stability (tem-
porarily indeterminate logical conditions due to marginal set up time with respect to the
clock).

User’s Manual 13

2.2.6 Slave Port

The slave port is designed to allow the Rabbit to be a slave to another processor, which
could be another Rabbit. The port is shared with Parallel Port A andisabidirectional data
port. The master can read any of three registers selected via two select lines that form the
register address and aread strobe that causes the register contents to be output by the port.
These same registers can be written as 1/0 registers by the Rabbit slave. Three additional
registers transmit datain the opposite direction. They are written by the master by means
of the two select lines and a write strobe.

Figure 2-3 shows the data paths in the slave port.

lr_____T?ébth§0(T) ________ !
|
| > > > >

Master | .

Processor | Input Register CPU

- -

|
|
|
|
|
Output Registers :
|
|
|
|

Figure 2-3. Slave-Port Data Paths

The dave Rabbit can read the same registers as 1/0 registers. When incoming data bits are
written into one of the registers, status bits indicate which registers have been written, and
an optional interrupt can be programmed to take place when the write occurs. When the
slave writesto one of the registers carrying data bits outward, an attention line is enabled
so that the master can detect the data change and be interrupted if desired. One line tells
the master that the slave has read all the incoming data. Another line tells the master that
new outgoing data bits are available and have not yet been read by the master. The slave
port can be used to signal the master to perform tasks using a variety of communication
protocols over the Slave port.

14 Rabbit 3000 Microprocessor

2.2.7 Auxiliary 1/0 Bus

The Rabbit 3000 instruction set supports memory access and |/O access. Memory access
takes place in a1 megabyte memory space. 1/0O access takes placein a 64K /O space. Ina
traditional microprocessor design the same address and data lines are used for both mem-
ory and /0 spaces. Sharing address and data linesin this manner often forces compromises
or makes design more complicated. Generally the memory bus has more critical timing and
less tolerant of additional capacitive loading imposed by sharing it with an 1/0 bus.

With the Rabbit 3000, the designer has the option of enabling completely separate buses
for 1/0 and memory. The auxiliary 1/0 bus uses many of the same pins used by the slave
port, so its operation is mutually exclusive from operation of the slave port. Parallel Port A
Isused to provide 8 bidirectional datalines. Parallel Port B bits 2:7 provide 6 address
lines, the least significant 6 lines of the 16 lines that define the full 1/0O space. The auxil-
lary busisonly active on I/O bus cycles. The address lines remain in the same state
assumed at the end of the previous I/O cycle until another 1/0 cycle takes place. 1/0 chip
selects aswell as read and write strobes are available at various other pins so that the 64
byte space defined by the 6 address lines may be easily expanded. 1/0 cycles also execute
in parallel on the main (memory) bus when they take place on the auxiliary bus, so addi-
tional address lines can be buffered and provided if needed.

By connecting 1/O devices to the auxiliary bus, the fast memory busisrelieved of the
capacitive load that would otherwise slow the memory. For core modules based on the
Rabbit 3000, fewer pins are required to exit the core module since the slave port and the
I/O bus can share the same pins and the memory bus no longer needs to exit the module to
provide 1/O capability. Because the I/O bus hasless activity and is slower than the memory
bus, it can be run further physically without EMI and ground bounce problems. 5V signals
can appear on the 1/0O bus since the Rabbit 3000 inputs are 5 V tolerant. 5V signals could
easily cause problems on the main busif non 5V tolerant 3.3 V memories are connected.

2.2.8 Timers

The Rabbit has several timer systems. The periodic interrupt is driven by the 32.768 kHz
oscillator divided by 16, giving an interrupt every 488 usif enabled. Thisisintended to be
used as a general-purpose clock interrupt. Timer A consists of ten 8-bit countdown and
reload registersthat can be cascaded up to two levels deep. Each countdown register can be
set to divide by any number between 1 and 256. The output of six of the timersis used to
provide baud clocksfor the serial ports. Any of these registers can aso cause interrupts and
clock the timer-synchronized parallel output ports. Timer B consists of a 10-bit counter that
can be read but not written. There are two 10-bit match registers and comparators. If the
match register matches the counter, a pulse is output. Thusthe timer can be programmed to
output a pulse at a predetermined count in the future. This pulse can be used to clock the
timer-synchronized parallel-port output registers aswell as cause an interrupt. Timer B is
convenient for creating an event at a precise time in the future under program control.

Figure 2-4 illustrates the Rabbit timers.

User’s Manual 15

oerclk perclk Timer A System - — I
>[}{ Al 1L A | E
penclk/2 L Seria F
— — A3 ——
L Seria A
— — A4 |—
1 [Input 1 a5 ﬂal 8
1| A8 Capture —
— L Serial C
L] I — 1 A6 [——
L1 A% Tpam -
— L] Seria D
11 A10 | Quadrature — 1 A7 [
= Decode I
Timer Al
perclk/2 L 10-bit counter |
erclk/g compare __
] < 10bits - Timer B1
_ Control Timer
Timer B System Synchronized
match preload outputs
Timer_B2
—
match preload

Figure 2-4. Rabbit Timers A and B

2.2.9 Input Capture Channels

The input capture channels are used to determine the time at which an event takes place.
Aneventissignaled by arising or falling edge (or optionally by either edge) on one of 16
input pins that can be selected as input for either of the two channels. A 16 bit counter is
used to record the time at which the event takes place. The counter is driven by the output
of Timer A8 and can be set to count at arate ranging from full clock speed to 1/256 the
clock speed.

Two events are recognized: astart condition and a stop condition. The start condition may
be used to start counting and the stop condition to stop counting. However the counter
may also run continuously or run until a stop condition is encountered. The start and stop
conditions may also be used to latch the current time at the instant the condition occurs
rather than actually start or stop the counter. The same pin may be used to detect the start

16 Rabbit 3000 Microprocessor

and stop condition, for example arising edge could be the start condition and afalling
edge the stop condition. However, optionally, the start and stop condition can be input
from separate pins.

The input capture channels can be used to measure the width of fast pulses. Thisis done
by starting the counter on the first edge of the pulse and capturing the counter value on the
second edge of the pulse. In this case the maximum error in the measurement is approxi-
mately 2 periods of the clock used to count the counter. If there is sufficient time between
events for an interrupt to take place the unit can be set up to capture the counter value on
either start or stop conditions or both and cause an interrupt each time the count is cap-
tured. In this case the start and stop conditions |ose the connection with starting or stop-
ping the counter and simply become capture conditions that may be specified for 2
independent edge detectors. The counter can also be cleared and started under software
control and then have its value captured in response to an input.

If desired the capture counter can synchronized with Timer B outputs used to synchro-
nously load parallel port output registers. This makes it possible to generate an output sig-
nal precisely synchronized with an input signal. Usually it will be desired to synchronize
one of the input capture counters with the Timer B counter. The count offset can be mea-
sured by outputting a pulse at a precise time using Timer B to set the output time and cap-
turing the same pul se. Once the phase relationship is known between the countersit isthen
possible to output pulses a precise time delay after an input pulse is captured, provided
that the time delay is great enough for the interrupt routine to processes the capture event
and set up the output pulse synchronized by Timer B. The minimum time delay needed is
probably less than 10 microsecondsif the software is done carefully the clock speed isrea-
sonably high.

2.2.10 Quadrature Encoder Inputs

A quadrature encoder is a common electromechanical device used to track the rotation of
ashaft, or in some casesto track the motion of alinear follower. These devices are usually
implemented by the use of adisk or a strip with alternate opague and transparent bands
that excite dual optical detectors. The output signals are square waves 90 degrees out of
phase also called being in quadrature with each other. By having quadrature signals, the
direction of rotation can be detected by noting which signal leads the other signal.

The Rabbit 3000 has 2 quadrature encoder units. Each unit has 2 inputs, one being the nor-
mal input and the other the 90 degree or quadrature input. An 8 bit up down counter counts
encoder steps in the forward and backward direction. The count can be extended beyond 8
bits by an interrupt that takes place each time the count overflows or underflows. The exter-
nal signas are synchronized with an interna clock provided by the output of Timer A10.

2.2.11 Pulse Width Modulation Outputs

The pulse width modulated output generates atrain of pulses periodic on a 1024 pulse
frame with a duty cycle that varies from 1/1024 to 1024/1024. There are 4 independent
PWM units. The units are driven by the output of Timer A9 which may be used to vary the

User’s Manual 17

length of the pulses. When the duty cycleis greater then 1/1024 the pulses are spread into

groups distributed 256 counts apart in the 1024 frame. The pul se width modul ation outputs
can be passed through afilter and used as a 10-bit D/A converter. The outputs can also be

used to directly drive devices that have intrinsic filtering such as motors or solenoids.

2.2.12 Spread Spectrum Clock

The main system clock, which is generated by the crystal oscillator or input from an exter-
nal oscillator, can be modified by a clock spectrum spreader internal to the Rabbit 3000
chip. When the spectrum spreader is engaged, the clock is alternately speeded up and
slowed down, thus spreading the spectrum of the clock harmonicsin the frequency
domain. Thisreduces EMI and improves the results of official radiated-emissions tests
typicaly by 15-20 dB at critical frequencies. The spectrum spreader has 3 modes of oper-
ation: off, normal, and strong. Slightly faster memory accesstime is required when the
spectrum spreader is used: 2—3 nsfor the normal setting when the clock doubler is
enabled, and 6-9 nsfor the strong setting when the clock doubler is used. The spreader
dlightly influences baud rates and other timings because it introduces clock jitter, but the
effect is usually small enough to be negligible.

2.2.13 Separate Core and 1/0O Power Pins

Thesilicon die that constitutes the Rabbit 3000 processor is divided into the corelogic and
the1/O ring. The 1/O ring located on the 4 edges of the die holds the bonding pads and the
large transistors used to create the I/O buffers that drive signals to the external world. The
core section, inside the I/O ring contains the main processor and peripheral logic. The
clock and clock edgesin the core are very fast with large transient currentsthat create alot
of noise that is communicated to the outside of the package via the power pins. The I/O
buffers have slower switching times and mostly operate at much lower frequencies than
the core logic. The Rabbit has separate power and ground pins for the core and 1/0O ring.
This allows the designer to feed clean power to the I/O ring filtered to be free of the noise
generated by the core switching. This minimizes high frequency noise that would other-
wise appear on output pins driven by buffersin the 1/0 ring. The result islower EMI.

2.3 Design Standards

The same functionality can often be accomplished in more than one way with the Rabbit
3000. By publishing design standards, or standard ways to accomplish common objec-
tives, software and hardware support become easier.

Refer to the Rabbit 3000 Microprocessor Designer’s Handbook for additional information.
2.3.1 Programming Port

Rabbit Semiconductor publishes a specification for a standard programming port (see
Appendix A.1, “The Rabbit Programming Port”) and provides a converter cable that may
be used to connect a PC serial port to the standard programming interface. The interfaceis
implemented using a 10-pin connector with two rows of pinson 2 mm centers. The port is
connected to Rabbit Serial Port A, to the startup mode pins on the Rabbit, to the Rabbit

18 Rabbit 3000 Microprocessor

reset pin, and to a programmable output pin that is used to signal the PC that attention is
needed. With proper precautionsin design and software, it is possible to use Serial Port A
as both a programming port and as a user-defined serial port, although thiswill not be nec-
essary in most cases.

Rabbit Semiconductor supports the use of the standard programming port and the standard
programming cable as a diagnostic and setup port to diagnosis problems or set up systems
inthefield.

2.3.2 Standard BIOS

Rabbit Semiconductor provides a standard BIOS for the Rabbit. The BIOS is a software
program that manages startup and shutdown, and provides basic services for software run-
ning on the Rabbit.

2.4 Dynamic C Support for the Rabbit

Dynamic C is Z-World'sinteractive C language development system. Dynamic C runson
aPC under Windows 32-bit operating systems. Dynamic C provides acombined compiler,
editor, and debugger. The usual method for debugging atarget system based on the Rabbit
isto implement the 10-pin programming connector that connectsto the PC serial port viaa
standard converter cable. Dynamic C libraries contain highly perfected software to control
the Rabbit. These includes drivers, utility and math routines and the debugging BIOS for
Dynamic C.

In addition, the internationally known real-time operating system, uC/OS-11, has been
ported to the Rabbit, and is available with Dynamic C on alicense-free, royalty-free basis
for use in Rabbit-based products..

User’s Manual 19

20

Rabbit 3000 Microprocessor

3. DETAILS ON RABBIT
MICROPROCESSOR FEATURES

3.1 Processor Registers

The Rabbit’s registers are nearly identical to those of the Z180 or the Z80. Thefigure
below showstheregister layout. The XPC and IP registers are new. The EIR register isthe
same asthe Z80 | register, and is used to point to a table of interrupt vectors for the exter-
nally generated interrupts. The IR register occupies the same logical position in the
instruction set as the Z80 R register, but its function isto point to an interrupt vector table
for internally generated interrupts.

B
H L . Y
8/16-bit
(o | £ | Jreases| e |
8 [¢ | L e
EIR
LA | F
‘ H’ ‘ L ‘ A- 8-bit accumul ator
‘ D’ ‘ E ‘ F - flags register
‘ , ‘ c ‘ HL- 16-bit accumul ator
B IX, 1Y - Index registers/alt accum’s
Alternate Registers SP - stack pointer
PC- program counter
Is|z|x|x|x|v][x|c] XPC - extension of program counter
F - flag register layout IIR - internal interrupt register
S-sign, Z-zero, V-overflow, C-carry ElIR-external interrupt register
Bits marked "X" are read/write. |P - interrupt priority register

Figure 3-1. Rabbit Registers

User’s Manual 21

The Rabbit (and the Z80/2180) processor has two accumulators—the A register serves as
an 8-bit accumulator for 8-bit operations such as ADD or AND. The 16-bit register HL regis-
ter serves as an accumulator for 16-bit operations such as ADD HL, DE, which adds the 16-
bit register DE to the 16-bit accumulator HL. For many operations I X or I'Y can substitute
for HL as accumulators.

Theregister marked F isthe flags register or statusregister. It holds a number of flags that
provide information about the last operation performed. The flag register cannot be
accessed directly except by using the POP AF and PUSH AF instructions. Normally the
flags are tested by conditional jump instructions. The flags are set to mark the results of
arithmetic and logic operations according to rules that are specified for each instruction.
There are four unused read/write bitsin the flag register that are available to the user via
the PUSH AF and POP AF instructions. These bits should be used with caution since new-
generation Rabbit processors could use these bits for new purposes.

Theregisters|X, Y and HL can also serve asindex registers. They point to memory
addresses from which data bits are fetched or stored. Although the Rabbit can address a
megabyte or more of memory, the index registers can only directly address 64K of mem-
ory (except for certain extended addressing LDP instructions). The addressing rangeis
expanded by means of the memory mapping hardware (see “Memory Mapping” on

page 23) and by special instructions. For most embedded applications, 64K of data mem-
ory (as opposed to code memory) is sufficient. The Rabbit can efficiently handle a mega-
byte of program space.

The register SP points to the stack that is used for subroutine and interrupt linkage as well
as general-purpose storage.

A feature of the Rabbit (and the Z80/2180) is the alternate register set. Two special
instructions swap the alternate registerswith the regular registers. Theinstruction EX AF, AF’
exchanges the contents of AF with AF. The instruction EXX exchanges HL, DE, and BC
with HL’, DE’, and BC'. Communication between the regular and alternate register set in
the original Z80 architecture was difficult because the exchange instructions provided the
only means of communication between the regular and alternate register sets. The Rabbit
has new instructions that greatly improve communication between the regular and alter-
nate register set. This effectively doubles the number of registersthat are easily available
for the programmer’s use. It is not intended that the alternate register set be used to pro-
vide a separate set of registers for an interrupt routine, and Dynamic C does not support
this usage because it uses both registers sets freely.

The IP register isthe interrupt priority register. It contains four 2-bit fields that hold a his-
tory of the processor’s interrupt priority. The Rabbit supports four levels of processor pri-
ority, something that exists only in avery restricted form in the Z80 or Z180.

22 Rabbit 3000 Microprocessor

3.2 Memory Mapping

Although the Rabbit memory mapping scheme isfairly complex, the user rarely needs to
worry about it because the details are handled by the Dynamic C development system.

Except for a handful of special instructions (see Section 19.5, “16-bit Load and Store 20-
bit Address’.), the Rabbit instructions directly address a 64K data memory space. This
means that the address fields in the instructions are 16 bits long and that the registers that
may be used as pointers to memory addresses (index registers (1X, 1Y), program counter
and stack pointer (SP)) are also 16 bits long.

Because Rabbit instructions use 16-bit addresses, the instructions are shorter and can exe-
cute much faster than if, for example, 32-bit addresses were used. The executable codeis
very compact.

The Rabbit memory-mapping unit is similar to, but more powerful than, the Z180 mem-
ory-mapping unit. Figure 3-2 illustrates the relationship among the major components
related to addressing memory.

Memory Memory Memor
Processor s Mapping [P Interface P y
_ Chips
16 | unit 20
bits bits 20 bits plus control

Figure 3-2. Addressing Memory Components

The memory-mapping unit receives 16-bit addresses asinput and outputs 20-bit addresses.
The processor (except for certain LDP instructions) sees only a 16-bit address space. That
IS, it sees 65536 distinctly addressable bytes that its instructions can manipulate. Three
segment registers are used to map this 16-bit space into a 1-megabyte space. The 16-bit
space is divided into four separate zones. Each zone, except the first or root zone, has a
segment register that is added to the 16-bit address within the zone to create a 20-bit
address. The segment register has eight bits and those eight bits are added to the upper
four bits of the 16-bit address, creating a 20-bit address. Thus, each separate zone in the
16-bit memory becomes a window to a segment of memory in the 20-bit address space.
Therelative size of the four segments in the 16-bit space is controlled by the SEGSIZE
register. Thisis an 8-bit register that contains two 4-bit registers. This controls the bound-
ary between the first and the second segment and the boundary between the second and
the third segment. Thelocation of the two movable segment boundariesis determined by a
4-bit value that specifies the upper four bits of the address where the boundary is located.
Theserelationships areillustrated in Figure 3-3.

User’s Manual 23

10000
85 XPC register OEO000
80 STACKSEG register ggooo
79 DATASEG register
\/ 0D000
80
8D000
10000 PC
segment \/
EO000)
stac ment
i D000 >
data segment
D 7
SEGSIZE
register 07000
79
i 2000 80000
root segment 07000
0000
16-bit
address space
00000
20-bit
address space

Figure 3-3. Example of Memory Mapping Operation

The names given to the segmentsin the figure are evocative of the common uses for each
segment. The root segment is mapped to the base of flash memory and contains the startup
code as well as other code that may happen to be stored there. The data segment usage

varies depending on the overall strategy for setting up memory. It may be an extension of

24 Rabbit 3000 Microprocessor

the root segment or it may contain data variables. The stack segment is normally 4K long
and it holds the system stack. The XPC segment is normally used to execute code that is
not stored in the root segment or the data segment. Special instructions support executing
code that is visible in the X PC segment.

The memory interface unit receives the 20-bit addresses generated by the memory-map-
ping unit. The memory interface unit conditionally modifies address lines A16, A18 and
A19. The other address lines of the 20-bit address are passed unconditionally. The mem-
ory interface unit provides control signals for external memory chips. These interface sig-
nals are chip selects (/CS0, /CS1, /CS2), output enables (/OEO, /OEL), and write enables
(AWEQ, /WEL1). These signals correspond to the normal control lines found on static mem-
ory chips (chip select or /CS, output enable or /OE, and write enable or /WE). In order to
generate these memory control signals, the 20-bit address space is divided into four quad-
rants of 256K each. A bank control register for each quadrant determines which of the
chip selects and which pair of output enables, and write enables (if any) is enabled when a
memory read or write to that quadrant takes place. For example, if a512K x 8 flash mem-
ory isto be accessed in thefirst 512K of the 20-bit address space, then /CS0, /WEOQ, /OEQ
could be enabled in both quadrants.

Figure 3-4 shows a memory interface unit.

Axxin—from processor
Axx—out from memory _
control unit Al9in A19
. . _ix A18, Al9invertible
Addre$llne§ not shown A18in A18 by quadrant
are passed directly. ?
Al9in A19in’ | /CS0
memory
A18in /CS1 ;:i(r)]r;rol
/CS2
Optional A19inversion (r:rg)%rﬂ%rly L /OEO
L /WEO
Read/Write JOE1
Synchronization WE1

Figure 3-4. Memory Interface Unit

User’s Manual 25

3.2.1 Extended Code Space

A crucial element of the Rabbit memory mapping scheme is the ability to execute pro-
grams containing up to a megabyte of code in an efficient manner. This ability isabsent in
apure 16-bit address processor, and it is poorly supported by the Z180 through its memory
mapping unit. On paged processors, such asthe 8086, this capability isprovided by paging
the code space so that the code is stored in many separate pages. On the 8086 the page size
iIs64K, so all the code within agiven pageis accessible using 16-bit addressing for jumps,
calls and returns. When paging is used, a separate register (CS on the 8086) is used to
determine where the active page currently resides in the total memory space. Special
instructions make it possible to jump, call or return from one page to another. These spe-
cia instructions are called long calls, long jumps and long returns to distinguish them
from the same operations that only operate on 16-bit variables.

The Rabbit also uses a paging scheme to expand the code space beyond the reach of a 16-
bit address. The Rabbit paging scheme uses the concept of a sliding page, which is 8K
long. Thisisthe XPC segment. The 8-bit XPC register serves as a page register to specify
the part of memory where the window points. When a program is executed in the XPC
segment, normal 16-bit jumps, calls and returns are used for most jumps within the win-
dow. Normal 16-bit jJumps, calls and returns may also be used to access code in the other
three segmentsin the 16-bit address space. If atransfer of control to code outside the win-
dow isrequired, then along jump, long call or long return is used. These instructions mod-
ify both the program counter (PC) and the X PC register, causing the XPC window to point
to adifferent part of memory where the target of the long jump, call or return islocated.
The XPC segment isalways 8K long. The granularity with which the XPC segment can be
positioned in memory is 4K. Because the window can be sid by one-half of itssize, itis
possible to compile continuously without unused gaps in memory.

Asthe compiler generates code resident in the XPC window, the window is slid down by
4K when the code goes beyond FO00. This is accomplished by along jump that reposi-
tionsthewindow 4K lower. Thisisillustrated by Figure 3-5. The compiler is not presented
with asharp boundary at the end of the page because the window does not run out of space
when code passes FOOO unless 4K more of code is added before the window is slid down.
All code compiled for the XPC window has a 24-bit address consisting of the 8-bit XPC
and the 16-bit address. Short jumps and calls can be used, provided that the source and tar-
get instructions both have the same XPC address. Generally this means that each instruc-
tion belongs to awindow that is approximately 4K long and has a 16-bit address between
EO000+n and FOOO+m, where n and m are on the order of afew dozen bytes, but can be up
to 4096 bytesin length. Since the window is limited to no more than 8K, the compiler is
unable to compile asingle expression that requires more than 8K or so of code space. This
isnot apractical consideration since expressions longer than afew hundred bytes are in
the nature of stunts rather than practical programs.

Program code can reside in the root segment or the X PC segment. Program code may also
be resident in the data segment. Code can be executed in the stack segment, but thisis usu-
aly restricted to special situations. Code in the root, meaning any of the segments other

26 Rabbit 3000 Microprocessor

than the XPC segment, can call other code in the root using short jJumps and calls. Code in
the XPC segment can also call code in the root using short jumps and calls. However, a
long call must be used when code in the XPC segment is called. Functions located in the
root have an efficiency advantage because along call and along return require 32 clocks
to execute, but a short call and a short return require only 20 clocks to execute. The differ-
enceissmall, but significant for short subroutines.

Compiler noticesthat Compiler inserts
code has passed FO00. longjump in code.
10000
XPC segment
EQ0O S 4 F000
Stack t
DO0O ack segmen \ v
I short \ A
| cals
Data segment) returns \
el EO00O
XPC=N XPC=N+1
PC=F000+K PC=EQ000+K +4
Root segment Ilustration of sliding XPC window

Figure 3-5. Use of XPC Segment

3.2.2 Separate | and D Space - Extending Data Memory

In the normal memory model, the data space must share a 64K space with root code, the
stack, and the XPC window. Typically, thisleaves a potential data space of 40K or less.
The XPC requires 8K, the stack requires 4K, and most systemswill require at least 12K of
root code. This amount of data space is sufficient for many embedded applications.

One approach to getting more data space is to place datain RAM or in flash memory that
Is not mapped into the 64K space, and then access this data using function callsor in
assembly language using the LDP instructions that can access memory using a 20-bit
address. This greatly expands the data space, but the instructions are less efficient than
instructions that access the 64k space using 16 bit addresses.

The Rabbit 3000 supports separate | and D or Instruction and Data spaces. When separate
| and D spaceis enabled it applies only to addresses in the root segment or data segment.
Separate | and D spaces mean that instruction execution makes a distinction between

User’s Manual 27

fetching an instruction from memory and fetching or storing datain memory. When
enabled separate | and D space make available the combined root and data segment, typi-
cally 52k bytesfor root code in the | space. In the D space, the root code segment part of
the D spaceistypically used for constant data mapped to flash memory while the data seg-
ment part of the D space is used for variable data mapped to RAM. Separate | and D space
increases the amount of both root code and root data because they no longer have to share
the same memory, even though they share the same addresses.

20 Bit Memory Space
RAM
64k L _ _ _ |
xc | L__ _ . N N
56k \;twar(]:ﬁow 512k \ N D Space
AN
52k \\
\ Flash .
5 N \\ Variable
ta
\ D Space
| space Segment \ \\
Root \ \
Code N — — - -~ \
\ RN
B - 7 \ 64k
Root D A . Constant
Segment ~ N D Space
Sl] \
\

Figure 3-6. Separate | and D Space

Normally separate | and D space isimplemented as shown in Figure 3-6. Inthe | spacethe
root segment and the data segment are combined into a single root code segment. Inthe D
space the segments are separately mapped to flash and RAM to provide storage for con-
stant data and variable data. The hardware method to achieve separate 20 bit addresses for
the D spaceisto invert either A16 or A19 for data accesses. The inversion may be speci-
fied separately for the root segment and the data segment. Normally A16 isinverted for
data accesses in the root segment. This causes data accesses to the root segment to be
moved 64k higher to a section of flash starting at 20 bit address 64k that is reserved for
constant data. A19 is normally inverted for data accesses to the data segment, causing the
data accesses in the data segment to be moved to an address 512k higher in the 20 bit
space, an address normally mapped to RAM. The stack segment and the X PC segment do

28 Rabbit 3000 Microprocessor

not have split | and D space and memory accesses to these segments do not distinguish
between | and D space.

The advantage of having more root code space is that root code executes faster because
short callsusing a 16 bit address are used to call it. This comparesto long callsthat have a
20 bit address for extended code. Data located in the root can be more conveniently
accessed due to the comparatively limited instructions available for accessing datain the
full 20 bit space and the greater overhead involve in manipulating 20 bit addressesin a
processor that has 8 and 16 bit registers.

3.2.3 Using the Stack Segment for Data Storage

Another approach to extending data memory is to use the stack segment to access data,
placing the stack in the data segment so as to free up the stack segment. This approach
works well for a software system that uses data groupings that are self-contained and are
accessed one at atime rather than randomly between all the groupings. An example would
be the software structures associated with a TCP/I P communication protocol connection
where the same code accesses the data structures associated with each connection in a pat-
tern determined by the traffic on each connection.

The advantage of this approach is that normal C data access techniques, such as 16-bit
pointers, may be used. The stack segment register has to be modified to bring the data
structure into view in the stack segment before operations are performed on a particular
data structure. Since the stack has to be moved into the data area, it isimportant that the
number of stacks required be kept to a minimum when using the stack segment to view
data. Of course, tasksthat don’t need to see the data structures can have their stack located
in the stack segment. Another possibility isto have a data structure and a stack located
together in the stack segment, and to use a different stack segment for different tasks, each
task having its own data area and stack bound to it.

These approaches are shown in Figure 3-7 below.

User’s Manual 29

Stack Segment
used as data Stack Segment
/ window used for stack
o Data Segment
- 3 used as data /
b= window
Stacksin data
Data segment Data
(RAM) (RAM)
Root Segment | |
mapped to
Root RAM has both
Code root code and Root
(flash) data. Code
(RAM)
Using Stack Segment Using Data Segment for
for a Data Window a Data Window (Code must
be copied to RAM on startup.)

Figure 3-7. Schemes for Data Memory Windows

A third approach isto place the data and root codein RAM in the root segment, freeing the
data segment to be a window to extended memory. This requires copying the root code to
RAM at startup time. Copying root code to RAM is hot necessarily that burdensome since
the amount of RAM required can be quite small, say 12K for example.

The XPC segment at the top of the memory can also be used as a data segment by pro-
grams that are compiled into root memory. Thisis handy for small programs that need to
access alot of data.

3.2.4 Practical Memory Considerations

The simplest Rabbit configurations have one flash memory chip interfaced using /CS0 and
one RAM memory chip interfaced using /CS1. Typical Rabbit-based systems use 256K of
flash and 128 K of RAM, but smaller or larger memories may be used.

Although the Rabbit can support code size approaching a megabyte, it is anticipated that
the majority of applications will use less than 250K of code, equivalent to approximately
10,000-20,000 C statements. This reflects both the compact nature of Rabbit code and the
typical size of embedded applications.

Directly accessible C variables are limited to approximately 44K of memory, split
between data stored in flash and RAM. Thiswill be more than adequate for many embed-

30 Rabbit 3000 Microprocessor

ded applications. Some applications may require large data arrays or tables that will
require additional data memory. For this purpose Dynamic C supports atype of extended
datamemory that alows the use of additional data memory, even extending far beyond a
megabyte.

Reguirements for stack memory depend on the type of application and particularly
whether preemptive multitasking is used. If preemptive multitasking is used, then each
task requiresits own stack. Since the stack has its own segment in 16-bit address space, it
is easy to use available RAM memory to support alarge number of stacks. When a pre-
emptive change of context takes place, the STACKSEG register can be changed to map
the stack segment to the portion of RAM memory that contains the stack associated with
the new task that is to be run. Normally the stack segment is 4K, whichistypically large
enough to provide space for severa (typicaly four) stacks. It is possible to enlarge the
stack segment if stacks larger than 4K are needed. If only one stack is needed, thenitis
possible to eliminate the stack segment entirely and place the single stack in the data seg-
ment. This option is attractive for systemswith only 32K of RAM that don’t need multiple
stacks.

User’s Manual 31

3.3 Instruction Set Outline

“Load Immediate Data to a Register” on page 33

“Load or Store Data from or to a Constant Address’ on page 33

“Load or Store Data Using an Index Register” on page 34

“Register-to-Register Move” on page 35

“Register Exchanges’ on page 35

“Push and Pop Instructions’ on page 36

“16-bit Arithmetic and Logical Ops’ on page 36

“Input/Output Instructions’ on page 39—these include afix for abug that manifestsitself
if an /O instruction (prefix | A or | OE) isfollowed by one of 12 single-byte op codes that
use HL as an index register.

In the discussion that follows, we give afew example instructionsin each general category
and contrast the Z80/ Z180 with the Rabbit. For a detailed description of every instruction,
see Chapter 19, “Rabbit Instructions’

The Rabbit executes instructions in fewer clocks then the Z80 or Z180. The 2180 usually
requires aminimum of four clocks for 1-byte opcodes or three clocks for each byte for
multi-byte op codes. In addition, three clocks are required for each data byte read or writ-
ten. Many instructions in the Z180 require a substantial number of additional clocks. The
Rabbit usually requires two clocks for each byte of the op code and for each data byte
read. Three clocks are needed for each data byte written. One additional clock isrequired
if amemory address needs to be computed or an index register is used for addressing.
Only afew instructions don’t follow this pattern. An example ismul, a 16 x 16 bit signed
two's complement multiply. mul is a 1-byte op code, but requires 12 clocks to execute.
Compared to the Z180, not only does the Rabbit require fewer clocks, but in atypical situ-
ation it has a higher clock speed and its instructions are more powerful.

The most important instruction set improvements in the Rabbit over the Z180 arein the
following areas.

» Fetching and storing data, especially 16-bit words, relative to the stack pointer or the
index registers1X, 1Y, and HL.

» 16-bit arithmetic and logical operations, including 16-bit and’s, or’s, shifts and 16-bit
multiply.

« Communication between the regular and alternate registers and between the index reg-
isters and the regular registersis greatly facilitated by new instructions. In the Z180 the
aternate register set is difficult to use, while in the Rabbit it is well integrated with the
regular register set.

» Long cdls, long returns and long jumps facilitate the use of 1M of code space. This
removes the need in the Z180 to utilize inefficient memory banking schemes for larger
programs that exceed 64K of code.

32 Rabbit 3000 Microprocessor

* Input/output instructions are now accomplished by normal memory access instructions
prefixed by an op code byte to indicate access to an /0 space. There are two |/O
spaces, internal peripherals and external 1/0 devices.

Some Z80 and Z180 instructions have been deleted and are not supported by the Rabbit
(see Chapter 20, “ Differences Rabbit vs. Z80/2180 Instructions’). Most of the deleted
instructions are obsolete or are little-used instructions that can be emulated by several
Rabbit instructions. It was necessary to remove some instructions to free up 1-byte op
codes needed to implement new instructions efficiently. The instructions were not re-
implemented as 2-byte op codes so as not to waste on-chip resources on unimportant
instructions. Except for the instruction EX (SP) , HL, the original Z180 binary encoding
of op codesisretained for all Z180 instructions that are retained.

3.3.1 Load Immediate Data to a Register

A constant that follows the op code in the instruction stream can generally be loaded to
any register, except PC, IP, and F. (Load to the PC isajump instruction.) Thisincludes the
aternate registers on the Rabbit, but not on the Z180. Some exampl e instructions appear
below.

LD A 3

LD HL, 456

LD BC , 3567 ; not possible on Z180
LD H , 4Ah ; not possible on Z180
LD I X, 1234

LD C, 54

Byte loads require four clocks, word loads require six clocks. Loadsto I X, 1Y or the alter-
nate registers generally require two extra clocks because the op code has a 1-byte prefix.

3.3.2 Load or Store Data from or to a Constant Address

LD A, (m) ; loads 8 bits from address mm

LD A, (mm) ; not possible on Z180

LD (m), A

LD HL, (mm) ; load 16 bits fromthe address specified by m
LD H.',(m) ; to alternate register, not possible Z180

LD (m), HL

Similar 16-bit loads and stores exist for DE, BC, SP, IX and I Y.

It ispossible to load data to the alternate registers, but it is not possible to store the datain
the alternate register directly to memory.

LD A, (mm) ;all owed
** |ID(m),D ; **** not a |legal instruction!
** |D(m),DE ; **** not a |legal instruction!

User’s Manual 33

3.3.3 Load or Store Data Using an Index Register

Anindex register is a 16-bit register, usualy 1X, 1Y, SP or HL, that is used for the address
of abyte or word to be fetched from or stored to memory. Sometimes an 8-bit offset is
added to the address either asa signed or unsigned number. The 8-bit offset isabytein the
instruction word. BC and DE can serve asindex registers only for the specia cases below.

LD A (BO)

LD A", (BO)

LD (BO), A

LD A, (DE)

LD A, (DE)

LD (DE), A

Other 8-bit loads and stores are the following.

LD r, (HL) ; ris any of 7 registers A, B, C, D, E, H L
LD r’, (HL) ; same but alternate register destination
LD (HL), r ; r is any of the 7 registers above

;or an inmedi ate data byte
** |D(HL),r" ;**** not a legal instruction!

LD r, (I X+d) ; r is any of 7 registers, dis -128 to +127 offset
LD r', (I X+d) ; sane but alternate destination

LD (I X+d),r ; r is any of 7 registers or an i mmedi ate data byte
LD (1Y+d),r ; I X or 1Y can have offset d

The following are 16-bit indexed loads and stores. None of these instructions exists on the
Z180 or Z80. The only sourcefor astoreisHL. The only destination for aload isHL or HL'.

LD HL, (SP+d) ; dis an offset fromO to 255.
; 16-bits are fetched to HL or HL’
LD (SP+d), HL ; correspondi ng store

LD HL, (HL+d) ; dis an offset from-128 to +127,
; uses original HL value for addressing
; I=(HL+d), h=(HL+d+1)

LD HL', (HL+d)

LD (HL+d), HL

LD (I X+d), HL ; store HL at address pointed to
; by I X plus -128 to +127 offset

LD HL, (1 X+d)

LD HL', (1 X+d)

LD (1Y+d), HL ; store HL at address pointed to
; by 1Y plus -128 to +127 offset

LD HL, (I Y+d)

LD HL', (1 Y+d)

34 Rabbit 3000 Microprocessor

3.3.4 Register-to-Register Move

Any of the 8-bit registers, A, B, C, D, E, H, and L, can be moved to any other 8-bit regis-
ter, for example:

LD A c
LD d, b
LD e, |

The alternate 8-bit registers can be a destination, for example:

LDa,c

LDd,b
These instructions are unique to the Rabbit and require 2 bytes and four clocks because of
the required prefix byte. InstructionssuchasLD A, d’ orLD d’, e’ arenot allowed.

Several 16-bit register-to-register move instructions are available. Except as noted, these
instructions all require 2 bytes and four clocks. The instructions are listed bel ow.

LD dd’',BC ; where dd' is any of HL', DE, BC (2 bytes, 4 clocks)
LD dd’, DE

LD I X, HL

LD 1Y, HL

LD HL, I'Y

LD HL, I X

LD SP, HL ; 1-byte, 2 clocks

LD SP, I X

LD SP, 1Y

Other 16-bit register moves can be constructed by using 2-byte moves.
3.3.5 Register Exchanges

Exchange instructions are very powerful because two (or more) moves are accomplished
with one ingtruction. The following register exchange instructions are implemented.

EX af, af’ ; exchange af with af
EXX ; exchange HL, DE, BCwith H.', DE, BC
EX DE, HL ; exchange DE and HL

The following instructions are unique to the Rabbit.

EX DE , HL ;1 byte, 2 clocks
EX DE, HLU’ ; 2 bytes, 4 clocks
EX DE, H.' ; 2 bytes, 4 clocks

The following special instructions (Rabbit and Z180/Z80) exchange the 16-bit word on
the top of the stack with the HL register. These three instructions are each 2 bytes and 15
clocks.

EX (SP), HL
EX (SP), I X
EX (SP), 1Y

User’s Manual 35

3.3.6 Push and Pop Instructions

There are instructions to push and pop the 16-bit registers AF, HL, DC, BC, IX, and Y.
Theregisters AF’, HL’, DE’, and BC’ can be popped. Popping the alternate registersis
exclusive to the Rabbit, and is not allowed on the Z80 / Z180.

Examples

POP HL

PUSH BC
PUSH | X
PUSH af
POP DE

POP DE
POP HL’

3.3.7 16-bit Arithmetic and Logical Ops

The HL register isthe primary 16-bit accumulator. X and 1Y can serve as alternate accu-
mulators for many 16-bit operations. The Z180/Z80 has aweak set of 16-bit operations,
and as a practical matter the programmer has to resort to combinations of 8-bit operations
in order to perform many 16-bit operations. The Rabbit has many new op codes for 16-bit
operations, removing some of this weakness.

The basic Z80/2180 16-bit arithmetic instructions are

ADD HL,w ; where w is HL, DE, BC, SP

ADC HL, w ; ADD and ADD carry

SBC HL,w ; sub and sub carry

I NC ww ; increnent the register (w thout affecting flags)

In the above op codes, IX or 1Y can be substituted for HL. The ADD and ADC instructions

can be used to left-shift HL with the carry. An alternate destination prefix (ALTD) may be
used on the above instructions. This causes the result and its flags to be stored in the corre-
sponding alternate register. If the ALTDflag is used when I X or 1Y isthe destination regis-
ter, then only the flags are stored in the alternate flag register.

The following new instructions have been added for the Rabbit.

;Shifts

RR HL ; rotate HL right with carry, 1 byte, 2 clocks
; note use ADC HL,HL for left rotate, or add HL,HL if
; no carry in is needed.

RR DE ; 1 byte, 2 clocks

RL DE ; rotate DE left with carry, 1-byte, 2 clocks

RR IX ; rotate I X right with carry, 2 bytes, 4 clocks

RR 1Y ; rotate Y right with carry

; Logi cal Qperations

AND HL,DE ; 1 byte, 2 clocks
AND | X, DE ; 2 bytes, 4 clocks
AND 1Y, DE

L, ;1 byte, 2 clocks

; 2 bytes, 4 clocks

399
R

D
1Y,

36 Rabbit 3000 Microprocessor

The BOOL instruction is a special instruction designed to help test the HL register. BOCL

setsHL to thevalue 1 if HL isnon zero, otherwise, if HL is zero its valueis not changed.

The flags are set according to the result. BOOL can also operateon IX and IY.

BOOL HL ; set HL to 1 if non- zero, set flags to match HL
BOOL | X
BOOL 1Y

ALTD BOOL HL
ALTD BOCL 1Y

; set HI' an f’ according to HL
; modify 1Y and set f° with flags of result

The SBCinstruction can be used in conjunction with the BOOL instruction for performing
comparisions. The SBC instruction subtracts one register from another and also subtracts
the carry bit. The carry out isinverted compared to the carry that would be expected if the

number subtracted was negated and added. The following examplesillustrate the use of

the SBC and BOOL instructions.

; Test if HL>=DE - HL and DE unsi gned nunbers 0-65535
OR a ; clear carry
SBC HL,DE ; if C==0 then HL>=DE else if C==1 then HL<DE

; convert the carry bit into a boolean variable in HL

SBC HL,HL ; sets HL==0 if C==0, sets HL==0ffffh if C==1
BOOL HL ; HL==1 if C was set, otherw se HL==0

; convert not carry bit into boolean variable in HL
SBC HL,HL ; HL==0 if C==0 else HL==ffff if C=1
I NC HL ; HL==1 if C==0 else HL==0 if C==1

; note carry flag set, but zero / sign flags reversed

In order to compare signed numbers using the SBC instruction, the programmer can map
the numbers into an equivalent set of unsigned numbers by inverting the sign bit of each
number before performing the comparison. This maps the most negative number 08000h
to the smallest unsigned number 0000h, and the most positive signed number 07FFFh to
the largest unsigned number OFFFFh. Once the numbers have been converted, the compa-
rision can be done asfor unsigned numbers. This procedureisfaster than using ajump tree

that requires testing the sign and overflow bits.

; example - test for HL>=DE where HL and DE are signed nunbers
; invert sign bits on both
ADD HL, HL ; shift left

CCF ; invert carry
RR HL ; rotate right
RL DE

CCF

RR DE ; invert DE sign

SBC HL,DE ; no carry if HL>=DE
; generate bool ean variable true if HL>=DE
SBC HL,HL ; zero if no carry else -1
I NC HL ; 1if no carry, else zero
BOOL ; use this instruction to set flags if needed

User’s Manual

37

The SBC instruction can also be used to perform a sign extension.

; extend sign of | to HL

LD A I

rla ; sign to carry

SBC A a ; ais all 1's if sign negative
LD h, a ; sign extended

The multiply instruction performs a signed multiply that generates a 32-bit signed result.

MUL ; signed multiply of BC and DE,
; result in H.:BC - 1 byte, 12 cl ocks

If a16-bit by 16-bit multiply with a 16-bit result is performed, then only the low part of
the 32-bit result (BC) is used. This (counter intuitively) isthe correct answer whether the
terms are signed or unsigned integers. The following method can be used to perform a 16
x 16 bit multiply of two unsigned integers and get an unsigned 32-bit result. This uses the
fact that if a negative number is multiplied the sign causes the other multiplier to be sub-
tracted from the product. The method shown below adds double the number subtracted so
that the effect isreversed and the sign bit istreated as apositive bit that causes an addition.

LD BC, nl
LD HL',BC ; save BC in HL
LD DE, n2
LD A b ; save sign of BC
MUL ; formproduct in HL:BC
R a ; test sign of BCnultiplier
JR p, x1 ; if plus continue
ADD HL, DE ; adjust for negative sign in BC
x1:
RL DE ; test sign of DE
JR nc,x2 ; if not negative
; subtract other multiplier fromHL
EX DE, HL’
ADD HL, DE
X2:

; final unsigned 32 bit result in HL:BC

This method can be modified to multiply a signed number by an unsigned number. In that
case only the unsigned number has to be tested to seeif the signison, and in that case the
signed number is added to the upper part of the product.

The multiply instruction can also be used to perform left or right shifts. A left shift of n
positions can be accomplished by multiplying by the unsigned number 2*n. This works
for n# 15, and it doesn’'t matter if the numbers are signed or unsigned. In order to do a
right shift by n (0 < n < 16), the number should be multiplied by the unsigned number
2"\(16 — n), and the upper part of the product taken. If the number is signed, then asigned
by unsigned multiply must be performed. If the number is unsigned or isto be treated as
unsigned for alogical right shift, then an unsigned by unsigned multiply must be per-
formed. The problem can be ssmplified by excluding the case where the multiplier is
2/\7\15.

38 Rabbit 3000 Microprocessor

3.3.8 Input/Output Instructions

The Rabbit uses an entirely different scheme for accessing input/output devices. Any
memory access instruction may be prefixed by one of two prefixes, one for internal 1/0
space and one for external 1/0 space. When so prefixed, the memory instruction is turned
into an /O instruction that accesses that 1/0 space at the I/O address specified by the 16-
bit memory address used. For example

A LD A (85h) ; loads A register with contents
; of internal I/Oregister at |ocation 85h.

LD 1Y, 4000h

|OE LD HL, (I Y+5) ; get word fromexternal |1/O |ocation 4005h
By using the prefix approach, al the 16-bit memory access instructions are available for
reading and writing /O locations. The memory mapping is bypassed when 1/O operations
are executed.

[/O writesto the internal 1/0 registers require only two clocks, rather than the minimum of
three clocks required for writes to memory or external 1/O devices.

User’s Manual 39

3.4 How to Do It in Assembly Language—Tips and Tricks
3.4.1 Zero HL in 4 Clocks

BOOL HL ; 2 clocks, clears carry, HL. is 1 or O
RR HL ; 2 clocks, 4 total - get rid of possible 1

This sequence requires four clocks compared to six clocksfor LD HL, O.
3.4.2 Exchanges Not Directly Implemented
HL<->HL’ - eight clocks

EX DE , HL ; 2 clocks
EX DE' , HL’ ;4 clocks
EX DE , HL : 2 clocks, 8 total

DE<->DE’ - six clocks

EX DE ,HL ; 2 clocks
EX DE, HL ; 2 clocks
EX DE ,HL ; 2 clocks, 6 total

BC<->BC' - 12 clocks

EX DE , HL
EX DE, HL’

2 cl ocks
4
EX DE, HL ;2
;2
2

EXX
EX DE, HL

Move between IX, 1Y and DE, DE’
IX/1Y->DE / DE->IX/IY

X, I X --> DE

EX DE, HL

LD HL IX/1Y [/ LDIX 1Y, H

EX DE, HL ; 8 clocks total
; DE-->1IX 1Y

EX DE, HL

LD I X/ 1Y, HL

EX DE, HL ; 8 clocks total

3.4.3 Manipulation of Boolean Variables

Logica operationsinvolving HL when HL isalogical variable with avalue of 1 or 0—
thisisimportant for the C language where the least bit of a 16-bit integer is used to repre-
sent alogical result

Logical not operator—invert bit 0 of HL in four clocks (also worksfor IX, 1Y in eight
clocks)

DEC HL ; 1 goes to zero, zero goes to -1
BOOL HL ; -1 to 1, zero to zero. 4 clocks total

Logical xor operator—xor HL, DE when HL/DE are 1 or 0.

ADD HL, DE
RES 1,1 ; 6 clocks total, clear bit 1 result of if 1+1=2

40 Rabbit 3000 Microprocessor

3.4.4 Comparisons of Integers

Unsigned integers may be compared by testing the zero and carry flags after a subtract
operation. The zero flag is set if the numbers are equal. With the SBC instruction the carry
cleared is set if the number subtracted is less than or equal to the number it is subtracted
from. 8-bit unsigned integers span the range 0-255. 16-bit unsigned integers span the
range 0—65535.

R a ; clear carry
SBC HL, DE ; HL=A and DE=B
A>=B IC
A<B C

=B Z
A>B IC&!Z

A<=B CvVv Z

If Alisin HL and B isin DE, these operations can be performed as follows assuming that
the object isto set HL to 1 or O depending on whether the compare is true or false.
; conpute HL<DE

; unsigned integers
;. EXDE,HL ; uncoment for DE<HL

OR a ; clear carry
SBC HL, DE ; Cset if HL<DE
SBC HL, HL ; HL-HL-C -- -1 if carry set

BOOL HL ; set to 1 if carry, else zero
; else result ==
;unsigned integers
conpute HL>=DE or DE>=HL - check for !C
EX DE, HL ; uncomment for DE<=HL

OR a ; clear carry

SBC HL, DE ; 1Cif HL>=DE

SBC HL, HL ; HL-HL-C - zero if no carry, -1if C

I NC HL ;14 / 16 clocks total -if C after first SBC result 1,
; else O

; 0if C, 1if IC

conpute HL==DE

R a ; clear carry

SBC HL,DE ; zero is equal
BOOL HL ; force to zero, 1
DEC HL ; invert logic

BOOL HL ; 12 clocks total -logical not, 1 for inputs equal

User’s Manual 41

Some simplifications are possible if one of the unsigned numbers being compared isa
constant. Note that the carry has a reverse sense from SBC. In the following examples, the
pseudo-code in the form LD DE, (65535- B) does not indicate aload of DE with the
address pointed to by 65535- B, but ssmply indicates the difference between 65535 and
the 16-bit unsigned integer B.

test for HL>B B is constant
LD DE, (65535- B)

ADD HL, DE ; carry set if HL>B
SBC HL, HL ; HL-HL-C - result -1 if carry set, else zero
BOOL HL ;14 total clocks - true if HL>B

HL>=B B is constant not zero
LD DE, (65536- B)
ADD HL, DE
SBC HL, HL
BOOL HL ;14 cl ocks

HL>=B and B is zero
LD HL, 1 ;6 cl ocks

HL<B B is a constant, not zero (if B==0 al ways fal se)
LD DE, (65536- B)

ADD HL,DE ; not carry if HL<B
SBC HL, HL ; -1 if carry, else 0O

I NC HL ; 14 clocks --0 if carry, else 1 if no carry

HL <= B B is constant not zero
LD DE, (65535- B)

ADD HL, DE ; ~Cif HL<=B
CCF ;. Cif true
SBC HL, HL cif C-1else O

I NC HL ; 16 clocks -- 1 if true, else O

HL. <= B Bis zero - true if HL==0
BOOL HL presult in HL

HL==B and B is a constant not zero
LD DE, (65536- B)

ADD HL,DE ; zero if equal
BOOL HL

I NC HL

RES 1,1 ;16 cl ocks

HL==B and B==0

BOOL HL

I NC HL

RES 1,1 ;8 cl ocks
For signed integers the conventional method to look at the zero flag, the minus flag and
the overflow flag. Signed 8-bit integers span the range —128 to +127 (80h to 7Fh). Signed
16-bit integers span the range —32768 to + 32767 (8000h to 7FFFh). The sign and zero
flag tell which isthe larger number after the subtraction unless the overflow is set, in
which case the sign flag needs to be inverted in the logic, that is, it iswrong.

42 Rabbit 3000 Microprocessor

ASB (1S&!V&!Z) v (S&V

AB (S &!V) v (IS&V &'2

A==B

A>=B

A<=B
Another method of doing signed compareisto first map the signed integers onto unsigned
integers by inverting bit 15. Thisis shown in Figure 3-8. Once the mapping has been per-
formed by inverting bit 15 on both numbers, the comparisions can be done as if the num-
bers were unsigned integers. This avoids having to construct a jump tree to test the

overflow and sign flags. An example is shown below.
; test HL>5 for signed integers

LD DE, 65535- (5+08000h) ; 5 nmapped to unsigned integers
LD BC, 08000h

ADD HL,BC ; invert high bit
ADD HL, DE ; 16 clocks to here
; carry now set if HL>5 - opportunity to jump on carry
SUBC HL,HL ; HL-HL-C cif Conresult is -1, else zero
BOOL HL ; 22 clocks total - true if HL>5 el se fal se
0111... 1111...
000... — | 100...
111... 011...
100... 000...

Figure 3-8. Mapping Signed Integers to Unsigned Integers by Inverting Bit 15

3.4.5 Atomic Moves from Memory to I/O Space

To avoid disabling interrupts while copying a shadow register to its target register, it is
desirable to have an atomic move from memory to /O space. This can be done using LDD
or LDI instructions.

LD HL, sh_PDDDR ; point to shadow register
LD DE, PDDDR ; set DEto point to I/Oreg
SET 5, (HL) ; set bit 5 of shadow register
; use ldd instruction for atom c transfer
Id 1dd ; (io DE)<-(HL) HL--, DE--

When the LDD instruction is prefixed with an 1/O prefix, the destination becomes the 1/0
address specified by DE. The decrementing of HL and DE isa side effect. If the repeating
instructions LDIR and LDDR are used, interrupts can take place between successive itera-
tions. Word stores to 1/0 space can be used to set two 1/O registers at adjacent addresses
with a single noninterruptabl e instruction.

User’s Manual 43

3.5 Interrupt Structure

When an interrupt occurs on the Rabbit, the return addressis pushed on the stack, and con-
trol istransferred to the address of the interrupt service routine. The address of the inter-
rupt service routine has two parts. the upper byte of the address comes from a special
register and the lower byte is fixed by hardware for each interrupt, as shown in Table 6-1.
There are separate registers for internal interrupts (11R) and external interrupts (EIR) to
specify the high byte of the interrupt service routine address. These registers are accessed
by special instructions.

LD A IR

LDIIRA

LD A EIR

LD EIR A
Interrupts are initiated by hardware devices or by certain 1-byte instructions called reset
instructions.

RST 10

RST 18

RST 20

RST 28

RST 38
The RST instructions are similar to those on the Z80 and Z180, but certain ones have been
removed from the instruction set (00, 08, 30). The RST interrupts are not inhibited regard-
less of the processor priority. The user is advised to exercise caution when using these
instructions as they are mostly reserved for the use of Dynamic C for debugging. Unlike
the Z80 or Z180, the IR register contributes the upper byte of the service routine address
for RST interrupts.

Since interrupt routines do not affect the XPC, interrupt routines must be located in the
root code space. However, they can jump to the extended code space after saving the XPC
on the stack.

3.5.1 Interrupt Priority

The Z80 and Z180 have two levels of interrupt priority: maskable and nonmaskable. The
nonmaskabl e interrupt cannot be disabled and has afixed interrupt service routine address
of 66h. The Rabbit, in contrast, hasthree levels of interrupt priority and four priority levels
at which the processor can operate. If an interrupt is requested, and the priority of the
interrupt is higher than that of the processor, the interrupt will take place after the execu-
tion of the current instruction is complete (except for privileged instructions)

Multiple interrupt priorities have been established to make it feasible for the embedded
systems programmer to have extremely fast interrupts available. Interrupt latency refersto
the time required for an interrupt to take place after it has been requested. Generally, inter-
rupts of the same priority are disabled when an interrupt service routine is entered. Some-
times interrupts must stay disabled until the interrupt service routine is completed, other
times the interrupts can be re-enabled once the interrupt service routine has at least dis-
abled its own cause of interrupt. In any case, if several interrupt routines are operating at

44 Rabbit 3000 Microprocessor

the same priority, thisintroduces interrupt latency while the next routine is waiting for the
previous routine to allow more interrupts to take place. If a number of devices have inter-
rupt service routines, and all interrupts are of the same priority, then pending interrupts
can not take place until at least the interrupt service routine in progressis finished, or at
least until it changes the interrupt priority. Asarule of thumb, Z-World usually suggests
that 100 ps be allowed for interrupt latency on Z180- or Rabbit-based controllers. Thiscan
result if, for example, there are five active interrupt routines, and each turns off the inter-
rupts for at most 20 ps.

The intention in the Rabbit is that most interrupting devices will use priority 1 level inter-
rupts. Devices that need extremely fast response to interrupts will use priority level 2 or 3
interrupts. Since code that runs at priority level O or 1 never disableslevel 2 and level 3
interrupts, these interrupts will take place within about 20 clocks, the length of the longest
instruction or longest sensible sequence of privileged instructions followed by an unprivi-
leged instruction. It isimportant that the user be careful not to overdisable interruptsin
critical code sections. The processor priority should not be raised above level 1 except in
carefully considered situations.

The effect of the processor priority on interruptsis shown in Table 3-1. The priority of the
interrupt is usually established by bitsin an I/O control register associated with the hard-
ware that creates the interrupt. The 8-bit interrupt register (IP) holds the processor priority
in the least significant 2 bits. When an interrupt takes place, the IP register is shifted left 2
positions and the lower 2 bits are set to equal the priority of the interrupt that just took
place. This meansthat an interrupt service request (ISR) can only be interrupted by an
interrupt of higher priority (unless the priority is explicitly set lower by the programmer).
The IP register serves as a4-word stack of 2-bit words to save and restore interrupt priori-
ties. It can be shifted right, restoring the previous priority by aspecial instruction (I PRES).
Since only the current processor priority and 3 previous priorities can be saved in the inter-
rupt register, instructions are also provided to PUSHand POP | P using the regular stack. A
new priority can be “pushed” into the IP register with special instructions (I PSET 0,

| PSET 1,1 PSET 2,1 PSET 3).

Table 3-1. Effect of Processor Priorities on Interrupts

Processor
o Effect on Interrupts
Priority
0 All interrupts, priority 1,2 and 3 take place after
execution of current non privileged instruction.

1 Only interrupts of priority 2 and 3 take place.
2 Only interrupts of priority 3 take place.
3 All interrupt are suppressed (except RST instruction).

User’s Manual 45

3.5.2 Multiple External Interrupting Devices

The Rabbit 3000 has two distinct external interrupt request lines. If there are more than
two external causes of interrupts, then these lines must be shared between multiple
devices. The interrupt line is edge-sensitive, meaning that it requests an interrupt only
when arising or falling edge, whichever is specified in the setup registers, takes place. The
state of the interrupt line(s) can aways be read by reading Parallel Port E since they share
pinswith Parallel Port E.

If several lines are to share interrupts with the same port, the individual interrupt requests
would normally be or’ ed together so that any device can cause an interrupt. If severd
devices are requesting an interrupt at the same time, only one interrupt results because
there will be only one transition of the interrupt request line. To resolve the situation and
make sure that the separate interrupt routines for the different devices are caled, a good
method isto have ainterrupt dispatcher in software that is aided by providing separate
attention request lines for each device. The attention request lines are basically the inter-
rupt request lines for the separate devices before they are or’ ed together. The interrupt dis-
patcher calls the interrupt routines for all devices requesting interruptsin priority order so
that all interrupts are serviced.

3.5.3 Privileged Instructions, Critical Sections and Semaphores

Normally an interrupt happens at the end of the instruction currently executing. However,
if the instruction executing is privileged, the interrupt cannot take place at the end of the
instruction and is deferred until anon privileged instruction is executed, usualy the next
instruction. Privileged instructions are provided as a handy way of making a certain oper-
ation atomic because there would be a software problem if an interrupt took place after the
instruction. Turning off the interrupts explicitly may be too time consuming or not possi-
ble because the purpose of the privileged instruction is to manipulate the interrupt con-
trols. For additional information on privileged instructions, see Section 19.19, “Privileged
Instructions”.

The privileged instructions to load the stack are listed below.

LD SP, HL

LD SP, 1Y

LD SP, I X
The following instructions to load SP are privileged because they are frequently followed
by an instruction to change the stack segment register. If an interrupt occurs between these
two instructions and the following instruction, the stack will be ill-defined.

LD SP, HL
IO LD sseg, a

46 Rabbit 3000 Microprocessor

The privileged instructions to manipulate the I P register are listed below.

| PSET 0O ; shift 1P left and set priority 00 in bits 1,0

| PSET 1

| PSET 2

| PSET 3

| PRES ; rotate P right 2 bits, restoring previous priority
RETI ; pops I P fromstack and then pops return address
POP I P ; pop I P register from stack

3.5.4 Critical Sections

Certain library routines may need to disable interrupts during a critical section of code.
Generally these routines are only legal to call if the processor priority iseither Oor 1. A
priority higher than thisimplies custom hand-coded assembly routines that do not call
general-purpose libraries. The following code can be used to disable priority 1 interrupts.

| PSET 1 ; save previous priority and set priority to 1

....critical section...

IPRES ; restore previous priority
Thiscodeissafeif it is known that the code in the critical section does not have an embed-
ded critical section. If thiscode is nested, thereisthe danger of overflowing the IPregister.
A different version that can be nested is the following.

PUSH | P

IPSET 1 ; save previous priority and set priority to 1

....critical section...

POP I P ; restore previous priority

The following instructions are also privileged.

LD A xpc
LD xpc, a
BIT B, (HL)

3.5.5 Semaphores Using Bit B,(HL)

Thebit B, (HL) ingtructionis privileged to allow the construction of a semaphore by the
following code.

BIT B, (HL) ; test a bit in the byte at (HL)

SET B, (HL) ; make sure bit set, does not affect flag

if zero flag set the semaphore bel ongs to us;

; otherw se someone else has it
A semaphore is used to gain control of aresource that can only belong to one task or pro-
gram at atime. Thisisdone by testing a bit to seeif it ison, in which case someone elseis
using the resource, otherwise setting the bit to indicate ownership of the resource. No
interrupt can be allowed between the test of the bit and the setting of the bit as this might
allow two different program to both think they own the resource.

User’s Manual 47

3.5.6 Computed Long Calls and Jumps

The instruction to set the XPC is privileged to so that acomputed long call or jump can be
made. Thiswould be done by the following sequence.

LD xpc, a
JP (HL)

In thiscase, A hasthe new XPC, and HL has the new PC. This code should normally be
executed in the root segment so as not to pull the memory out from under the JP (HL)
instruction.

A call to a computed address can be performed by the following code.

; A=xpc, | Y=address
LD A, newxpc
LD 1Y, newaddr ess
LCALL DOCALL ; call utility routine in the root

; The DOCALL routine

DOCALL:
LD xpc, a i SET xpc
JP (1Y) ; go to the routine

48 Rabbit 3000 Microprocessor

4. RABBIT CAPABILITIES

This chapter describes the various capabilities of the Rabbit that
may not be obvious from the technical description.

4.1 Precisely Timed Output Pulses

The Rabbit can output precise pulses under software control. The effect of interrupt latency
is avoided because the interrupt always prepares a future pulse edge that is clocked into
the output registers on the next clock. Thisis shown in Figure 4-1.

L 1 __ T Timer Output
A B

C Parallel Port Output

b b

Latency Parallel Port Output
I nterrupt -
routine sets
. Timer Output
Setup Register

Figure 4-1. Timed Output Pulses

Thetimer output in Figure 4-1 is periodic. Aslong as the interrupt routine can be com-
pleted during one timer period, an arbitrary pattern of synchronous pulses can be output
from the parallel port.

The interrupt latency depends on the priority of the interrupt and the amount of time that
other interrupt routines of the same or higher priority inhibit interrupts. The first instruc-
tion of the interrupt routine will start executing within 30 clocks of the interrupt request
for the highest priority interrupt routine. Thisincludes 19 clocksfor the longest instruction
to complete execution and 10 clocksfor the interrupt to execute. Pushing registersrequires
10-12 clocks per 16-bit register. Popping registers requires 7-9 clocks. Return from inter-
rupt requires 7 clocks. If three registers are saved and restored, and 20 instructions averag-
ing 5 clocks are executed, an entire interrupt routine will require about 200 clocks, or 10
us with a20 MHz clock. Given this timing, the following capabilities become possible.

User’s Manual 49

Pulse width modulated outputs—The minimum pulse width is 10 us. If the repetition rate
is 10 ms, then a new pulse with 1000 different widths can be generated at the rate of 100
times per second.

Asynchronous communications serial output—A synchronous output data can be gener-
ated with anew pulse every 10 ps. This corresponds to a baud rate of 100,000 bps.

Asynchronous communications serial input—To capture asynchronous serial input, the
input must be polled faster than the baud rate, aminimum of three times faster, with five
times being better. If five times polling is used, then asynchronous input at 20,000 bps
could be received.

Generating pulseswith precise timing relationships—T he rel ationship between two events
can be controlled to within 10 psto 20 us.

Using atimer to generate a periodic clock allows events to be controlled to a precision of
approximately 10 us. However, if Timer B is used to control the output registers, a preci-
sion approximately 100 times better can be achieved. Thisisbecause Timer B has a match
register that can be programmed to generate a pulse at a specified future time. The match
register has two cascaded registers, the match register and the next match register. The
match register isloaded with the contents of the next match register when apulseis gener-
ated. This allows events to be very close together, one count of Timer B. Timer B can be
clocked by syscl k/2 divided by anumber in the range of 1-256. Timer B can count asfast
as 10 MHz with a20 MHz system clock, allowing events to be separated by aslittle as 100
ns. Timer B and the match registers have 10 bits.

Using Timer B, output pulses can be positioned to an accuracy of cl k/2. Timer B can also
be used to capture the time at which an external event takes place in conjunction with the
external interrupt line. The interrupt line can be programmed to interrupt on either rising,
falling or both edges. To capture the time of the edge, the interrupt routine can read the
Timer B counter. The execution time of the interrupt routine up to the point where the
timer isread can be subtracted from the timer value. If no other interrupt is of the same or
higher priority, then the uncertainty in the position of the edge is reduced to the variable
time of the interrupt latency, or about one-half the execution time of the longest instruc-
tion. This uncertainty is approximately 10 clocks, or 0.5 pusfor a20 MHz clock. This
enables pulse width measurements for pulses of any length, with a precision of about 1 us.
If multiple pulses need to be measured simultaneously, then the precision will be reduced,
but this reduction can be minimized by careful programming.

4.1.1 Pulse Width Modulation to Reduce Relay Power

Typicaly relays need far less current to hold them closed than is needed to initially close
them. For example, if the driver is switched to a 75% duty cycle using pul se width modu-
lation after theinitial period when therelay armature is picked, the holding current will be
approximately 75% of the full duty-cycle current and the power consumption will be
about 56% as great.

50 Rabbit 2000 Microprocessor

4.2 Open-Drain Outputs Used for Key Scan

The Parallel Port D outputs can be individually programmed to be open drain. Thisis use-
ful for scanning a switch matrix, as shown in Figure 4-2. A row isdriven low, then the col-
umns are scanned for alow input line, which indicates akey is closed. Thisisrepeated for
each row. The advantage of using open-drain outputsisthat if two keys in the same col-
umn are depressed, there will not be a fight between a driver driving the line high and
another driver driving it low.

+ + + + +
' 2 2
o.d. $ % ; %
e NN N DN
FENVARN VAN VAN VAN

=2 & ¢ .
EGNEGG

Figure 4-2. Using Open-Drain Outputs for Key Scan

N
N
N
N
N
N

User’s Manual 51

4.3 Cold Boot

Most microprocessors start executing at a fixed address, often address zero, after areset or
power-on condition. The Rabbit has two mode pins (SMODEO, SMODE1—see Figure 5-
1). Thelogic state of these two pins determines the startup procedure after areset. If both
pins are grounded, then the Rabbit starts executing instructions at address zero. On reset,
address zero is defined to be the start of the memory connected to the memory control
lines /CSO, and /OEQ. However, three other startup modes are available. These alternate
methods all involve accepting a data stream viaa communications port that is used to store
a boot program in a RAM memory, which in turn can be used to start any further second-
ary boot process, such as downloading a program over the same communications port.
(For a detailed description, see Section 7.11, “Bootstrap Operation.”)

Three communication channels may be used for the bootstrap, either Serial Port A in asyn-
chronous mode at 2400 bps, Serial Port A in synchronous mode with an external clock, or
the (paralel) slave port.

The cold-boot protocol accepts groups of three bytes that define an address and a data
byte. Each triplet causes awrite of the data byte to either memory or to internal 1/0 space.
The high bit of the addressis set to specify the 1/0 space, and thus writes are limited to the
first 32K of either space. The cold boot isterminated by a store to an addressin /O space,
which causes execution to begin at address zero. Since any memory chip can be remapped
to address zero by storing in the 1/O space, RAM can be temporarily be mapped to zero to
avoid having to deal with the more complicated write protocol of flash memory, whichis
the usual default memory located at address zero.

The following are the advantages of the cold-boot capability.

» Flash memory can be soldered to the microprocessor board and programmed viaa
serial port or aparallel port. This avoids having to socket the part or program it with a
BIOS or boot program before soldering.

» Complete reprogramming of the flash memory can be accomplished in thefield. Thisis
particularly useful during software development when the development platform can
perform a complete reload of software regardless of the state of the existing softwarein
the processor. The standard programming cable for Dynamic C allows the devel opment
platform to reset and cold boot the target, a Rabbit-based microprocessor board.

 If the Rabbit is used as a dave processor, the master processor can cold boot it over via
the slave port. This means the slave can operate without any nonvolatile memory. Only
RAM isrequired.

52 Rabbit 2000 Microprocessor

4.4 The Slave Port

The slave port allows a Rabbit to act as a slave to another processor, which can also be a
Rabbit. The slave has to have only a processor chip, aRAM chip, and clock and reset sig-
nalsthat can be supplied by the master. The master can cold boot and download a program
to the slave. The master does not have to be a Rabbit processor, but can be any type of pro-
cessor capable of reading and writing standard registers.

For adetailed description, see Chapter 13, “Rabbit Slave Port.”

The dlave processor’s slave port is connected to the master processor’s data bus. Commu-
nication between the master and the slave takes place via three registers, implemented in
the Rabbit, for each direction of communication, for atotal of six dataregisters. In addi-
tion, there is a slave port status register that can be read by either the master or the dave
(see Figure 13-1). Two slave address lines are used by the master to select the register to
be read or written. Theregistersthat carry datafrom the master to the slave appear aswrite
registers to the master and as read registers to the slave. The registers that operate in the
opposite direction appear as read registers to the master and as write registers to the slave.
These registers appear as read-write registers on both sides, but are not true read-write reg-
isters since different data may be read from what is written. The master provides the clock
or strobe to store data in the three write registers under its control. The master also can do
awrite to the status register, which is used as a signaling device and does not actually
write to the status register. The three registers that the master can write appear as read reg-
isters to the slave Rabbit. The master provides an enable strobe to read the three read data
registers and the status register. These registers are write registers to the Rabbit.

Thefirst register or the three pairs of registersis special in that writing can interrupt the
other processor in the master-slave communications link. An output line from the slave is
asserted when the slave writes to slave register zero. This line can be used to interrupt the
master. Internal circuitsin the slave can be setup up to interrupt the slave when the master
writes to slave register zero.

The status register that is available to both sides keeps score on all the registers and reports
If apotential interrupt is requested by either side. The status register keeps track of the
"full-empty" status of each register. A register is considered full when one side of the link
writesto it. It becomes empty if the other sidereadsit. Inthisway either side cantest if the
other side has modified aregister or whether either side has even stored the same informa-
tion to aregister.

The master-slave communication link makes possible "set and forget” communication
protocols. Either side can issue acommand or request by storing datain some register and
then go about its business while the other side takes care of the request according to its
own time schedule. The other side can be alerted by an interrupt that takes place when a
store is made to register zero, or it can aert itself by a periodic poll of the status register.

User’s Manual 53

Of the three registers seen by each side for each direction of communication, the first reg-
ister, slave register zero, has a special function because an interrupt can only be generated
by awrite to this register, which then causes an interrupt to take place on the other side of
the link if the interrupt is enabled. One type of protocol isto store datafirst in registers 1
and 2, and then as the last step store to register 0. Then 24 bits of data will be available to
the interrupt routine on the other side of the link.

Bulk data transfers across the link can take place by an interrupt for each byte transferred,
similar to atypical serial port or UART. In this case, afull-duplex transfer can take place,
similar to what can be done with a UART. The overhead for such an interrupt-driven trans-
fer will be on the order of 100 clocks per byte transferred, assuming a 20-instruction inter-
rupt routine. (To keep the interrupt routine to 20 instructions, the interrupt routine needsto
be very focused as opposed to general purpose.) Several methods are available to cater to
afaster transfer with less computing overhead. There are enough registers to transfer two
bytes on each interrupt, thus nearly halving the overhead. If arendezvousis arranged
between the processors, data can be transferred at approximately 25 clocks per byte. Each
side pollsthe status register waiting for the other side to read/write a dataregister, which is
then written/read again by the other side.

4.4.1 Slave Rabbit As A Protocol UART

A prime application for the Rabbit used asa daveisto create a4-port UART that can also
handle the details of a communication protocol. The master sends and receives messages
over the slave port. Error correction, retransmission, etc., can be handled by the slave.

54 Rabbit 2000 Microprocessor

5. PIN ASSIGNMENTS AND FUNCTIONS

User’s Manual 55

5.1 LQFP Package
5.1.1 Pinout

Rabbit 3000 (AT56C55-1L1T)
128-pin Low-Profile Quad Flat Pack (LQFP)
14 x 14 Body, 0.4 mm pitch

4
z8ssk
EEEEY o 28
id<dz <2E2 588338358 © o
SR8z, 202250 SIS T
0299923233253 083,8883828a88888_ o
A E RN S R R R R IS T
OO0 00 e e r]r]ee
voplo 1§ 88 EI X JIIZ2E22I2E52886588388858 888 51 gg0
CLK[]2 O 951 JOE1
/ICS2[]3 941 A11
STATUS [|4 93] A9
IOEO [|5 92[1 A8
A10[]6 911 A13
ICS0[]7 901 A14
VDDCORE [|8 89| 1 VSSCORE
VSSCORE [9 88|] VDDCORE
D7 |10 8711 A17
D6] 11 861 /WEO
D5 []12 85/ 1 A18
D4 []13 841 A16
D3 []14 83[] A15
D2[]15 821 A12
VSSIO |16 811 vDDIO
VvDDIO []17 801 vssio
D118 791 A7
Do []19 781 A6
A0 []20 7711 A5
A1[]21 761 A4
A2 |22 751 PCO, TXD
A3 []23 741 PC1, RXD
VDDCORE [24 73|11 VSSCORE
VSSCORE [|25 72[] VDDCORE
ISCS, 17, PE7 [| 26 7111 PC2, TXC
16, PE6 [| 27 70[1 PC3, RXC
INT1B, 15, PE5 |28 691 PAC4, TXB
INTOB, 14, PE4 [|29 68|] PC5, RXB
13, PE3 []30 671 PC6, TXA
12, PE2 [31 66/ 1 PC7, RXA
VSSIOLI32, & & o m 0 0 6 — &t ™ < b © ~ © & 6 — &l ™ % 6 © ~ ® & 6 « & o <65 VDDIO
M O M MO O O O F F F F F T T T 000N 0N LN LN O O O o o
OOy g
T T ONOULYT K AZETOFETOXEENOLITONTO®MANTTOQO
EEER O = 3 888823500 ERERRERRE
S=seyuuww=S20228¢ >38°ggdd ey w >
igEF3s T Ewn- CPw FEEE EE XS
- S [T << g < [T
zE &= ® "

Figure 5-1. Package Outline and Pin Assignments

56 Rabbit 3000 Microprocessor

5.1.2 Mechanical Dimensions and Land Pattern
Figure 5-2 shows the mechanical dimensions of the Rabbit 3000 L QFP package.

16.00 £ 0.25 mm

Y

A

14.00 +0.10 mm |

3

]
]
L
L
L
= |

14.00 £ 0.10 mm
16.00 £ 0.25 mm

The same pin dimensions apply
along the x axis and the y axis.

A=

A

1.40 £ 0.05 mm
VA /

F

0.10 £ 0.056 mm

+0.10 mm
<060 _ 515 mm

vy3

Figure 5-2. Mechanical Dimensions Rabbit LQFP Package

User’s Manual

57

Figure 5-3 shows the PC board land pattern for the Rabbit 3000 chip in a 128-pin LQFP
package. Thisland pattern is based on the IPC-SM-782 standard developed by the Surface
Mount Land Patterns Committee and specified in Surface Mount Design and Land Pat-
tern Standard, 1PC, Northbrook, IL, 1999.

750 \
Jouot ooooi__
,i% Py g

15.3 mm
12.4 mm
13.75 mm
16.85 mm

Jutud

BB
J;.O
T.

TOLERANCE AND SOLDER JOINT ANALYSIS

J1:0.29-0.55 mm Jy: 0.29-0.604 mm Jg:-0.01-0.077 mm
— |

max

Zmax: 16.85 mm o Gmin: 13.75 mm . X:0.18 mm‘
Toe Fillet Heel Fillet Side Fillet

J: Solder fillet min/max (toe, heel, and side respectively)
L: Toe-to-toe distance across chip

S: Heel-to-heel distance across chip

T: Toe-to-heel distance on pin
W: Width of pin

Figure 5-3. PC Board Land Pattern for Rabbit 3000 128-pin LQFP

58 Rabbit 3000 Microprocessor

9 10 11 12

8

w
o
FOz 0800020080808 O O¢
OfF Oz 08 Oz Oz Oz O O ©Og O O OF
>
- - o) . & ° o) . & o ~ ©
()] — ()]
Ot O O3 O2 O3 Oz O3 O Og Og Ot OF
> >
w
o & 0 - o o)
OF Ot 030208 0203 0208 O Og O3
o o) < @B < o < a e 7] a
> W > > >
> T 2 T 3 i o © 3 3 3 5
O O 0O 0z 0Oz 0 0Oz 02 ©O8 O8 O O?

e 02 O OF
Oz Of Of Oz
o -
(]
3 3 %) =
<< << %) o
E E 2
x x
o
02 Ok Of O3
o o o [a]
>
© [T} < ™
O O Of OF
o o o o

Of Of O Os Oz Oz O OF OF O O O

w
e
o
O
n
[92
>

~
L
o

© o
e -
o <

O
O
O
O
O
O
O
O
O
O
O

< [s2} N -~
Oz OF Of Of
a a a o
= ~ © 0
o a o) fa
g a a a

- o Y
»n
o
Q 2 3

5 N i
Ot O8 Os O
o > >
= o 7]

e
S
@

/BUFEN /RESET RESOUT

o

[m)]
[a)]
>

[T}
(O]
o

<
L
o

W w
o) ~ o o o o o
= o = o Yo} = o <o}
2 O8 O8 8 Og Oz Og Of Og OF O
Og Og O Og O Og Oz Og O Og OfF O
> = 5 > 5 >
o [0}
= N 2 Q © o~ — ~
: 2 05 08 O3 O8 Oz OF O OF O
Og O3 O: Og O8 O3 Oz Oz Of OF Of OF
(2]

< 0o O O W w ©O

T » ¥ 4 S

128-pin Thin Map Ball Grid Array (TFBGA)

5.2 Ball Grid Array Package
10 x 10 Body, 0.8 mm pitch

5.2.1 Pinout
Rabbit 3000 (AT56C55-1Z1T)

Figure 5-4. Ball Grid Array Pinout Looking Through the Top of Package

59

User’s Manual

5.2.2 Mechanical Dimensions and Land Pattern

Table 5-2. Ball and Land Size Dimensions

Nominal Ball Tolerance . Nominal Land Land
. o Ball Pitch . o
Diameter Variation Diameter Variation
(mm) (mm) () (mm) (mm)
0.3 0.35-0.25 0.8 0.25 0.25-0.20

The design considerationsin Table 5-3 are based on 5 mil design rules and assume asingle

conductor between solder lands.

Table 5-3. Design Considerations
(all dimensions in mm)

Key Feature Recommendation
A Solder Land Diameter 0.254 (0.010)
B NSMD Defined Land Diameter 0.406 (0.016)
C Land to Mask Clearance (min.) 0.050 (0.002)
D Conductor Width (max.) 0.127 (0.005)
E Conductor Spacing (typ.) 0.127 (0.005)
F Via Capture Pad (max.) 0.457 (0.018)
G ViaDrill Size (max.) 0.254 (0.010)

—>|E<—

Land and Trace Via

60

Rabbit 3000 Microprocessor

"n m o 0 @ >

E r X « I ®

TOP VIEW BOTTOM VIEW
123456‘789101112 121110987‘654321
A 0O0O00O0O0/l0O00O0O0O0
B %@ooooooooooo
c ?—'oooooooooooo
D 0O0O00O0O0|l0O00O0O0O
E J O0O0O0 0O 00O
F| i §7oooo 0O0O0O0
G g O 00O O0O0O0
H T O0O0O0 0O0O0O0
J O0O0OO0O0O0|0O0O0O0O0O0
K 0O0O00O0O0|/l0O0O0O0O0O
L O0O0OO0OO0O0/0OO0OO0O0OO0OO
M O000O0OO0O|l0OO0O o}
| ° 0
*»‘0.80‘4—
10.00 £ 0.05
8% Ball Pitch: 0.80 mm
i <E Ball Diameter: 0.3 mm (0.25~0.35)
AT X7 X7 X7 X7 71
ot
céi

Figure 5-5. BGA Package Outline

User’s Manual

5.2.3 Soldering Guidelines

Figure 5-6 shows the time/temperature reflow profile for the TFBGA Rabbit 3000. The
reflow profile demonstrated in the graph shows a continuous, but gradual ramp up and
ramp down of temperature over time. The three main phases of the profile include pre-
heat/soak, reflow, and cooldown.

260

240
220
200

Peak Temp.
210°-235°C

180
160 |
140

Soaking Zone ! Reflow Zone |

5 (2.0 min max.) 5(30—90 s max.)i
i ~80-90 seconds typ. | ~30-60 s typ. !

120+
100
80

Temperature (°C)

F:’reheating Zone CiooI-Dow:n
: >4

60 (2:0-4.0 min max.) : i Zone |

40}
20

P R R S SR S
0 30 60 90 120 150 180 200 240 270 300

Time (seconds)

Figure 5-6. TFBGA Reflow Temperature Profile

The pre-heat/soak phaseis critical in preparing the printed circuit board, components, sol-
der paste, and flux for the reflow phase. During this phase, the temperature of the assem-
bly rises gradually as heat is applied and the flux is activated. It isimportant not to dwell
in the preheat zone for a period longer than recommended as the flux may be consumed
before the solder beginsto melt. Thisisimportant because flux not only helps with solder-
ability but also protects the solderable surfaces by reducing metal oxidation as the temper-
ature rises to the solder melting point.

During the reflow phase, the temperature is further elevated to causes the solder alloy to
change from asolid to aliquid so that it can flow in the areas where solder paste has been
applied. The dwell time and peak temperature reached during the reflow phase have a

62 Rabbit 3000 Microprocessor

direct bearing on the integrity of the solder joint and on the reliability of the assembly. A
shorter than recommended dwell timewill result in poor adhesion because the solder alloy
has not had sufficient time to melt properly and wet the entire solder pad. An extended
dwell time above the solder melting point may damage temperature-sensitive components
and result in excessive intermetallic growth. Excessive intermetallic growth refersto the
creation of athick intermetallic layer in the solder joint that is hard but brittle, and can
break easlly.

The cooling phase finalizes the bonding process between the solder pad and the BGA sol-
der balls. The cooling rate isimportant since it affects the strength of the finished solder
joint. If cooling takes place too quickly, the components may crack or solder joints may
experience excessive stress. If cooling takes place too slowly, excessive intermetallic
growth will develop in the solder joints, leading to hard, brittle solder joints.

User’s Manual 63

5.3 Rabbit Pin Descriptions

Table 5-1 lists all the pins on the device, along with their direction, function, and pin num-
ber on the package.

Table 5-1. Rabbit Pin Descriptions

Pin Pin
Pin Group Pin Name Direction Function Numbers | Numbers
LQFP TFBGA
Hardware CLK Output Internal Clock 2 Bl
CLK32K Input 32 kHz Oscillator In 49 L6
/RESET Input Master Reset 46 M5
RESOUT Output Reset Output 50 M6
XTALA1 Input Main Oscillator In 113 B7
XTALA2 Output Main Oscillator Out 114 A7
CPU Buses |ADDR[19:0] |Output Address Bus various
] R 10-15, 18- | D4, E1-E4,
DATA[7:0] Bidirectional |DataBus 19 F1. F4. GO
Status/Control | /WDTOUT Output WDT Time-Out 43 J5
STATUS Output Instruction Fetch First 4 c1
Byte
SMODE[1:0] |Input Bootstrap Mode Select 44, 45 K5, L5
/CSO Output Memory Chip Select 0 7 D1
Memory Chip .
Selects /ICS1 Output Memory Chip Select 1 47 Jo
/ICS2 Output Memory Chip Select 2 3 B2
Memory /OEQ Output Memory Output Enable 0 |5 Cc2
Output
Enables /OE1 Output Memory Output Enable 1 | 95 C12
Memory /WEQ Output Memory Write Enable0 | 86 Fo
Write Enables | \\/gq Output Memory Write Enable 1 | 99 B11
1/O Control /BUFEN Output I/O Buffer Enable 42 M4
/IORD Output I/0 Read Enable 41 L4
/IOWR Output 1/O Write Enable 40 K4
D7, A8, B8,
1/O ports PA[7:0] Input / Output | I/0 Port A 111-104 C8, D8, A9,
B9, C9
64 Rabbit 3000 Microprocessor

Table 5-1. Rabbit Pin Descriptions (continued)

Pin Pin
Pin Group Pin Name Direction Function Numbers | Numbers
LQFP TFBGA
1/0 ports C4, A5, B5,
(continued) PB[7:0] Input / Output | 1/0 Port B 123-116 C5, D5, A6,
B6, C6
L11, M11,
. 6671, 74, |M12, L12,
PC[7:0] 41n/ 4 Out 1/0 Port C 75 K12 K11,
J10, H12
K7,L7, M7,
PD[7:0] Input / Output | I/O Port D 52-59 Jg, K8, L8,
M8, J9
. 26-31, 34, |H4, J1-34,
PE[7:0] Input / Output | 1/O Port E 35 K1 L1L2
A3, B3, A4,
. 127-124, |B4, A10,
PF[7:0] Input / Output | I/O Port F 103-100 B10, All,
Al12
M1, M2, L3,
PG[7:0] Input / Output | 1/0O Port G 22_38’ 60- M3, K9, L9,
M9, K10
Power, VDDCORE 433V 8,24,72, |D2, E11, H2,
processor core 88 J12
Power 1,17,33, |Al,C10,Ds6,
Processor 1/0 | VDDIO +3.3V 65, 81, 97, |F3, G10, K3,
Ring 115 M10
Power Battery | /g a7 +3.3V or battery 51 7
Backup
Ground
Processor V SSCORE Ground 925,73, |D3,EIO H3,
89 NIkl
Core
Ground 16, 32,48, |A2,C7,C11,
Processor I/0 | VSSIO Ground 64, 80,96, |F2, G11, K2,
Ring 112, 128 K6, L10

User’s Manual

65

5.4 Bus Timing

The external bus has essentially the same timing for memory cyclesor 1/0 cycles. A mem-
ory cycle begins with the chip select and the address lines. One clock later, the output
enable is asserted for aread. The output data and the write enable are asserted for awrite.

T1 Tw T2
| |

|
|
X

|
| |
i —
| | |
4\ | | Vo /IOCSn or /CSn
' ' . JOEn or /IORD and /BUFEN (/BUFEN rd or wr)
| | [|
: : >:<:[>< Datafor read
| | valid
I X I |>< Datafor write 3-sdrive starts at end of T1
|
| | |
W /WEn or /IOWR
| | | |
|
Notes:

Read may have no wait states.

Write cycles and I/O read cycles have at least 1 wait state. Clock
may be asymmetric if clock doubler used. 1/0 chip select available
on port E as option.

Figure 5-7. Bus Timing Read and Write

In some cases, the timing shown in Figure 5-7 may be prefixed by a false memory access
during the first clock, which is followed by the access sequence shown in Figure 5-7. In
this case, the address and often the chip select will change values after one clock and
assume the final values for the memory to be actually accessed. Output enable and write
enable are always delayed by one clock from the time the final, stable address and chip
select are enabled. Normally the false memory access attempts to start another instruction
access cycle, which is aborted after one clock when the processor realizes that aread data
or write data bus cycle is needed. The user should not attempt a design that uses the chip
select or amemory address as aclock or state changing signal without taking thisinto con-
sideration.

66 Rabbit 3000 Microprocessor

5.5 Description

of Pins with Alternate Functions

Table 5-2. Pins With Alternate Functions

Pin Name Output Function Input Function Input Capture Option
PALT0 ool | wovagol
s
PB[6] |OAddr[4]

PB[5] |OAddI[3] SLAVE_AD[1]

PB[4] |OAddr[2] SLAVE_ADI0]

PB[3] |OAddr[1] SLAVE_RDB

PB[2] |OAddI[0] SLAVE_WRB

PB[1] CLKA CLKA

PB[0] CLKB CLKB

PC[7] n/a RXA yes
PC[6] TXA n‘a

PC[5] n/a RXB yes
PC[4] TXB n‘a

PC[3] n/a RXC yes
PC[2] TXC n‘a

PC[1] n/a RXD yes
PC[O] TXD n‘a

PD[7] ALT_RXA yes
PD[6] ALT_TXA

PD[5] ALT_RXB yes
PD[4] ALT_TXB

PD[3] yes
PD[2]

PD[1] yes
PD[O]

PE[7] IOCTLBI[7] /SCS (slave chip select)

PE[6] IOCTLBJ6]

PE[5] IOCTLBI[5] INT[1]

User’s Manual

67

Table 5-2. Pins With Alternate Functions (continued)

Pin Name Output Function Input Function Input Capture Option
PE[4] IOCTLB[4] INT[Q]
PE[3] IOCTLBI[3]
PE[2] IOCTLBI[2]
PE[1] IOCTLBI[1] INT[1]
PE[Q] IOCTLBIQ] INT[O]
PF[7] PWM[3] QRD2_| yes
PF[6] PWMI2] QRD2_Q
PF[5] PWM[1] QRDL1 | yes
PF[4] PWMIOQ] QRD1 Q
PF(3] QRD2_| yes
PF[2] QRD2 Q
PF[1] CLKC QRDL1 [, CLKC yes
PF[O] CLKD QRD1_Q, CLKD
PG[7] RXE yes
PG[6] TXE
PG[5] RCLKE RCLKE yes
PG[4] TCLKE TCLKE
PG[3] RXF
PG[2] TXF
PG[1] RCLKF
PG[O] TCLKF
68 Rabbit 3000 Microprocessor

5.6 DC Characteristics

Table 5-3. Rabbit 3000 Absolute Maximum Ratings

Symbol Parameter Maximum Rating
Ta Operating Temperature -55° to +85°C
Ts | Storage Temperature -65° to +150°C

Maximum Input Voltage:

* Oscillator Buffer Input Vpp +0.5V

* 5-V-tolerant I/O 55V
Vpp | Maximum Operating Voltage 36V

Stresses beyond those listed in Table 5-3 may cause permanent damage. The ratings are
stress ratings only, and functional operation of the Rabbit 3000 chip at these or any other
conditions beyond those indicated in this section is not implied. Exposure to the absolute
maximum rating conditions for extended periods may affect the reliability of the Rabbit
3000 chip.

Table 5-4 outlines the DC characteristics for the Rabbit 3000 at 3.3 V over the recom-
mended operating temperature range from T, = -55°C to +85°C, V5 = 3.0V t0 3.6 V.

Table 5-4. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ | Max | Units
Vpp | Supply Voltage 3.0 33 3.6 \%
Vih | High-Level Input Voltage 2.0 Y,
ViL |Low-Level Input Voltage 0.8 Y,

i IOH =6.8 mA, 0.7 x
\ High-Level Output Voltage . \Y
oA J P % | Vpp = Vpp (min) Vb
Vv Low-Level Output Volt o, =68mA, 04 | V
ow-Level Ou oltage :)
o P % Vpp =Vpp (min)
| High-Level Input Current | Vin = Vpp. 10 A
IH (absolute worst case, all buffers) | Vpp = Vpp (Max) H
| Low-Level Input Current | ViN = Vsss 10 A
L | (absolute worst case, all buffers) | Vpp = Vpp (Max) K
High-Impedance State VN = Vpp Of Ve,
loz Output Current Vip = Vpp (Max), no pull-u -10 10 HA
(absolute worst case, all buffers) | * PP~ VDD » MO puli-up
User’s Manual 69

5.7 1/0 Buffer Sourcing and Sinking Limit

Unless otherwise specified, the Rabbit I/O buffers are capable of sourcing and sinking6 mA
(preliminary) of current per pin at full AC switching speeds. The limits are related to the
maximum sustained current permitted by the metallization on the die.

70 Rabbit 3000 Microprocessor

6. RABBIT INTERNAL I/O REGISTERS

User’s Manual 71

Table 6-1. Rabbit 3000 Peripherals and Interrupt Service Vectors

On-Chip Peripheral

ISR Starting Address

System Management

{IIR[7:1], O, 0x00}

Memory Management

No interrupts

Slave Port {NR[7:1], O, 0x80}
Parallel Port A No interrupts
Parallel Port F No interrupts
Parallel Port B No interrupts
Parallel Port G No interrupts
Parallel Port C No interrupts
Input Capture {IIR[7:1], 1, OXAQ}
Parallel Port D No interrupts
Parallel Port E No interrupts

External 1/0 Control

No interrupts

Pulse Width Modul ator

No interrupts

Quadrature Decoder

{IIR[7:1], 1, Ox90}

External Interrupts

INTO{EIR, Ox00}
INT1{EIR, Ox10}

Timer A

{1IR[7:1], O, OXAO}

Timer B

{1IR[7:1], 0, OXBO}

Serial Port A (async/cks)

{IIR[7:1], O, OXCO}

Serial Port E (async/hdic)

{1IR[7:1], 1, OXCO}

Serial Port B (async/cks)

{1IR[7:1], 0, 0XDO}

Serial Port F (async/hdic)

{IIR[7:1], 1, OXDO}

Serial Port C (async/cks)

{1IR[7:1], O, OXEO}

Serial Port D (async/cks)

{1IR[7:1], 0, OXFO}

RST 10 instruction

{IIR[7:1], O, 0x20}

RST 18 instruction

{1IR[7:1], 0, 0x30}

RST 20 instruction

{IIR[7:1], O, 0x40}

RST 28 instruction

{1IR[7:1], 0, OX50}

RST 38 instruction

{1IR[7:1], O, OX70}

72

Rabbit 3000 Microprocessor

6.1 Default Values for all the Peripheral Control Registers

The default values for all of the peripheral control registers are shown in Table 6-2. The

registers within the CPU affected by reset are the Stack Pointer (SP), the Program Counter
(PC), thelIR register, the EIR register, and the IP register. The | P register isset to all ones

(disabling al interrupts), while all of the other listed CPU registers are reset to all zeros.

Table 6-2. Rabbit Internal I1/0O Registers

Register Name Mnemonic I/O Address R/W Reset
Global Control/Status Register GCSR 0x00 R/W 11000000
Global Clock Modulator O Register GCMOR O0x0A w 00000000
Global Clock Modulator 1 Register GCM1R 0x0B W 00000000
Breakpoint/Debug Control Register BDCR 0x0C W OXXXXXXX
Global Power Save Control Register GPSCR 0x0D W 0000x000
Global Output Control Register GOCR Ox0E W 00000000
Global Clock Double Register GCDR OxOF W 00000000
MMU Instruction/Data Register MMIDR 0x10 R/W 00000000
MMU Common Base Register STACKSEG Ox11 R/W 00000000
MMU Bank Base Register DATASEG 0x12 R/W 00000000
MMU Common Bank Area Register SEGSIZE 0x13 R/W 11111111
Memory Bank 0 Control Register MBOCR 0x14 W 00001000
Memory Bank 1 Control Register MB1CR 0x15 W XXXXXXXX
Memory Bank 2 Control Register MB2CR 0x16 W XXXXXXXX
Memory Bank 3 Control Register MB3CR 0x17 W XXXXXXXX
MMU Expanded Code Register MECR 0x18 R/W Xxxxx000
Memory Timing Control Register MTCR 0x19 W xxxx0000
Slave Port Data O Register SPDOR 0x20 R/W XXXXXXXX
Slave Port Data 1 Register SPD1R 0x21 R/W XXXXXXXX
Slave Port Data 2 Register SPD2R 0x22 R/W XXXXXXXX
Slave Port Status Register SPSR 0x23 R 00000000
Slave Port Control Register SPCR 0x24 R/W 0xx00000
Global ROM Configuration Register GROM 0x2C R 0xx00000
Global RAM Configuration Register GRAM 0x2D R 0xx00000
Global CPU Configuration Register GCPU Ox2E R 0xx00001

User’s Manual

73

Table 6-2. Rabbit Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
Global Revision Register GREV Ox2F R 0xx00000
Port A Data Register PADR 0x30 R/W XXXXXXXX
Port B Data Register PBDR 0x40 R/W OOXXXXXX
Port B Data Direction Register PBDDR 0x47 W 11000000
Port C Data Register PCDR 0x50 R/W X0x1x1x1
Port C Function Register PCFR 0x55 W X0x0x0x0
Port D Data Register PDDR 0x60 R/W XXXXXXXX
Port D Control Register PDCR 0x64 W XxX00xx00
Port D Function Register PDFR 0x65 W XXXXXXXX
Port D Drive Control Register PDDCR 0x66 W XXXXXXXX
Port D Data Direction Register PDDDR 0x67 W 00000000
Port D Bit O Register PDBOR 0x68 W XXXXXXXX
Port D Bit 1 Register PDB1R 0x69 W XXXXXXXX
Port D Bit 2 Register PDB2R Ox6A W XXXXXXXX
Port D Bit 3 Register PDB3R 0x6B W XXXXXXXX
Port D Bit 4 Register PDB4R 0x6C W XXXXXXXX
Port D Bit 5 Register PDB5R 0x6D W XXXXXXXX
Port D Bit 6 Register PDB6R Ox6E W XXXXXXXX
Port D Bit 7 Register PDB7R Ox6F W XXXXXXXX
Port E Data Register PEDR 0x70 R/W XXXXXXXX
Port E Control Register PECR 0x74 W xx00xx00
Port E Function Register PEFR 0x75 W 00000000
Port E Data Direction Register PEDDR ox77 W 00000000
Port E Bit 0 Register PEBOR 0x78 W XXXXXXXX
Port E Bit 1 Register PEB1R 0x79 W XXXXXXXX
Port E Bit 2 Register PEB2R Ox7A W XXXXXXXX
Port E Bit 3 Register PEB3R 0x7B W XXXXXXXX
Port E Bit 4 Register PEB4R 0x7C W XXXXXXXX
Port E Bit 5 Register PEB5R 0x7D W XXXXXXXX
Port E Bit 6 Register PEB6R OX7E W XXXXXXXX
74 Rabbit 3000 Microprocessor

Table 6-2. Rabbit Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
Port E Bit 7 Register PEB7R OX7F W XXXXXXXX
Port F Data Register PFDR 0x38 R/W XXXXXXXX
Port F Control Register PFCR 0x3C W xX00xx00
Port F Function Register PFFR 0x3D W XXXXXXXX
Port F Drive Control Register PFDCR Ox3E W XXXXXXXX
Port F Data Direction Register PFDDR Ox3F W 00000000
Port G Data Register PGDR 0x48 R/W XXXXXXXX
Port G Control Register PGCR 0x4C W XxX00xx00
Port G Function Register PGFR 0x4D W XXXXXXXX
Port G Drive Control Register PGDCR Ox4E W XXXXXXXX
Port G Data Direction Register PGDDR Ox4F W 00000000
Input Capture Ctrl/Status Register ICCSR 0x56 R/W 00000000
Input Capture Control Register ICCR 0x57 W XXXXXX00
Input Capture Trigger 1 Register ICT1R 0x58 W 00000000
Input Capture Source 1 Register ICSIR 0x59 W XXXXXXXX
Input Capture LSB 1 Register ICL1IR Ox5A R XXXXXXXX
Input Capture MSB 1 Register ICM1R 0x5B R XXXXXXXX
Input Capture Trigger 2 Register ICT2R 0x5C w 00000000
Input Capture Source 2 Register ICS2R 0x5D W XXXXXXXX
Input Capture LSB 2 Register ICL2R Ox5E R XXXXXXXX
Input Capture MSB 2 Register ICM2R Ox5F R XXXXXXXX
I/0 Bank 0 Control Register IBOCR 0x80 W 000000xx
I/0 Bank 1 Control Register IBICR 0x81 W 000000xx
I/0 Bank 2 Control Register IB2CR 0x82 W 000000xx
I/0 Bank 3 Control Register IB3CR 0x83 W 000000xx
I/O Bank 4 Control Register IB4CR 0x84 W 000000xx
I/0 Bank 5 Control Register IB5CR 0x85 W 000000xx
I/0 Bank 6 Control Register IB6CR 0x86 W 000000xx
I/0 Bank 7 Control Register IB7CR 0x87 W 000000xx
PWM LSB 0 Register PWLOR 0x88 W XXXXXXXX

User’s Manual

75

Table 6-2. Rabbit Internal I/0O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
PWM MSB 0 Register PWMOR 0x89 W XXXXXXXX
PWM LSB 1 Register PWL1R Ox8A W XXXXXXXX
PWM MSB 1 Register PWM1R 0x8B W XXXXXXXX
PWM LSB 2 Register PWL2R 0x8C W XXXXXXXX
PWM MSB 2 Register PWM2R 0x8D W XXXXXXXX
PWM LSB 3 Register PWL3R Ox8E W XXXXXXXX
PWM MSB 3 Register PWM3R Ox8F W XXXXXXXX
Quad Decode Ctrl/Status Register QDCSR 0x90 R/W XXXXXXXX
Quad Decode Control Register QDCR 0x91 w 00xx0000
Quad Decode Count 1 Register QDCIR 0x94 R XXXXXXXX
Quad Decode Count 2 Register QDC2R 0x96 R XXXXXXXX
Interrupt O Control Register IOCR 0x98 W xx000000
Interrupt 1 Control Register I1CR 0x99 W xx000000
Real Time Clock Control Register RTCCR 0x01 W 00000000
Real Time Clock Byte O Register RTCOR 0x02 R/W XXXXXXXX
Real Time Clock Byte 1 Register RTC1R 0x03 R XXXXXXXX
Real Time Clock Byte 2 Register RTC2R 0x04 R XXXXXXXX
Real Time Clock Byte 3 Register RTC3R 0x05 R XXXXXXXX
Real Time Clock Byte 4 Register RTC4R 0x06 R XXXXXXXX
Real Time Clock Byte 5 Register RTC5R 0x07 R XXXXXXXX
Timer A Control/Status Register TACSR 0xAO0 R/W 00000000
Timer A Prescale Register TAPR OxA1l w XXXXXXX1
Timer A Time Constant 1 Register TAT1IR OxA3 W XXXXXXXX
Timer A Control Register TACR OxA4 W 00000000
Timer A Time Constant 2 Register TAT2R OxA5 W XXXXXXXX
Timer A Time Constant 8 Register TAT8R OxAB6 W XXXXXXXX
Timer A Time Constant 3 Register TAT3R OxA7 W XXXXXXXX
Timer A Time Constant 9 Register TATI9R OxAS8 W XXXXXXXX
Timer A Time Constant 4 Register TAT4R 0xA9 W XXXXXXXX
Timer A Time Constant 10 Register TAT10R OxAA W XXXXXXXX

76

Rabbit 3000 Microprocessor

Table 6-2. Rabbit Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
Timer A Time Constant 5 Register TAT5R OxAB W XXXXXXXX
Timer A Time Constant 6 Register TAT6R OxAD w XXXXXXXX
Timer A Time Constant 7 Register TAT7R OXAF w XXXXXXXX
Timer B Control/Status Register TBCSR 0xBO R/W XXxxx000
Timer B Control Register TBCR 0xB1 W xXxx0000
Timer B MSB 1 Register TBM1R 0xB2 W XXXXXXXX
Timer B LSB 1 Register TBL1R 0xB3 W XXXXXXXX
Timer B MSB 2 Register TBM2R 0xB4 W XXXXXXXX
Timer B LSB 2 Register TBL2R 0xB5 W XXXXXXXX
Timer B Count MSB Register TBCMR O0xBE R XXXXXXXX
Timer B Count LSB Register TBCLR OxBF R XXXXXXXX
Serial Port A Data Register SADR 0xCO R/W XXXXXXXX
Serial Port A Address Register SAAR 0xC1 R/W XXXXXXXX
Serial Port A Long Stop Register SALR 0xC2 R/W XXXXXXXX
Serial Port A Status Register SASR 0xC3 R 0xx00000
Serial Port A Control Register SACR 0xC4 W xx000000
Serial Port A Extended Register SAER 0xC5 W 00000000
Serial Port B Data Register SBDR 0xDO R/W XXXXXXXX
Serial Port B Address Register SBAR 0xD1 R/W XXXXXXXX
Serial Port B Long Stop Register SBLR 0xD2 R/W XXXXXXXX
Serial Port B Status Register SBSR 0xD3 R 0xx00000
Serial Port B Control Register SBCR 0xD4 W xx000000
Serial Port B Extended Register SBER 0xD5 W 00000000
Serial Port C Data Register SCDR OXEO R/W XXXXXXXX
Serial Port C Address Register SCAR OxE1 R/W XXXXXXXX
Serial Port C Long Stop Register SCLR OXE2 R/W XXXXXXXX
Serial Port C Status Register SCSR OXE3 R 0xx00000
Serial Port C Control Register SCCR OXE4 W xx000000
Serial Port C Extended Register SCER OXE5 W 00000000
Serial Port D Data Register SDDR OxFO R/W XXXXXXXX

User’s Manual

77

Table 6-2. Rabbit Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
Serial Port D Address Register SDAR OxF1 R/W XXXXXXXX
Serial Port D Long Stop Register SDLR OxF2 R/W XXXXXXXX
Serial Port D Status Register SDSR OxF3 R 0xx00000
Serial Port D Control Register SDCR OxF4 W xx000000
Serial Port D Extended Register SDER OxF5 W 00000000
Serial Port E Data Register SEDR 0xC8 R/W XXXXXXXX
Serial Port E Address Register SEAR 0xC9 R/W XXXXXXXX
Serial Port E Long Stop Register SELR OxCA R/W XXXXXXXX
Serial Port E Status Register SESR 0xCB R 0xx00000
Serial Port E Control Register SECR 0xCC W xx000000
Serial Port E Extended Register SEER 0xCD w 00000000
Serial Port F Data Register SFDR 0xD8 R/W XXXXXXXX
Serial Port F Address Register SFAR 0xD9 R/W XXXXXXXX
Serial Port F Long Stop Register SFLR OxDA R/W XXXXXXXX
Serial Port F Status Register SFSR 0xDB R 0xx00000
Serial Port F Control Register SFCR 0xDC W xx000000
Serial Port F Extended Register SFER 0xDD W 00000000
Watchdog Timer Control Register WDTCR 0x08 w 00000000
Watchdog Timer Test Register WDTTR 0x09 W 00000000
78 Rabbit 3000 Microprocessor

/. MISCELLANEOUS FUNCTIONS

7.1 Processor ldentification

Four read-only registers are provided to allow software to identify the Rabbit micropro-
cessor and recogni ze the features and capabilities of the chip. Five bitsin each of these
registers are unique to each version of the chip. One register isreserved for the on-chip
flash memory configuration (GROM), one register is reserved for the on-chip RAM mem-
ory configuration (GRAM), one register identifies the CPU (GCPU), and the final register
isreserved for revision identification (GREV). The Rabbit 3000 does not contain on-chip
SRAM or flash memories.

Table 7-1. Global ROM Configuration Register

Global ROM Configuration Register (GROM) (Address = 0x2C)
Bit(s) Value Description
7 0 Program fetch as a function of the SMODE pins.
(read only) 1 Ignore the SMODE pins program fetch function.
6:5 read These bits report the state of the SMODE pins.
4.0 00000 | ROM identifier for this version of the chip.

Table 7-2. Global RAM Configuration Register

Global RAM Configuration Register (GRAM) (Address = 0x2D)
Bit(s) Value Description
7 0 Program fetch as a function of the SMODE pins.
(read only) 1 Ignore the SMODE pins program fetch function.
6:5 read These bits report the state of the SMODE pins.
4.0 00000 | RAM identifier for thisversion of the chip.

User’s Manual 79

Table 7-3. Global CPU Register

Global CPU Register (GCPU) (Address = 0x2E)
Bit(s) Value Description
7 0 Program fetch as a function of the SMODE pins.
(read only) 1 Ignore the SMODE pins program fetch function.
6:5 read These bits report the state of the SMODE pins.
4.0 00001 |CPU identifier for this version of the chip.

Table 7-4. Global Revision Register

Global Revision Register (GREV) (Address = 0x2F)
Bit(s) Value Description
7 0 Program fetch as a function of the SMODE pins.
(read only) 1 Ignore the SMODE pins program fetch function.
6:5 read These bits report the state of the SMODE pins.
4.0 00000 | Revisionidentifier for thisversion of the chip.

7.2 Rabbit Oscillators and Clocks

The Rabbit 3000 usually requires two separate clocks. The main clock normally drivesthe
processor core and most of the periphera devices, and the 32.768 kHz clock drives the
battery-backable time-date clock and other circuitry.

Main Clock

An oscillator buffer is built into the Rabbit 3000 that may be used to implement the main
processor oscillator (Figure 7-1). For lowest power an external oscillator may be substi-
tuted for the built-in oscillator circuit. An oscillator implemented using the built in buffer
accepts crystals up to afrequency of 27 MHz (first overtone crystals only). This frequency
may be then doubled by the clock doubler. The component values shown in the figure for
the oscillator circuits are subject to adjustment depending on the crystal used and the oper-
ating frequency.

The Rabbit 3000 has a spectrum spreader unit that modifies the clock by shortening and
lengthening clock cycles. The effect of thisisto spread the spectral energy of the clock
harmonics over afairly wide range of frequencies. Thislimits the peak energy of the har-
monics and reduces EMI that may interfere with other devices as well as reducing the
readings in government mandated EMI tests. The spectrum spreader has two operating
modes, normal spreading and strong spreading. The spreader can also be turned off.

80 Rabbit 3000 Microprocessor

32.768 kHz Clock

The 32.768 kHz clock is primarily used to clock the on-chip real-time clock. In addition, it
isalso used to support remote cold boot via Seria Port A, driving the 2400 baud commu-
nications used to initiate the cold boot. Another function of the 32.768 kHz oscillator isto
drive the low power sleepy mode with the main oscillator shut down to reduce power. The

32.768 kHz clock can be left out of a system provided that its functions are not required.

Processor clock
ACEEEER G |

Referenceidesign for
32.768 kHz oscillator

Rabbit 3000
clock out 2 f/2
CLK 1
| _ XTALB1 113
T [
— 1MQ enb
L ala T St enb enb enb
= XTALB2 r r r
Spectrum Clock
Spreader Doubler (8,6.4.2)
R1 and R2 control the
power consumed by the
unbuffered inverter.
VBAT
R1 Divider
/(1,2,4,8,16)
SN74AHC1GU04
_[b& L
U2A
NC7SP14
Rp
—— \\\—o
22 MQ
RS
330 kQ
T Ll Real-T
° Watchdog eal-Time
L | IE—
32 76D8 KHz Timer Clock
—-—C1 C2=
.

Peripheral clock
LLHAEEN G0N |

Note: Peripherals
cannot be clocked
slower than processor

Figure 7-1. Clock Distribution

TN235, External 32.768 kHz Oscillator Circuits, provides further information on oscilla-
tor circuits and selecting the values of componentsto use in the oscillator circuit.

User’s Manual

81

Table 7-5. Global Control/Status Register (I/O adr = 00h)

Global Control/Status Register (GCSR) (Address = 0x00)
Bit(s) Value Description
00 No Reset or Watchdog Timer time-out since the last read.
_ o1 Thg Watchdog Timer timed out. These bits are cleared by aread of this
7:6 register.
(rd-only)
10 This bit combination is not possible.
1 Reset occurred. These bits are cleared by aread of this register.
0 No effect on the Periodic interrupt. This bit will always be read as zero.
° 1 Force a Periodic interrupt to be pending.
4:2 XXX See table below for decode of thisfield.
00 Periodic interrupts are disabled.
01 Periodic interrupts use Interrupt Priority 1.
Lo 10 Periodic interrupts use Interrupt Priority 2.
11 Periodic interrupts use Interrupt Priority 3.
Table 7-6. Clock Select Field of GCSR
Clock Select Peripheral Main P_ower-Save €S
Bits 4:2 GCSR LUl Clock Oscillator i EGngl;ICe:g 2
000 0sc/8 0sc/8 on short CS option
001 0sc/8 0sC on short CS option
010 0sC 0sC on none
011 0sc/2 0sc/2 on none
100 32 kHz or fraction | 32 kHz or fraction on self-timed option
101 32 kHz or fraction | 32 kHz or fraction off self-timed option
110 osc/4 osc/4 on short CS option
111 0sc/6 0sc/6 on short CS option

82

Rabbit 3000 Microprocessor

7.3 Clock Doubler

The clock doubler is provided to allow alower frequency crystal to be used for the main
oscillator and to provide an added range of clock frequency adjustability. The clock dou-
bler uses an on-chip delay circuit that must be programmed by the user at startup if thereis
aneed to double the clock.

Table 7-7. Global Clock Double Register (GCDR, adr = 0fh)

Global Clock Double Register (GCDR) (Address = 0x0F)
Bit(s) Value Description
74 XXXX Reserved

0000 The clock doubler circuit is disabled.

0001 6 nsnominal low time (4-9) 55+ MHz processor clock speed

0010 7 nsnominal low time (4.2-10.5) 50-55 MHz

0011 8 nsnominal low time (4.8-12) 45-50 MHz

0100 9 nsnominal low time (6-13.5) 38-45 MHz

0101 10 nsnominal low time (6-15) 29-38 MHz

0110 11 nsnominal low time (6.6-16.5) 20-29 MHz

0111 12 nsnominal low time (7.2-18) less than 20 MHz
3.0

1000 13 nsnominal low time

1001 14 ns nominal low time

1010 15 ns nominal low time

1011 16 ns nominal low time

1100 17 nsnominal low time

1101 18 nsnominal low time

1110 19 ns nominal Low time.

1111 20 nsnominal Low time

When the clock doubler is used and there is no subsequent division of the clock, the output
clock will be asymmetric, as shown in Figure 7-2. The doubled-clock low time is subject
to wide (50%) variation since it depends on process parameters, temperature, and voltage.
The times given above are for a supply voltage of 3.3V and atemperature of 25°C. The
doubled-clock low time increases by 20% when the voltageis reduced to 2.5V, and
increases by about 40% when the voltage is reduced further to 2.0 V. The values increase
or decrease by 1% for each 5°C increase or decrease in temperature. The doubled clock is
created by xor’ing the delayed and inverted clock with itself. If the original clock does not
have a 50-50 duty cycle, then alternate clocks will have a dlightly different length. Since
the duty cycle of the built-in oscillator can be as asymmetric as 52-48, the clock generated

User’s Manual 83

by the clock doubler will exhibit up to a 4% variation in period on alternate clocks. This
does not affect the no-wait states memory access time since two adjacent clocks are
always used. However, the maximum allowed clock speed must be dightly reduced if the
clock issupplied viathe clock doubler. The only signals clocked on the falling edge of the
clock are the memory and 1/0 write pulses and the early option memory output enable.
See Chapter 8 for more information on the early output enable and write enable options.

The spectrum spreader either stretches or shrinks the low plateau of the clock by a maxi-
mum of 3 nsfor the normal spreading and 4.5 nsfor the strong spreading. If the clock dou-
bler is used thiswill cause an additional asymmetry between alternate clock cycles.

-~ P
Oscillator delayed
and inverted
Doubled clock —U U U U U Uﬁ
Del
timzly }¢

I | I [
| I | [
0.48P | | 052P | 10.48P | | 0.52P | |
| o o [
| I L |
| |1 I |
b || || | !><:
Address/ CS i{ |
@(qmple | : | : : : '|
rite | —
Data out —K
Cycle ! | : | : : : ! ‘?:
| |
|
write pulse : = : : |/‘:_
| |
early write pulse ! N || o
option | " ||
I | |
| .|
Address/ CS i ! i X
Example | | | data out from mem
Read | |
|

Cycle output enb !—U
|
|
early output enb —

option

Figure 7-2. Effect of Clock Doubler

84 Rabbit 3000 Microprocessor

The power consumption is proportional to the clock frequency, and for this reason power
can be reduced by slowing the clock when less computing activity is taking place. The
clock doubler provides a convenient method of temporarily speeding up or slowing down
the clock as part of a power management scheme.

User’s Manual 85

7.4 Clock Spectrum Spreader

When enabled the spectrum spreader stretches and compresses the clocks in a complex
pattern that results in spreading the energy in the clock harmonics over a wide range of
frequencies. The spectrum spreader has a normal and a strong setting. With either setting
the peak spectral strength of the clock harmonicsis reduced by approximately 15 dB for
frequencies above 100 MHz. For lower frequencies the strong spreading has a greater
effect in reducing the peak spectral strength as shown in the figure below.

15dB_| >
Strong Spreading
10 _|
\Normal Spreading
5 _|

| | | | | |
50 100 150 200 250 300 3é0

MHz

Figure 7-3. Reduction in Peak Spectral Strength from Spectrum Spreader

In the normal spectrum spreading mode, the maximum shortening of the clock cycleis 3
nanoseconds at 3.3 V and 25°C. In the strong spreading mode the maximum shortening of
aclock cycle under the same conditionsis 4.5 ns. The reduction in peak spectral strength
is roughly independent of the clock frequency. Special precautions must be followed in
setting the GCMOR and GCM 1R registers (see Section 15.2, “Using the Clock Spectrum
Spreader”).

86 Rabbit 3000 Microprocessor

7.5 Chip Select Options for Low Power

Some types of flash memory and RAM consume power whenever the chip select is
enabled even if no signals are changing. The chip select behavior of the Rabbit 3000 can
be modified to reduce unnecessary power consumption when the Rabbit 3000 is running
at areduced clock speed. The short chip select option can be enabled when the processor
clock is divided (by 4, 6, or 8) so asto run at alower speed.

The short chip select option is exercised with clock select bits4:2 of the GCSR register as
shown in Table 7-6. Whether the chip select is normal or short is then determined by
whether bit 4 in the GPSCR register isO or 1.

When the short chip select option is enabled, the chip select delays turning on until the end
of the of the memory cycle when it turns on for the last 2 undivided clocks. If the clock is
divided by 6, the memory read cycle with no wait states would normally be 12 undivided
clocks long. With the short chip select, the chip select ison for only 2/12 clocks for a
memory duty cycle of 1/6. If wait states are added, the duty cycle is reduced even more.
For example, if there is one wait state and the clock is divided by 6, the memory bus cycle
will be 18 undivided clocks long and the duty cycle will be 2/18 = 1/9 with the short chip
select option enabled.

When the short chip select option is enabled, the interrupt sequence will attempt to write
the return address to the stack if an interrupt takes place immediately after an internal or
an external 1/0 instruction. The chip select will be suppressed during the write cycle, and
the correct return address will not be stored on the stack. This happens only when an inter-
rupt takes place immediately after an 1/0 instruction when the short chip select option is
enabled. Therefore, when using the short chip select option, ensure that interrupts are dis-
abled during I/O instructions (or do not use short chip select). Interrupts can be disabled
for asingle 1/0 instruction as shown in the following example.

PUSH | P ; save interrupt state

| PSET 3 ; interrupts off

IOE LD a, (hl) ; typical I/Oinstruction
POP | P ; reenable interrupts

When the 32.768 kHz clock is used as the main processor clock (sleepy mode) the mem-
ory duty cycle can be reduced by enabling a self-timed chip select mode. When the
32.768 kHz clock isused, the clock period is approximately 32 us, and a normal memory
read cycle without wait states will be approximately 64 pus. No more than a few hundred
nanoseconds are needed to read the memory. The main oscillator is normally shut down
when operating at 32 kHz, and no faster clock is available to time out a short chip select
cycle. To provide for alow-memory-duty cycle, a chip select and memory read can take
place under control of adelay timer that is on the chip. The cycle starts at the start of the
final 64 us clock of the memory cycle and can be set to enable chip select for aperiod in
the range of 70 to 200 ns. The data are clocked in early at the end of the delay-driven
cycle. The chip select duty cycleisvery small, about 0.2/128 = 1/600.

User’s Manual 87

When operating in the 32 kHz mode, it is aso possible to further divide the clock to afre-
guency as low as 2 kHz, further reducing execution speed and current consumption.

Global Power Save Control Register (GPSCR) (Address = 0x0D)
Bit(s) Value Description
000 Self-timed chip selects are disabled.
001 This bit combination is reserved and should not be used.
01x This bit combination is reserved and should not be used.
75 100 296 ns self-timed chip selects (192 ns best case, 457 ns worst case).
101 234 ns self-timed chip selects (151 ns best case, 360 ns worst case).
110 171 ns self-timed chip selects (111 ns best case, 264 ns worst case).
111 109 ns self-timed chip selects (71 ns best case, 168 nsworst case).
4 Normal Chip Select operation.
1 Short Chip Select timing when dividing main oscillator by 4, 6, or 8.
3 X Thisbit is reserved and should not be used.
000 The 32 kHz clock divider is disabled.
001 This bit combination is reserved and should not be used.
01x This bit combination is reserved and should not be used.
2.0 100 32 kHz oscillator divided by two (16.384 kHz).
101 32 kHz oscillator divided by four (8.192 kHz).
110 32 kHz oscillator divided by eight (4.096 kHz).
111 32 kHz oscillator divided by sixteen (2.048 kHz).

It isanticipated that these measures would reduce operating current consumption to aslow as
20 pA plus some additional leakage that would be significant at high operating temperatures.

88

Rabbit 3000 Microprocessor

clock

ADDR

DATA

MEMCSxB

MEMOEXB

Figure 7-4. Short Chip Select Memory Read

32kHz

ADDR

DATA

M EM CSxB

M EM OExB

T1

T2

Valid

Val

~100 ns

Figure 7-5. Self-Timed Chip Select Memory Read Cycle

User’s Manual

89

7.6 Output Pins CLK, STATUS, /WDTOUT, /BUFEN

Certain output pins can have alternate assignments as specified in Table 7-8.

Table 7-8. Global Output Control Register (GOCR = OEh)

Bit(s) Value Description
00 CLK pinisdriven with peripheral clock.
_ 01 CLK pinisdriven with peripheral clock divided by 2.
e 10 CLK pinislow.
11 CLK pinishigh.
00 STATUS pinis active (low) during afirst opcode byte fetch.
. 01 STATUS pinis active (low) during an interrupt acknowledge.
>4 10 STATUSpinislow.
11 STATUS pinishigh.
1 WDTOUTB pinislow (1 cycle minimum, 2 cycles maximum, of 32 kHz).
: 0 WDTOUTB pin follows watchdog function.
2 X Thishit isignored.
00 /BUFEN pinisactive (low) during external 1/0 cycles.
_ 01 /BUFEN pinisactive (low) during data memory accesses.
ro 10 |/BUFEN pinislow.
11 /BUFEN pin ishigh.

90

Rabbit 3000 Microprocessor

7.7 Time/Date Clock (Real-Time Clock)

The time/date clock (RTC) isa48-hit (ripple) counter that is driven by the 32.768 kHz
oscillator. The RTC isamodified ripple counter composed of six separate 8-bit counters.
The carries are fed into all six 8-bit counters at the same time and then ripple for 8 bits.
Thetimefor thisrippleto take placeis afew nanoseconds per bit, and certainly should not
should not exceed 200 nsfor all 8 bits, even when operating at |low voltage.

The 48 bits are enough to count up 272 years at the 32 kHz clock frequency. By conven-
tion, 12 AM on January 1, 1980, istaken as time zero. Z-World software ignores the high-
est order bit, giving the counter a capacity of 136 years from January 1, 1980. To read the
counter value, the valueisfirst transferred to a 6-byte holding register. Then the individual
bytes may be read from the holding registers. To perform the transfer, any data bits are
written to RTCOR, the first holding register. The counter may then be read as six 8-bit
bytes at RTCOR through RTC5R. The counter and the 32 kHz oscillator are powered from
a separate power pin that can be provided with power while the remainder of the chipis
powered down. This design makes battery backup possible. Since the processor operates
on adifferent clock than the RTC, there is the possibility of performing atransfer to the
holding registers while a carry istaking place, resulting in incorrect information. In order
to prevent this, the processor should do the clock read twice and make sure that the value
isthe samein both reads.

If the processor isitself operating at 32 kHz, the read-clock procedure must be modified
since a number of clock counts would take place in the time needed by the slow-clocked
processor to read the clock. An appropriate modification would be to ignore the lower
bytes and only read the upper 5 bytes, which are counted once every 256 clocks or every
1/128th of a second. If the read cannot be performed in thistime, further low-order bits
can be ignored.

The RTC registers cannot be set by awrite operation, but they can be cleared and counted
individually, or by subset. In this manner, any register or the entire 48-bit counter can be
set to any value with no more than 256 steps. If the 32 kHz crystal is not installed and the
input pin is grounded, no counting will take place and the six registers can be used as a
small battery-backed memory. Normally this would not be very productive since the cir-
cuitry needed to provide the power switchover could also be used to battery-back aregular
low-power static RAM.

User’s Manual 91

Table 7-9. Real-Time Clock RTCxR Data Registers

Real-Time Clock x Holding Register (RTCOR) R/W (Address = 0x02)
(RTC1R) (Address = 0x03)
(RTC2R) (Address = 0x04)
(RTC3R) (Address = 0x05)
(RTC4R) (Address = 0x06)
(RTC5R) (Address = 0x07)

Bit(s) Value Description

7:0 Read The current value of the 48-bit RTC holding register is returned.
. Writing to the RTCOR transfers the current count of the RTC to six holding
Write . . : ;
registers while the RTC continues counting.

Table 7-10. Real-Time Clock Control Register (RTCCR adr = 01h)

Bit(s)

Value

Description

7.0

00h

Writing a 00h to the RTCCR has no effect on the RTC counter.
However, depending on what the previous command was, writing
a00h may either

1. disable the byte increment function or

2. cancel the RTC reset command

If the COh command is followed by a 00h command, only the byte
increment function will be disabled. The RTC reset will still take
place.

40h

Arm RTC for areset with code 80h or reset and byte increment
function with code OcOh.

80h

Resets all six bytes of the RTC counter to 00h if proceeded by arm
command 40h.

COh

Resets all six bytes of the RTC counter to 00h and enters byte
increment mode—precede this command with 40h arm command.

76

01

This bit combination must be used with every byte increment write
to increment clock(s) register corresponding to bit(s) set to "1".
Example: 01001101 increments registers: 0, 2,3. The byte
increment mode must be enabled. Storing 00h cancels the byte
increment mode.

5.0

No effect on the RTC counter.

Increment the corresponding byte of the RTC counter.

92

Rabbit 3000 Microprocessor

7.8 Watchdog Timer

The watchdog timer isa 17-bit counter. In normal operation it is driven by the 32 kHz
clock. When the watchdog timer reaches any of several values corresponding to adelay of
from 0.25 to 2 seconds, it “times out.” When it times out, it emits a 1-clock pulse from the
watchdog output pin and it resets the processor viaan internal circuit. To prevent thistim-
eout, the program must “hit” the watchdog timer before it times out. The hit is accom-
plished by storing a code in WDTCR.

Table 7-11. Watchdog Timer Control Register (WDTCR adr = 08h)

Bit(s) Value Description
7:0 5Ah Restart (hit) the watchdog timer, with a 2-second timeout period.
57h Restart (hit) the watchdog timer, with a 1-second timeout period.
5%h Restart (hit) the watchdog timer, with a 500 ms timeout period.
53h Restart (hit) the watchdog timer, with a 250 ms timeout period.
other No effect on watchdog timer.

The watchdog timer may be disabled by storing a special code in the WDTTR register.
Normally this should not be done unless an external watchdog deviceisused. The purpose
of the watchdog is to unhang the processor from an endless |oop caused by a software
crash or a hardware upset.

It isimportant to use extreme care in writing software to hit the watchdog timer (or to turn
off the watchdog timer). The programmer should not sprinkle instructionsto hit the watch-
dog timer throughout his program because such instructions can become part of an endless
loop if the program crashes and thus disable the recovery ability given by having awatch-
dog.

The following is a suggested method for hitting the watchdog. An array of bytesis set up
in RAM. Each of these bytesisavirtual watchdog. To hit a virtual watchdog, a number is
stored in abyte. Every virtual watchdog is counted down by an interrupt routine driven by
aperiodic interrupt. This can happen every 10 ms. If none of the virtual watchdogs has
counted down to zero, the interrupt routine hits the hardware watchdog. If any have
counted down to zero, the interrupt routine disables interrupts, and then enters an endless
loop waiting for the reset. Hits of the virtual watchdogs are placed in the user’s program at
“must exercise” locations.

User’s Manual 93

Table 7-12

. Watchdog Timer Test Register (WDTTR adr = 09h)

Bit(s) Value Description
51h Clock the least significant byte of the WDT timer from the peripheral
clock. (Intended for chip test and code 54h below only.)
50h Clock the most significant byte of the WDT timer from the peripheral
clock. (Intended for chip test and code 54h below only.)
53h Clock both bytes of the WDT timer, in parallel, from the peripheral clock.
20 (Intended for chip test and code 54h below only.)
Disable the WDT timer. Thisvalue, by itself, does not disable the WDT
54h timer. Only a sequence of two writes, where the first write is 51h, 52h or
53h, followed by awrite of 54h, actually disablesthe WDT timer. The
WDT timer will be re-enabled by any other write to this register.
other Normal clocking (32 kHz oscillator) for the WDT timer. Thisisthe
condition after reset.

The code to do this may also hit the watchdog with a 0.25-second period to speed up the
reset. Such watchdog code must be written so that it is highly unlikely that a crash will

incorporate the code and continue to hit the watchdog in an endless loop. The following
suggestions will help.

1. Place ajump to self before the entry point of the watchdog hitting routines. This pre-
vents entry other than by adirect call or jump to the routine.

2. Before calling the routine, set a data byte to a special value and then check it in the rou-
tine to make sure the call came from theright caller. If not, go into an endless loop with

interrupts disabled.

3. Maintain data corruption flags and/or checksums. If these go wrong, go into an endless

loop with interrupts off.

94

Rabbit 3000 Microprocessor

7.9 System Reset

The Rabbit 3000 contains a master reset input (pin 46), which initializes everything in the
device except for the Real-Time Clock (RTC). This reset is delayed until the completion
of any write cyclesin progress to prevent potential corruption of memory. If no write
cycles are in progress the reset takes effect immediately. The reset sequence requires a
minimum of 128 cycles of the fast oscillator to complete, even if no write cycleswerein
progress at the start of the reset. Reset forces both the processor clock and the peripheral
clock in the divide-by-eight mode. Note that if the processor is being clocked from the 32
kHz clock, the 128 cycles of the fast oscillator will probably not be sufficient to allow any
writes in progress to be completed before the reset sequence completes and the clocks
switch to divide-by-eight mode.

During reset /CS1 is high impedance and al of the other memory and 1/0 control signals
are held inactive (High). After the /RESET signal becomes inactive (High) the processor
begins fetching instructions and the memory control signals begin normal operation. Note
that the default values in the Memory Bank Control Registers select four wait states per
access, so the initial program fetch memory reads are 48 clock cycleslong (8 x (2 + 4)).
Software can immediately adjust the processor timing to whatever the system requires.

/CS1 is high-impedance during reset (and during power-down, when only VBAT is pow-
ered) to allow an externa RAM connected to /CS1 to be powered by VBAT. Thisis possi-
ble because the /CS1 pinis powered by VBAT. In this case an external pull-up resistor (to
VBAT) isrequired on /CS1 to keep the RAM deselected during power-down. If the exter-
nal RAM connected to /CS1 is not powered by VBAT, so that any information held within
it islost during power-down, no pull-up resistor on /CSL1 is appropriate, as this would add
leakage (through the protection diode) to drain VBAT. The RESOUT signal, which is
High during reset and power-down, can be used to control an external power switch to dis-
connect VDD from supplying VBAT.

The default selection for the memory control signals consists of /CS0 and /OEOQ, and
writes are disabled. This selection can also be immediately programmed to match the
hardware configuration. A typical sequence would be to speed up the clock to full speed,
followed by selection of the appropriate number of wait states and the chip select signals,
output enable signals and write enable signals. At this point software would usually check
the system status to determine what type of reset just occurred and begin normal opera-
tion.

The default values for all of the peripheral control registers are shown with the following
register listing. The registers within the CPU affected by reset are the Stack Pointer (SP),
the Program Counter (PC), the IIR register, the EIR register, and the IP register. The IP
register is set to al ones (disabling all interrupts), while all of the other listed CPU regis-
tersare reset to all zeros.

Table 7-13 describes the state of the I/0 pins after an external reset is recognized by the
Rabbit CPU. Note that the/RESET signal must be held low for three clocks for the proces-
sor to begin the reset sequence. There is no facility to tri-state output lines such asthe
address lines and the memory and 1/0O control lines.

User’s Manual 95

Table 7-13. Rabbit 3000 Reset Sequence and State of I/O Pins

Pin Name Direction Reclcl)?;rﬁzEgdLl;))\/NCPU Post-Reset’
/RESET Input Low or High High
CLK Output High Operationa
CLK32K Input Not Affected Not Affected
RESOUT Output High Low
XTALA1 Input Not Affected Not Affected
XTALA2 Output Not Affected Not Affected
A[19:0] Output Last Value 0x00000
D[7:0] Bidirectional Highz High Z
/WDTOUT Output High High
STATUS Output High (:Sp/?f_'trig:ai)
SMODE[1:0] Input Not Affected Not Affected
/CSO Output High Operationa
/CS1 Output High Z High
/ICS2 Output High High
/OEQ Output High Operational
/OE1 Output High High
IWEOQ Output High High
IWE1 Output High High
IBUFEN Output High High
/IORD Output High High
/[IOWR Output High High
PA[7:0] I nput/Output 77777777 777277777
PB[7:0] I nput/Output 00zzzzzz 00zzzzzz
PC[7:0] 4 In/4 Out 70717171 70217171
PD[7:0] I nput/Output 22777777 27277777
PE[7:0] I nput/Output 22777777 27277777
PF[7:0] I nput/Output 22777777 27277777
PG[7:0] I nput/Output 22777777 27277777

* A low isrecognized internally by the processor after a reset

t The default state of the 1/0 ports after the completion of the reset and initializa-
tion sequences

Rabbit 3000 Microprocessor

7.10 Rabbit Interrupt Structure

An interrupt causes a call to be executed, pushing the PC on the stack and starting to exe-
cute code at the interrupt vector address. The interrupt vector addresses have afixed lower
byte value for all interrupts. The upper byte is adjustable by setting the registers EIR and
IR for external and internal interrupts respectively. There are only two external interrupts
generated by transitions on certain pinsin Parallel Port E.

The interrupt vectors are shown in Table 6-2.

The interrupts differ from most Z80 or Z180 interrupts in that the 256-byte tables pointed
to EIR and IIR contain the actual instructions beginning the interrupt routinesrather than a
16-bit pointer to the routine. The interrupt vectors are spaced 16 bytes apart so that the
entire code will fit in the table for very small interrupt routines.

Interrupts have priority 1, 2 or 3. The processor operates at priority 0, 1, 2 or 3. If aninter-
rupt is being requested, and its priority is higher than the priority of the processor, the
interrupt will take place after then next instruction. The interrupt automatically raises the
processor’s priority to its own priority. The old processor priority is pushed into the 4-
position stack of priorities contained in the IP register. Multiple devices can be requesting
interrupts at the same time. In each case there is alatch set in the device that requests the
interrupt. If that latch is cleared before the interrupt is latched by the central interrupt
logic, then the interrupt request islost and no interrupt takes place. Thisis shownin
Table 7-14. The priorities shown in thistable apply only for interrupts of the same priority
level and are only meaningful if two interrupts are requested at the same time. Most of the
devices can be programmed to interrupt at priority level 1, 2 or 3.

User’s Manual 97

Table 7-14. Interrupts—

Priority and Action to Clear Requests

Priority Interrupt Source Action Required to Clear the Interrupt
Highest External 1 Automatically cleared by the interrupt acknowledge.
External 0 Automatically cleared by the interrupt acknowledge.
Periodic (2 kHZ) Read the status from the GCSR.
Quadrature Decoder Read the status from the QDCSR.
Timer B Read the status from the TBSR.
Timer A Read the status from the TASR.
Input Capture Read the status from the ICCSR.
Rd: Read the data from the SPDOR, SPD1R or SPD2R.
Slave Port Wr: Write data to the SPDOR, SPD1R, SPD2R or write a
dummy byte to the SPSR.
Rx: Read the data from the SEDR or SEAR.
Serial Port E Tx: Write datato the SEDR, SEAR, SELR or write adummy
byte to the SESR.
Rx: Read the data from the SFDR or SFAR.
Serial Port F Tx: Write data to the SFDR, SFAR, SFLR or write adummy
byte to the SFSR.
Rx: Read the data from the SADR or SAAR.
Serial Port A Tx: Writedatato the SADR, SAAR, SALR or writeadummy
byte to the SASR.
Rx: Read the data from the SBDR or SBAR.
Serial Port B Tx: Write datato the SBDR, SBAR, SBLR or write adummy
byte to the SBSR.
Rx: Read the data from the SCDR or SCAR.
Serial Port C Tx: Write datato the SCDR, SCAR, SCLR or write adummy
byte to the SCSR.
Rx: Read the data from the SDDR or SDAR
Lowest Serial Port D Tx: Write dateto the SDDR, SDAR, SDLR or write adummy
byte to the SDSR

In the case of the external interrupts the only action that will clear the interrupt request is
for the interrupt to take place, which automatically clears the request. A special action
must be taken in the interrupt service routine for the other interrupts.

98

Rabbit 3000 Microprocessor

7.10.1 External Interrupts

There are two external interrupts. Each interrupt has 2 input pins that can be used to trig-
ger the interrupt. The inputs have a pulse catcher that can detect rising, falling or either ris-
ing or faling edges.

INTIA [PE1] [puise

catcher
=
INT1B [PE5]

pulse

catcher
U #1 interrupt acknowledge

INTOA [PEO] (piss

catcher \J‘
Y

pulse

catgher #0 interrupt acknowledge

INTOB [PE4]

Figure 7-6. External Interrupt Line Logic

The external interrupts take place on atransition of the input, which is programmable for
rising, falling or both edges. The pulse catchers are programmabl e separately to detect a
rising, faling, or either edge in the input. Each of the interrupt pins hasits own catcher
deviceto catch the edge transition and request the interrupt.

When the interrupt takes place, both pulse catchers associated with that interrupt are auto-
matically reset. If both edges are detected before the corresponding interrupt takes place,
because the triggering edges occur nearly simultaneously or because the interrupts are
inhibited by the processor priority, then there will be only one interrupt for the two edges
detected. The interrupt service routine can read the interrupt pins via Parallel Port E and
determine which lines experienced a transition, provided that the transitions are not too
fast. Interrupts can also be generated by setting up the matching port E bit as an output and
toggling the bit.

External interrupts are cleared automatically during the processor Interrupt Acknowledge
cycle. The Interrupt Acknowledge cycle will always immediately follow an Instruction
Fetch 1 cycle. Thisinstruction byte isignored, and will be the first byte fetched upon
returning from the interrupt. Interrupt Acknowledge cycles are always followed by two
memory writes to push the contents of the PC onto the stack. Execution then begins at the
appropriate interrupt vector location.

User’s Manual 99

Table 7-15. Control Registers for External Interrupts

Reg Name | Reg Address Bits 7,6 Bits 5,4 Bits 3,2 Bits 1,0

IOCR 10011000 XX INTOB PE4 INTOA PEO Enb INTO

I1CR 10011001 XX INT1B PE5 INT1A PE1 Enb INT1
edgetriggered |edgetriggered |interrupt
00-disabled 00-disabled 00-disable
10-rising 10-rising 01-pri 1
01-faling 01-faling 10-pri 2
11-both 11-both 11-pri 3

7.10.2 Interrupt Vectors: INTO - EIR,00h/INT1 - EIR,08h

When it isdesired to expand the number of interruptsfor additional periphera devices, the

user should use the interrupt routine to dispatch interrupts to other virtual interrupt rou-
tines. Each additional interrupting device will have to signal the processor that it is

requesting an interrupt. A separate signal line is needed for each device so that the proces-

sor can determine which devices are requesting an interrupt.

The following code shows how the interrupt service routines can be written.

Ext er nal

int2:

PUSH | P
| PSET 1

save interrupt
set to priority really desired (1, 2,

priority

i nsert body of interrupt routine here

oPP

| PRES

RET

I P ; get back entry priority

return frominterrupt

etc.)

restore interrupted routine’'s priority

interrupt Routine #0 (programed priority could be 3)

100

Rabbit 3000 Microprocessor

7.11 Bootstrap Operation

The device provides the option of bootstrap from any of three sources: from the Slave
Port, from Serial Port A in clocked serial mode, or from Serial Port A in asynchronous
mode. Thisiscontrolled by the state of the SMODE pins after reset. Bootstrap operationis
disabled if (SMODEL, SMODEQ) = (0, 0).

Bootstrap operation inhibits the normal fetch of code from memory, and instead substi-
tutes the output of asmall internal boot ROM for program fetches. This bootstrap program
reads groups of three bytes from the selected periphera device. Thefirst byte is the most
significant byte of a 16-bit address, followed by the least-significant byte of a 16-bit
address, followed by a byte of data. The bootstrap program then writes the byte of datato
the downloaded address and jumps back to the start of the bootstrap program. The most
significant bit of the addressis used to determine the destination for the byte of data. If this
bit is zero, the byte is written to the memory location addressed by the downloaded
address. If thishit is one, the byte iswritten to the internal peripheral addressed by the
downloaded address. Note that all of the memory control signals continue to operate nor-
mally during bootstrap.

Execution of the bootstrap program automatically waits for data to become available from
the selected peripheral, and each byte transferred automatically resets the watchdog timer.
However, the watchdog timer still operates, and bytes must be transferred often enough to
prevent the watchdog timer from timing out.

Bootstrap operation is terminated when the SMODE pins are set to zero. The SMODE
pins are sampled just prior to fetching the first instruction of the bootstrap program. If the
SMODE pins are zero, instructions are fetched from normal memory starting at address
0000h. The Slave Port Control register allows the bootstrap operation to be terminated
remotely. Writing aoneto bit 7 of this register causes the bootstrap operation to terminate
immediately. So the sequence 80h, 24h and 80h will terminate bootstrap operation.

Bootstrap operation is not restricted to the time immediately after reset because the boot
ROM is addressed by only the four least significant bits of the address. So any time that

the address ends in four zeros, if the SMODE pins are non-zero and bit 7 of the SPCRis
zero, the bootstrap program will begin execution. This allows in-line downloading from

the selected bootstrap port. Upon completion of the bootstrap operation, either by return-
ing the SMODE pins to zero or setting the bit in the SPCR, execution will continue from
where it was interrupted for the bootstrap operation.

The Slave Port is selected for bootstrap operation when (SMODE1, SMODEOQ) = (0, 1). In
this case the pins of Parallel Port A are used for a byte-wide data bus, and selected pins of
Parallel Ports B and E are used for the Slave Port control signals. Only Slave Port Data
Register 0 isused for bootstrap operation, and any writesto the other data registerswill be
ignored by the processor, and can actually interfere with the bootstrap operation by mask-
ing the Write Empty signal.

User’s Manual 101

Serial Port A is selected for bootstrap operation as a clocked seria port when SMODE =
10. Inthiscase bit 7 of Parallel Port Cisused for the serial dataand bit 1 of Parallel Port B
Isused for the seria clock. Note that the serial clock must be externally supplied for boot-
strap operation. This precludes the use of a serial EEPROM for bootstrap operation.

Serial Port A is selected for bootstrap operation as an asynchronous serial port when
SMODE = 11. In this case bit 7 of Parallel Port Cis used for the serial data, and the

32 kHz oscillator is used to provide the seria clock. A dedicated divide circuit alows the
use of the 32 kHz signal to provide the timing reference for the 2400 bps asynchronous
transfer. Only 2400 bps is supported for bootstrap operation, and the serial data must be
eight bits for proper operation. In the case of asynchronous bootstrap, Serial Port A
accepts either regular NRZ data or IrDA-encoded data (RZI coding with 3/16ths bit cell)
automatically. The hardware contians a monostable multivibrator triggered by the falling
edge of serial data into the data path. The one shot stretches any IrDA-encoded pul ses
enough to look like NRZ data, but not so much asto interfere with real NRZ data.

When abootstrap is performed using Seria Port A, the TXA signal is not needed since the
bootstrap is a one-way communication. After the reset ends and the bootstrap mode
begins, TXA will be low, reflecting its function as a parallel port output bit that is cleared
by the reset. This may be interpreted as a break signal by some serial communication
devices. TXA can be forced high by sending the triplet 80h, 50h, 40h, which stores 40h in
Parallel Port C. An alternate approach is to send the triplet 80h, 55h, 40h, which will
enable the TXA output from bit 6 of Parallel Port C by writing to the Parallel Port C func-
tion register (55h).

The transfer rate in any bootstrap operation must not be too fast for the processor to exe-
cute the instruction stream. The Write Empty signal acts as an interlock when using the
Slave Port for bootstrap operation, because the next byte should not be written to the Slave
Port until the Write Empty signal is active. No such interlock exists for the clocked serial
and asynchronous bootstrap operation. In these cases, remember that the processor clock
starts out in divide-by-eight mode with four wait states, and limit the transfer rate accord-
ingly. In asynchronous mode at 2400 bps it takes about 4 msto send each character, so no
problem is likely unless the system clock is extremely slow.

102 Rabbit 3000 Microprocessor

7.12 Pulse Width Modulator

The Pulse Width Modulator consists of aten-bit free running counter, and four width reg-
isters. Each PWM output is High for "n + 1" counts out of the 1024-clock count cycle,
where "n" isthe value held in the width register. The PWM output High time can option-
aly be spread throughout the cycle to reduce ripple on the externally filtered PWM output.
The PWM is clocked by the output of Timer A9.

Register Name Mnemonic I/O Address R/W Reset
PWM LSB 0 Register PWLOR 0x88 w XXXXXXXX
PWM MSB 0 Register PWMOR 0x89 w XXXXXXXX
PWM LSB 1 Register PWL1R Ox8A W XXXXXXXX
PWM MSB 1 Register PWM1R 0x8B W XXXXXXXX
PWM LSB 2 Register PWL2R 0x8C w XXXXXXXX
PWM MSB 2 Register PWM2R 0x8D W XXXXXXXX
PWM LSB 3 Register PWL3R Ox8E W XXXXXXXX
PWM MSB 3 Register PWM3R Ox8F w XXXXXXXX

The spreading function is implemented by dividing each 1024-clock cycle into four quad-
rants of 256 clocks each. Within each quadrant, the Pulse Width Modulator uses the eight
MSBs of each pulse-width register to select the base width in each of the quadrants. This
isthe equivalent to dividing the contents of the pulse-width register by four and using this
value in each quadrant. To get the exact High time, the Pulse Width Modulator uses the
two L SBs of the pulse-width register to modify the High time in each quadrant according
to the table below. The "n/4" term is the base count, formed from the eight M SBs of the
pulse-width register.

Pulse Width LSBs 1st 2nd 3rd 4th
00 n4+1 n/4 n/4 n/4
01 n4+1 n/4 n4+1 n/4
10 n4+1 n4+1 n4+1 n/4
11 n4+1 n4+1 n4+1 nd+1

The diagram below shows a PWM output for several different width values, for both
modes of operation. Operation in the spread mode reduces the filtering requirements on
the PWM output in most cases.

User’s Manual 103

n=255, normal |
:

n=255, spread | | (64 counts)
|

n=256, spread l | (65 counts)
l

n=257, spread | | (65 counts)
!

n=258, spread | | (65 counts)
l

n=259, spread | | (65 counts)
l

n=259, normal |

| (256 counts)

(64 counts)

(64 counts)

1]

(64 counts)

(64 counts)

(64 counts) |

111

(65 counts)

(64 counts)

(65 counts)

]]

A1)

(65 counts)

|

T
! | (260 counts)
I

1]

Table 7-16. PWM LSB x Register

PWM LSB x Register (PWLOR) (Address = 0x88)
(PWL1R) (Address = 0x8A)
(PWL2R) (Address = 0x8C)
(PWL3R) (Address = 0x8E)
Bit(s) Value Description
7:6 write | Theleast significant two bits for the Pulse Width Modulator count are stored.
5:1 These bits are ignored.
0 0 PWM output High for single block.
1 Spread PWM output throughout the cycle.
Table 7-17. PWM MSB x Register
PWM MSB x Register (PWMOR) (Address = 0x89)
(PWM1R) (Address = 0x8B)
(PWM2R) (Address = 0x8D)
(PWM3R) (Address = 0x8F)
Bit(s) Value Description
The most significant eight bits for the Pulse Width Modulator count are stored.
7.0 write | With acount of "n", the PWM output will be High for "n + 1" clocks out of the
1024 clocks of the PWM counter.
104 Rabbit 3000 Microprocessor

7.13 Input Capture

The two-channel Input Capture can be used to time input signals from various port pins.
Each Input Capture channel consists of a sixteen-bit counter that is clocked by the output
of Timer A8, and can be connected to one or two out of sixteen parallel port pins. The
Input Capture channel captures the state of its counter upon either of two programmed
conditions and can then generate an interrupt. The programmed conditions can also be
used to start and stop the counter.

Register Name Mnemonic I/O Address R/W Reset
Input Capture Ctrl/Status Register ICCSR 0x56 R/W 00000000
Input Capture Control Register ICCR 0x57 w XXXXXX00
Input Capture Trigger 1 Register ICTIR 0x58 w 00000000
Input Capture Source 1 Register ICSIR 0x59 W XXXXXXXX
Input Capture LSB 1 Register ICL1IR Ox5A R XXXXXXXX
Input Capture MSB 1 Register ICM1R 0x5B R XXXXXXXX
Input Capture Trigger 2 Register ICT2R 0x5C W 00000000
Input Capture Source 2 Register ICS2R 0x5D W XXXXXXXX
Input Capture LSB 2 Register ICL2R Ox5E R XXXXXXXX
Input Capture MSB 2 Register ICM2R Ox5F R XXXXXXXX

Because the Input Capture channels synchronize their inputs to the peripheral clock (fur-
ther divided by Timer A8), there is some delay between the input transition and when an
interrupt is requested, as shown below. The status bitsin the ICSXR are set coincident with
the interrupt request and are reset when read from the ICSxR.

Peri Clock

Timer A8

\

CPT input \

/

Each Input Capture channel has two inputs, called the Start condition and the Stop condi-
tion. Each of these two inputs can be programmed to come from one of four bits (bits 1, 3,
5o0r 7) inParalel Port C, D, F or G. The two inputs can come from the same or different
pins, and are edge-sensitive. Each input can be disabled, rising-edge-sensitive, faling-
edge-sensitive or responsive to either edge polarity. Either or both inputs can generate an
Input Capture interrupt, and either or both inputs can cause the current count to be latched.

Interrupt

User’s Manual 105

Each Input Capture counter operates in one of three modes, or can be disabled. The
counter is never automatically reset, but must be reset by a software command. Although
it does not generate an interrupt, there is a status bit which is set when the counter over-
flows (counts from FFFFh to 0000h) so that software can recognize this condition. To pre-
vent potential stale-data problems, whenever the LSB of the latched count isread from the
ICLXR, the corresponding MSB of the latched count is transferred to a holding register
until read from the ICMxR.

In the first mode the counter starts counting at the Start condition and stops counting at the
Stop condition. Thismodeis useful for pulse width measurement if the Start condition and
Stop condition are assigned to the same pin. The Input Capture inputs were chosen to take
maximum advantage of this mode, to allow baud-rate detection for the serial ports and
rotational speed measurement for the Quadrature Decoder channels. Using this mode with
different inputs for the Start and Stop condition allows time-delay measurements between
two signals. Thisisthe mode to use for high-speed pulse measurement, because only one
count latch is available, and it may be overwritten if the processor is not able to read the
latched value quickly enough. When the counter starts from a known count only the stop
count is necessary to determine the pulse width.

In the second mode the counter runs continuously and the Start and Stop conditions
merely latch the current count. Thismode is useful for time-stamping the input conditions
against the time reference of the counter. If the time-stamp feature is not needed, this
mode gives the Rabbit 3000 up to four more external interrupt inputs. This mode works
well for slower-speed pulse measurement, where the processor has enough time to read
the count latched by the Start condition before the Stop condition occurs and latches a new
count.

In the third mode the counter runs continuously until the Stop condition occurs. Thismode
measures the time from the software-defined counter start until the Stop condition occurs
on an input. Note that once the counter stops because of the Stop condition, it will not
resume counting until re-enabled by software.

106 Rabbit 3000 Microprocessor

Table 7-18. Input Capture Control/Status Register

Input Capture Control/Status Register (ICCSR) (Address = 0x56)
Bit(s) Value Description
7 0 The Input Capture 2 Start condition has not occurred.

(read) 1 The Input Capture 2 Start condition has occurred.
6 0 The Input Capture 2 Stop condition has not occurred.
(read) 1 The Input Capture 2 Stop condition has occurred.
5 0 The Input Capture 1 Start condition has not occurred.
(read) 1 The Input Capture 1 Start condition has occurred.
4 0 The Input Capture 1 Stop condition has not occurred.
(read) 1 The Input Capture 1 Stop condition has occurred.
3 0 The Input Capture 2 counter has not rolled over to all zeros.
(read) 1 The Input Capture 2 counter has rolled over to all zeros.
2 0 The Input Capture 1 counter has not rolled over to all zeros.
(read) 1 The Input Capture 1 counter has rolled over to all zeros.
7.2 These status bits (but not the interrupt enable bits) are cleared by the read of this
(read) register, asisthe Input Capture Interrupt.
7.4 0 The corresponding Input Capture interrupt is disabled.
(write) 1 The corresponding Input Capture interrupt is enabled.

3 0 No effect on Input Capture 2 counter. This bit always reads as zero.
(write) 1 Reset Input Capture 2 counter to all zeros and clears the rollover latch.
2 0 No effect on Input Capture 1 counter. This bit always reads as zero.
(write) 1 Reset Input Capture 1 counter to all zeros and clears the rollover latch.

1.0 (04 Normal Input Capture operation.
x0 Normal Input Capture operation.
1 Reserved for test. The Input Capture counter increments at both bit 0 and bit 8.

Thereisno carry from lower byte to higher byte.

User’s Manual

107

Table 7-19. Input Capture Control Register

Input Capture Control Register (ICCR) (Address = 0x57)
Bit(s) Value Description
7.2 These bits are ignored.
1.0 00 Input Capture interrupts are disabled.
01 Input Capture interrupt use Interrupt Priority 1.
10 Input Capture interrupt use Interrupt Priority 2.
1 Input Capture interrupt use Interrupt Priority 3.

Table 7-20. Input Capture Trigger x Register

Input Capture Trigger x Register (ICT1R) (Address = 0x58)
(ICT2R) (Address = 0x5C)
Bit(s) Value Description
76 00 Disable the counter.
01 The counter runs from the Start condition until the Stop condition.
10 The counter runs continuously.
1 The counter runs continuoudly, until the Stop condition.
5.4 00 Disable the count latching function.

01 Latch the count on the Stop condition only.

10 Latch the count on the Start condition only.

11 Latch the count on either the Start or Stop condition.

32 00 Ignore the starting input.

01 The Start condition isthe rising edge of the starting input.

10 The Start condition isthe falling edge of the starting input.

1 The Start condition is either edge of the starting input.

1.0 00 Ignore the ending input.

01 The Stop condition is the rising edge of the ending input.

10 The Stop condition is the falling edge of the ending input.

1 The Stop condition is either edge of the ending input.

108 Rabbit 3000 Microprocessor

Table 7-21. Input Capture Source x Register

Input Capture Source x Register (ICS1R) (Address = 0x59)
(ICS2R) (Address = 0x5D)
Bit(s) Value Description
7:6 00 Parallel Port C used for Start condition input.
01 Parallel Port D used for Start condition input.
10 Parallel Port F used for Start condition input.
1 Parallel Port G used for Start condition input.
5.4 00 Use port bit 1 for Start condition input.
01 Use port bit 3 for Start condition input.
10 Use port bit 5 for Start condition input.
11 Use port bit 7 for Start condition input.
32 00 Parallel Port C used for Stop condition input.
01 Parallel Port D used for Stop condition input.
10 Parallel Port F used for Stop condition input.
1 Parallel Port G used for Stop condition input.
1.0 00 Use port bit 1 for Stop condition input.
01 Use port bit 3 for Stop condition input.
10 Use port bit 5 for Stop condition input.
1 Use port bit 7 for Stop condition input.
Table 7-22. Input Capture LSB x Register
Input Capture LSB x Register (ICL1R) (Address = 0x5A)
(ICL2R) (Address = Ox5E)
Bit(s) Value Description
The least significant eight bits of the latched Input Capture count are returned.
7.0 read Reading the |sb of the count |atches the msb of the count to avoid reading stale
data. Reading the msb of the count opens the latches.

User’s Manual

109

Table 7-23. Input Capture MSB x Register

Input Capture MSB x Register (ICM1R) (Address = 0x5B)
(ICM2R) (Address = 0x5F)
Bit(s) Value Description
7.0 read The most significant eight bits of the latched Input capture count are returned.

110

Rabbit 3000 Microprocessor

7.14 Quadrature Decoder

The two-channel Quadrature Decoder accepts inputs, via Port F, from two external optical
incremental encoder modules. Each channel of the Quadrature Decoder accepts an in-
phase (1) and a quadrature-phase (Q) signal and provides 8-bit counters to track shaft rota-
tion and provide interrupts when the count goes from 00h to FFh or from FFh to 00h. The
Quadrature Decoder contains digital filters on the inputs to prevent false counts. The
Quadrature Decoder is clocked by the output of Timer A10.

Register Name Mnemonic I/O Address R/W Reset
Quad Decode Ctrl/Status Register QDCSR 0x90 R/W XXXXXXXX
Quad Decode Control Register QDCR 0x91 w 00xx0000
Quad Decode Count 1 Register QDCI1R 0x94 R XXXXXXXX
Quad Decode Count 2 Register QDC2R 0x96 R XXXXXXXX

Each Quadrature Decoder channel accepts inputs from either the upper nibble or lower
nibble of Port F. The | signal isinput on an odd-numbered port bit, while the Q signal is
input on an even-numbered port bit. There is also a disable selection, which is guaranteed
not to generate a count increment or decrement on either entering or exiting the disable
state. The operation of the counter as afunction of the | and Q inputs is shown below.

I input

Q input
>
CounterOOXO']x02x03x04x05x06x07x08x07x06x05x04x03x02x01xooxFF
"""""""'l'nterrupt

The Quadrature decoders are clocked by the output of Timer A10, giving a maximum
clock rate of one-half of the peripheral clock rate. The time constant of Timer A10 must be
fast enough to sample the inputs properly. Both the | and Q inputs go through a digital fil-
ter that rejects pulses shorter than two clock period wide. In addition, the clock rate must
be High enough that transitions on the | and Q inputs are sampled in different clock cycles.
The Input Capture may be used to measure the pulse width on the | inputs because they
come from the odd-numbered port bits. The operation of the digital filter is shown below.

User’s Manual 111

Peri Clock

e /
Accepted \ \ /

The Quadrature Decoder generates an interrupt when the counter increments from FFh to
00h or when the counter decrements from 00h to FFh. The timing for the interrupt is
shown below. Note that the status bits in the QDCSR are set coincident with the interrupt,
and the interrupt (and status bits) are cleared by reading the QDCSR.

LT 1l o FFl KFFI: ar ik

Tneernpi r‘

112 Rabbit 3000 Microprocessor

Table 7-24. Quad Decode Control/Status Register

Quad Decode Control/Status Register (QDCSR) (Address = 0x90)
Bit(s) Value Description
7 0 Quadrature Decoder 2 did not increment from OFFh.,
(rd-only) 1 Qua_drature Decoder 2 incremented from OFFh to Oh. Thisbit is cleared by aread
of hisregister.
6 0 Quadrature Decoder 2 did not decrement from Oh.
(rd-only) 1 Qua(_jratur_e Decoder 2 decremented from Oh to OFFh. Thisbit is cleared by aread
of thisregister.
5 This bit always reads as zero.
4 0 No effect on the Quadrature Decoder 2.
(wr-only) 1 Reset Quadrature Decoder 2 to 00h, without causing an interrupt.
3 0 Quadrature Decoder 1 did not increment from OFFh,
(rd-only) 1 Qua(_jratur_e Decoder 1 incremented from OFFh to Oh. Thisbit is cleared by aread
of thisregister.
2 0 Quadrature Decoder 1 did not decrement from Oh.
(rd-only) 1 Quadraturg Decoder 1 decremented from Oh to OFFh. Thisbit is cleared by aread
of thisregister.
1 This bit always reads as zero.
0 0 No effect on the Quadrature Decoder 1.
(wr-only) 1 Reset Quadrature Decoder 1 to 00h, without causing an interrupt.

User’s Manual

113

Table 7-25. Quad Decode Control Register

Quad Decode Control Register (QDCR) (Address = 0x91)
Bit(s) Value Description
76 Ox Disable Quadrature Decoder 2 inputs. Writing a new value to these bits will not

cause Quadrature Decoder 2 to increment or decrement.

10 Quadrature Decoder 2 inputs from Port F bits 3 and 2.

11 Quadrature Decoder 2 inputs from Port F bits 7 and 6.

5:4 These bits are ignored.

Disable Quadrature Decoder 1 inputs. Writing a new value to these bits will not

32 Ox cause Quadrature Decoder 1 to increment or decrement.

10 Quadrature Decoder 1 inputs from Port F bits 1 and O.

1 Quadrature Decoder 1 inputs from Port F bits 5 and 4.

1.0 00 Quadrature Decoder interrupts are disabled.

01 Quadrature Decoder interrupt use Interrupt Priority 1.

10 Quadrature Decoder interrupt use Interrupt Priority 2.

11 Quadrature Decoder interrupt use Interrupt Priority 3.

Table 7-26. Quad Decode Count Register

Quad Decode Count Register (QDC1R) (Address = 0x94)
(QDC2R) (Address = 0x96)
Bit(s) Value Description
7:0 read The current value of the Quadrature Decoder counter is reported.

114 Rabbit 3000 Microprocessor

8. MEMORY INTERFACE AND MAPPING

8.1 Interface for Static Memory Chips

Static memory chips generaly have address lines, data line, a chip select line, an output
enable line and awrite enable. The Rabbit 3000 has these same lines that can connect
directly to anumber of static memory chips. The chip selects are not completely inter-
changeabl e because certain chip selects have special functions. When the processor starts
up, not in cold boot mode, execution starts at address zero in the memory attached to /CS0.
A static RAM should be connected to /CS1 because Dynamic C development tools
assume a static RAM connected to /CS1.

In addition /CS1 has special features that support battery backing of static RAM. When
the processor power isremoved but battery power is supplied to the battery power pin
(VBAT) /CSlisheld in a high impedance state. This allows a pull up resistor to the bat-
tery backup power to hold /CS1 high and thus hold the static memory chip in standby
mode. The RESOUT pin is also held high while the processor is powered down and bat-
tery power issupplied to VBAT. Thisalowsthe RESOUT pin to be used to control power
to the processor and the static RAM chip viaatransistor.

Itisalso possibleto force /CS1 to be enabled at all times. Thisis convenient if an external
battery backup device is used that might slow down the transition of /CS1 during the
memory cycle. Most users will not use this feature.

33V
FDV302P \ain Power
(p channel)
=
oL I it
I .
= % 100 kQ v :l:
Rab?ggooo /CS Rabbit 3000 ~ Rabbit 3000
VBAT ably
SR\I/‘\I;\I/ID RESOUT

Figure 8-1. Battery-Backup Circuit

User’s Manual 115

Rabbi t 3000

/ CSO
/ Cs1
/ CS2

/ OE0
/ CE1

[V\EO
/ V\E1

data lines (8)

address Lines (20)

y

CNONONA |

OO VO QTT

static
menory
flash

/ CS
/ CE

[V\E

L p| menory

OHONO

static

RAM

/CS
/ CE

I V\E

Figure 8-2. Typical Memory Chip Connection

116

Rabbit 3000 Microprocessor

8.2 Memory Mapping Overview
See Section 3.2, “Memory Mapping,” for a discussion of Rabbit memory mapping.

Figure 8-3 shows an overview of the Rabbit memory mapping. The task of the memory
mapping unit is to accept 16-bit addresses and trand ate them to 20-bit addresses. The
memory interface unit accepts the 20-bit addresses and generates control signals applied
directly to the memory chips.

Processor | g | Memory <« » Memory QM:'_mOW
Mapping Interface Chips
Unit

Figure 8-3. Overview of Rabbit Memory Mapping

8.3 Memory-Mapping Unit

The 64K 16-bit address space accessed by processor instructionsis divided into segments.
Each segment has alength that isamultiple of 4K. Except for the extended code segment,
the segments have adjustable sizes and some segments can be reduced to zero size and
thus vanish from the memory map.

The four segments are shown in the example in Figure 8-4. The segment size register
(SEGSIZE) determines the boundaries marked in the diagram. The extended code seg-
ment always occupies the addresses OEOOOh—OFFFFh. The stack segment stretches from
the address specified by the upper 4 bits of the SEGSIZE register to ODFFFh. For exam-
ple, if the upper 4 bits of SEGSIZE are ODh, then the stack segment will occupy 0D0O0Oh—
ODFFFh, or 4K. If the upper 4 bits of SEGSIZE are greater than or equal to OEh, the stack
segment vanishes. If these bits are set to zero, the two segments below the stack segment
will vanish.

The lower 4 bits of SEGSIZE determine the lower boundary shown in the figure. If this
boundary isequal to the upper boundary or greater than OEh, the data segment will vanish.
If this segment is placed at zero the code segment will vanish.

User’s Manual 117

64K

Extended code
XPC segment (8K)
Boundary SEGSIZE[4..7] \
' ¢ Stack segment
(4K typ)
Boundary SEGSIZEJO0..3] $
\Data segment
XPC
STACKSEG
DATASEG - Root segment
00 0K
+ 16-bit address
20-bit address

Figure 8-4. Memory Segments

The memory management unit accepts a 16-bit address from the processor and translates
it into a 20-bit address. The procedure to do this works as follows.

1. It isdetermined which segment the 16-bit address belongs to by inspecting the upper 4
bits of the address. Every address must belong to one of the possible 4 segments.

2. Each segment has an 8-bit segment register. The 8-bit segment register is added to the
upper 4 bits of the 16-bit address to create a 20-bit address. Wraparound occursiif the
addition would result in an address that does not fit in 20 bits.

Table 8-1. Segment Registers

Segment Register

Function

XPC

L ocates extended code segment in physical memory. Read and written
by processor instructions: Id a,xpc, Id xpc,a, Ical, Iret, |jp

STACKSEG = 11h

Locates stack segment in physical memory.

DATASEG = 12h

L ocates data segment in physical memory.

Table 8-2. Segment Size Register

Bits 7..4 Bits 3..0

SEGSIZE = 13h

Boundary address stack segment. |Boundary address data segment.

118

Rabbit 3000 Microprocessor

8.4 Memory Interface Unit

The 20-bit memory addresses generated by the memory-mapping unit feed into the mem-
ory interface unit. The memory interface unit has a separate write-only control register for
each 256K quadrant of the 1M physical memory. This control register specifies how mem-
ory access requests to that quadrant are to be dispatched to the memory chips connected to
the Rabbit. There are three separate chip select output lines (/CS0, /CS1, and /CS2) that
can be used to select one of three different memory chips. A field in the control register
determines which chip select is selected for memory accesses to the quadrant. The same
chip select line may be accessed in more than one quadrant. For example, if a512K RAM
isinstalled and is selected by /CS1, it would be appropriate to use /CS1 for accessesto the
3rd and 4th quadrants, thus mapping the RAM chip to addresses 80000h to OFFFFFh.

User’s Manual 119

8.5 Memory Bank Control Registers

Table 8-3 describes the operation of the four memory bank control registers. The registers
are write-only. Each register controls one quadrant in the 1M address space.

Table 8-3. Memory Bank Control Register x (MBxCR=14h+x)

Memory Bank x Control Register (MBOCR) (Address = 0x14)
(MB1CR) (Address = 0x15)
(MB2CR) (Address = 0x16)
(MB3CR) (Address = 0x17)
Bit(s) Value Description
00 Four wait states for accesses in this bank.
. 01 Two wait states for accessesin this bank.
e 10 One wait states for accessesin this bank.
1 Zero wait states for accesses in this bank.
0 Pass A[19] for accesses in this bank.
° 1 Invert A[19] for accessesin this bank.
0 Pass A[18] for accesses in this bank.
‘ 1 Invert A[18] for accessesin this bank.

00 /OEO and /WEDQ are active for accesses in this bank

01 /OE1 and /WEL1 are active for accesses in this bank

3:2 10 /OEQ only is active for accesses in this bank (i.e. read-only). Transactions are
normal in every other way.
1 /OEL1 only is active for accessesin this bank (i.e. read-only). Transactions are
normal in every other way.
00 /CS0 is active for accesses in this bank.
1.0 01 /CS1 isactive for accesses in this bank.

1x /CS2 is active for accesses in this bank.

Bits 7,6—The number of wait states used in access to this quadrant. Without wait states, read requires
2 clocks and write requires 3 clocks. The wait state adds to these numbers. Wait states should only
be used for memory data accesses (RAM or dataflash), not for memory from which instructions are
executed (code memory).

Bits 5, 4—These bits allow the upper address lines to be inverted. Thisinversion occurs after the logic
that selects the bank register, so setting these lines has no effect on which bank register isused. The
inversion may be used to install a 1M memory chip in the space normally allocated to a 256K chip.
The larger memory can then be accessed as 4 pages of 256K each. Thereis no effect outside the
quadrant that the memory bank control register is controlling.

120 Rabbit 3000 Microprocessor

Bit 3—Inhibits the write pulse to memory accessed in this quadrant. Useful for protecting flash mem-
ory from an inadvertent write pulse, which will not actually write to the flash because it is protected
by lock codes, but will temporarily disable the flash memory and crash the system if the memory is
used for code.

Bit 2—Selects which set of the two lines /OEx and /WEXx will be driven for memory accessesin this
quadrant.

Bits 1,0—Determines which of the three chip select lines will be driven for memory accessesto this
quadrant.

All bits of the control register are initialized to zero on reset.

8.5.1 Optional A16, A19 Inversions by Segment (/CS1 Enable)

Theinversion of A19 or A16 controlled by the read/write MMIDR register is used to redi-
rect mapping of the root segment and the data segment by inverting certain bits when
these segments are accessed.

The optional enable of /CS1 isvaluable for systems that are pushing the access time of
battery-backed RAM. By enabling /CSL1, the delay time of the switch that forces /CS1
high when power is off can be bypassed. This feature increases power consumption since
the RAM is always enabled and its access is controlled normally by /OEL.

Table 8-4. MMU Instruction/Data Register (MMIDR =010h)

MMU Instruction/Data Register (MMIDR) (Address = 0x10)
Bit(s) Value Description
76 00 These bits are ignored and always return zeros when read.
0 Enable A16 and A19 inversion independent of instruction/data.
5 1 Enable A16 and A19 inversion (controlled by bits 0-3) for data accesses only.
This enables the instruction/data split. Thisis separate | and D space.
0 Normal /CS1 operation.
4 Force /CS1 always active. Thiswill not cause any conflicts as long as the
1 memory using /CS1 does not &l so share an Output Enable or Write Enable with
another memory.
0 Normal operation.
: 1 For a DATASEG access, invert A19 before MBXCR (bank select) decision.
0 Normal operation.
? 1 For a DATASEG access: invert A16
0 Normal operation.
! 1 For root access, invert A19 before MBXCR (bank select) decision.
0 Normal operation.
° 1 For root access, invert A16

User’s Manual 121

Table 8-5. MMU Expanded Code Register (MECR = 18h)

MMU Expanded Code Register (MECR) (Address = 0x18)
Bit(s) Value Description

7:3 These bits are ignored for write, and return zeros when read.
0xx Normal operation.
100 For an XPC access, use MBOCR independent of A19-A18.

2:0 101 For an XPC access, use MB1CR independent of A19-A18.
110 For an XPC access, use MB2CR independent of A19-A18.
111 For an X PC access, use MB3CR independent of A19-A18.

The Memory Timing Control Register (MTCR) enables the extended timing for the memory
output enables and write enables. See Figure 7-2 for details on how the timing of the mem-
ory read and write strobesis affected when using the early output enable and write enable
options. Figure 16-3 shows extended output enable and write enable timing diagrams.

Table 8-6. Memory Timing Control Register (MTCR, adr = 019h)

Memory Timing Control Register (MTCR) (Address = 0x19)
Bit(s) Value Description
7.4 XxXxx | These bits are reserved and should not be used.
3 0 Normal timing for /OE1B (rising edge to rising edge, one clock minimum).
1 Extended timing for /OE1B (one-half clock earlier than normal).
2 0 Normal timing for /OEOB (rising edge to rising edge, one clock minimum).
1 Extended timing for /OEOB (one-half clock earlier than normal).
1 0 Npr_mal timing for /WE1B (rising edge to falling edge, one and one-half clocks
minimum).
1 Extended timing for /WE1B (falling edge to falling edge, two clocks minimum).
0 0 Npr_mal timing for /WEOB (rising edge to falling edge, one and one-half clocks
minimum).
1 Extended timing for /WEOB (falling edge to falling edge, two clocks minimum).

122

Rabbit 3000 Microprocessor

The Breakpoint/Debug controller allows the RST 28 instruction to be used as a software
breakpoint. Normally the RST 28 instruction causes a call to a particular location in mem-
ory, but the operation of thisinstruction is modified when the breakpoint/debug feature is
enabled. The RST 28 instruction istreated as a NOP in the breakpoint/debug mode.

Table 8-7. Breakpoint/Debug Control Register (BDCR, adr = 0l1lch)

Breakpoint/Debug Control Register (BDCR) (Address = 0x1C)
Bit(s) Value Description
7 0 Normal RST 28 operation.

1 RST 28is NOP.

6.0 These bits are reserved and should not be used.

8.6 Allocation of Extended Code and Data

The Dynamic C compiler compiles code to root code space or to extended code space.
Root code starts in low memory and compiles upward.

Allocation of extended code starts above the root code and data. Allocation normally con-
tinues to the end of the flash memory.

Datavariables are allocated to RAM working backwards in memory. Allocation normally
starts at 52K in the 64K D space and continues. The 52K space must be shared with the
root code and data, and is allocated upward from zero.

Dynamic C also supports extended data constants. These are mixed in with the extended
codein flash.

User’s Manual 123

8.7 Instruction and Data Space Support

Instruction and Data space (I and D space) support is accomplished by optionally invert-
ing address lines A16 and/or A19 when the processor accesses D space, but not inverting
those lines when the processor accesses | space. The MMIDR register (see Table 8-8) is
used to control thisinversion. It isimportant to understand that the bit inversion of A16
and A19 associated with | and D space occurs before the upper 2 bits of the 20 bit address
are used to determine the quadrant and thus the bank register that is going to control mem-
ory access. This contrasts with the optional address bit inversion of A19 and A18 con-
trolled by the 4 memory bank control registers (see Table 8-3) which takes place after the
guadrant has been computed.

Table 8-8. MMU Instruction/Data Register (MMIDR=010h)

Bits 7:5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
000 1-force 1-Invert A19 for 1-Invert Al6for | 1-Invert A19 for 1-Invert Al6for
/CS1 data accesses in data |data accessesin |data accessesin root |dataaccessesin
always segment before data segment segment before root segment.
enabled quadrant selection quadrant selection

To make this clear we will provide an example. Suppose a 1 megabyte flash memory is
controlled by /CS0, /WEOQ, and /OEQ. Suppose this memory is accessed as part of the first
guadrant and MBOCR is set up to enable /CS0 and /WEQO or /OEQ on accesses to this bank.
Then if A18 and A19 are zero, the first 256k bytes of the flash memory will be visiblein
the first 256k bytes of the physical memory. If access is made to the 2nd quadrant the
memory will not be selected unless MB1CR is mapped to the flash memory. However if
A18isinverted by setting bit 4 in MBOCR to a 1, then the second 256k bytes of the flash
will be mapped into the first quadrant. A18 will have been inverted, but he quadrant does
not change because thisinversion occurs after the quadrant has been selected.

Theinversion of A19 or A16 controlled by the MMIDR register on D space accessesis
used to separate | and D space to different memory locations. The separation of | and D
space can only occur for the first 2 memory zones in the64k space. For each zone, the root
code segment and the data segment either or both of A19 and A16 can be inverted. the rea-
soning behind these choicesisthe following. A norma memory map places flash memory
in the lower 512k of the physical memory space. RAM memory begins at 512k. By invert-
ing A19 on D space accesses memory mapped to the lower 512k and held in flash will be
switched to RAM for D accesses. By inverting A16, D accesses will be switched to an
adjacent 64k page, which would normally still be in the lower 512k memory or flash. To
see how this works consider that datais of 2 different types. constants stored in flash
memory and variables which must be stored in RAM. Because there are 2 types of data it
isdesirable to divide the D space into 2 zones, one for constants and one for variables. As
shownin Figure 8-5. In acombined | and D space model the root code segment holds both
code and data constants in flash memory. The data segment holds data variablesin RAM.
In the separate | and D space model the root code segment and the data segment are

124 Rabbit 3000 Microprocessor

mapped into contiguous regions of memory to create a continuous root code segment
starting at the bottom of physical memory in flash. In the | space the division between the
root segment and the data segment isirrelevant because the DATASEG register contains
zero and the division between the segments defined by the lower 4 bits of the SEGSIZE
register does not mark adivision in physical memory for code space. Howevey, if for D
space accesses A16 isinverted for the root segment and A19 isinverted for the data seg-
ment, then root segment data is mapped to the next 64k of flash and data segment datais
mapped to a place in memory 512k higher in the RAM. This divides the data space into 2
separate segments for constants and variables. If the stack segment (which is still com-
bined | and D space) and the extended code segment (also combined | and D space)
occupy 12k at the top of the 64k space, then the remaining 52k is doubled into a 52k code
space in flash and a 52k data space which may be split into 2 parts, one for constants and
one for variables. The relative size of the 2 parts depends on the lower 4 bits of the SEG-
SIZE register which defines the 4k page boundary between the root segment and the data
segment.

Combined | & D Separate | & D
64k
Extended Code

52k Stack

RAM \[;-Space Allocate
Root a ¢ vars

Root (4*nk | Code | (RAM)
Code & [-Space D-Space| ajjocate
Data Const consts
(flash) (flash)

Figure 8-5. Combined versus Separate | & D Space

The use of physica memory that goes with this map is shown in Figure 8-6, “Use of Phys-
ical Memory Separate | & D Space Model,” on page 126. In thisfigure "n" is the number
of 4k pages devoted to D space constants. In thefigureit isassumed that the lower 512k of
memory is entirely composed of flash memory and the upper 512K is entirely RAM. This
does not have to be the case. For example, if alow-cost 32K x 8 RAM is used and mapped
to the 3rd quadrant using /CS1, the RAM memory will begin at 512K and will be repeated
8 times in the 3rd quadrant from addresses 512K to 768K. Since the memory repeats, it
can be considered to start at any address and continue for 32K. At least 4K of RAM is
needed for the stack segment, so if a32K RAM is used, a maximum of 28K would be
available for storing data variables. If more stack segments are needed, the amount of data
variable space would be corresponding reduced.

User’s Manual 125

64k+4*n

64k 512k+52k
ok ’ aloc xcode 512k+4*n 1004k
52
ﬂsts 512k __p-dloc xdata vars
oot e
| Space 774 4
—» alloc consts <« dlocatevars
Constant Variable
D Space D Space
Flash memory available Ram memory available.
for extended code, constant

data.

Figure 8-6. Use of Physical Memory Separate | & D Space Model

In Figure 8-6 arrows indicate the direction in which variables and constants are allocated
as the compile or assemble proceeds. Each of these arrows starts at a constant location in
physical memory. Thisisimportant because the Dynamic C debugging monitor needs to
keep a small number of constants and variable in data space and it needs to be able to
access these regardless of the state of the user program. The Dynamic C debugger vari-
ables are kept at the top of the data segment starting at 52k and working down in memory.
The user-program variables are alocated by the compiler starting just below the Dynamic
C debugger data. The Dynamic C constants start at address zero. User constants are allo-
cated stating at alow address just above the Dynamic C constants.

126 Rabbit 3000 Microprocessor

8.8 How the Compiler Compiles to Memory

The compiler actually generates code for root code and constants and extended code and
extended constants. It allocates space for data variables, but does not generate data bits to
be stored in memory.

In any but the smallest programs, most of the code is compiled to extended memory. This
code executes in the 8K window from EOQ00 to FFFF. This 8K window uses paged access.
Instructions that use 16-bit addressing can jump within the page and also outside of the
page to the remainder of the 64K space. Special instructions, particularly long call, long
jump and long return, are used to access code outside of the 8K window. When one of
thesetransfer of control instructionsis executed, both the address and the view through the
8K window or page are changed. Thisallowstransfer to any instruction in the 1M memory
space. The 8-bit XPC register controls which of the 256 4K pages the 8K window aligns
with. The 16-bit PC controls the address of the instruction, usually in the region EQ0O to
FFFF. The advantage of paged access is that most instructions continue to use 16-bit
addressing. Only when an out-of -range transfer of control is made does a 20-bit transfer of
control need to be made. The beauty of having a 4K minimum step in page alignment
while the size of the pageis 8K isthat code can be compiled continuously without gaps
caused by change of page. When the pageis moved by 4K, the previous end of codeis still
visible in the window, provided that the midpoint of the page was crossed before moving
the page alignment.

Asthe compiler compiles code in the extended code window, it checks at opportune times
to seeif the code has passed the midpoint of the window or FO00. When the code passes
F000, the compiler slides the window down by 4K so that the code at FOOO+x becomes
resident at EOOO+x. Thisresultsin the code being divided into segments that are typically
4K long, but which can very short or aslong as 8K. Transfer of control can be accom-
plished within each segment by 16-bit addressing; 20-bit addressing is required between
segments.

User’s Manual 127

128 Rabbit 3000 Microprocessor

9. PARALLEL PORTS

The Rabbit has seven 8-bit parallel portsdesignated A, B, C, D, E, F, and G. The pins used
for the parallel ports are also shared with numerous other functions as shown in Table 5-2.
The important properties of the ports are summarized below.

Port A—Shared with the slave port data interface and auxiliary 1/0 data bus.

Port B—Shared with control lines for slave port, auxiliary 1/0 address bus, and clock
I/O for clocked serial mode option for Serial Ports A and B.

Port C—Shared with seria port data |/O.

Port D—4 bits shared with aternate I/O pinsfor Serial Ports A and B. 4 bits not shared.
Port D can be configured as open drain outputs. Port D aso contains output preload
registers that can be clocked into the output registers under timer control for pulse gen-
eration.

Port E—AII bits of Port E can be configured as 1/O strobes. 4 bits of port E can be used
as external interrupt inputs. One bit of port E is shared with the slave port chip select.
Port E has output preload registers that can be clocked into the output registers under
timer control for pulse generation.

Port F— As outputs, Port F can be configured as open drain outputs. Alternatively, Par-
ald Port F outputs can carry the four Pulse-Width Modulator outputs. As inputs, Paral-
lel Port F inputs can carry the inputs to the two channels of the quadrature decoders.
Port F pins can also be configured to be used as clock pins for clocked Serial Ports C
and D.

Port G—As outputs, Port G can be configured as open drain outputs. Port G inputs and
outputs are also used for access to other serial peripherals on the chip such as those
used for asynchronous or SDLC/HDL C communication.

Parallel Ports D—G behave in the same manner when used as digital 1/O.

NOTE: There may be aconflict in using Parallel Port A and Parallel Port F. Either Paral-
lel Port A can be used as inputs, in which case Parallel Port F has full function, or if
Parallel Port A cannot be used as inputs, use any pins on Parallel Port F not used for
PWM or seria clock outputs asinputs and take the precaution of setting up Parallel Port
F before the conflicting functionality of Parallel Port A is enabled. Refer to
Section 9.6.1, “Using Parallel Port A and Parallel Port F,” for more information.

User’s Manual 129

9.1 Parallel Port A
Parallel Port A has asingle read/write register:

Table 9-1. Parallel Port A Registers

Register Name Mnemonic I/O address R/W Reset
Port A Data Register PADR 0x30 R/W XXXXXXXX
Slave Port Control Register SPCR 0x24 R/W 0xx00000

Table 9-2. Parallel Port A Data Register Bit Functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PADR (R/W)

adr = 030h PA7 PAG PAS PA4 PA3 PA2 PA1 PAO

Thisregister should not be used if the slave port or auxiliary 1/0 busis enabled.

The slave port control register is used to control whether Parallel Port A is configured as
dlave databus, auxiliary 1/0 data bus, parallel Input or parallel output. To make the port an
input, store 080h in the SPCR (slave port control register). To make the port an output,
store 084h in SPCR. Parallel Port A is set up as an input port on reset.

When the port isread, the value read reflects the voltages on the pins, "1" for high and "0"
for low. This could be different than the value stored in the output register if the pinis
forced to a different state by an externa voltage.

NOTE: Refer to Section 9.6.1, “Using Parallel Port A and Parallel Port F,” for more
information.

130 Rabbit 3000 Microprocessor

9.2 Parallel Port B
Parallel Port B, has eight pinsthat can programmed individually to be inputs and outputs.

After reset, Parallel Port B comes up as six inputs (PB[5:0]) and two outputs (PB7 and
PB6). The output value on pins PB6 and PB7 (package pins 99, 100) will be low.

Table 9-3. Parallel Port B Registers

Register Name Mnemonic I/O address R/W Reset
Port B Data Register PBDR 0x40 R/W OOXXXXXX
Port B Data Direction Register PBDDR 0x47 w 11000000

Table 9-4. Parallel Port B Register Bit Functions

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | BitO
PBDR
(RIW) PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO
adr = 040h
(F:/E\‘/)DDR dir = dir = dir = dir = dir = dir = dir = dir =
adr = 047h out out out out out out out out

When the auxiliary 1/O busis enabled, Parallel Port B bits 2:7 provide 6 address lines, the
least significant 6 lines of the 16 lines that define the full 1/O space.

When the dave port is enabled, parallel port lines PB2—PB7 are assigned to various save
port functions. However, it is still possible to read PBO—PB5 using the Port B data register
even when lines PB2-PB7 are used for the slave port. It is also possible to read the signal
driving PB6 and PB7 (this signal is on the signaling lines from the slave port logic).

Regardless of whether the slave port is enabled, PBO reflects the input of the pin unless
Serial Port B hasitsinternal clock enabled, which causesthislineto be driven by the serial
port clock. PB1 reflects the input of the pin unless Serial Port A hasitsinternal clock
enabled.

 PBDR—Parallel Port B dataregister. Read/Write.

 PBDDR—Parallel Port B data direction register. A "1" makesthe corresponding pin an
output. Thisregister iswrite only.

User’s Manual 131

9.3 Parallel Port C

Parallel Port C, shown in Table 9-6, has four inputs and four outputs. The even-numbered
ports, PCO, PC2, PC4, and PC6, are outputs. The odd-numbered ports, PC1, PC3, PC5,
and PC7, are inputs. When the dataregister isread, bits 1,3,5,7 return the value of the volt-
age on the pin. Bits 0,2,4,6 return the value of the signal driving the output buffers. The
signal driving the output buffers and the value of the output pin are normally the same.
Either the Port C dataregister isdriving these pins or one of the serial port transmit linesis
driving the pin. The bits set in the PCFR Parallel Port C Function Register identify
whether the dataregister or the serial port transmit lines were driving the pins.

Table 9-5. Parallel Port C Registers

Register Name Mnemonic I/O address R/W Reset
Port C Data Register PCDR 0x50 R/W X0x1x1x1
Port C Function Register PCFR 0x55 w X0x0x0x0

Table 9-6. Parallel Port C Register Bit Functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O

PCDR (1) . Echo . Echo . Echo . Echo
adr = 050h PC7in drive PC5in drive PC3in drive PCLin drive
PCDR (w)

PC6 PC4 PC2 PCO
adr = 050h X X X X
PCFR (w) « Drive | Drive | Drive y Drive
adr = 055h TXA TXB TXC TXD

Paralel Port C sharesits pinswith serial ports A-D. The parallel port inputs can be config-
ured as serial port inputs while the dedicated outputs as serial port outputs.

When serving as serial inputs, the data lines can still be read from the Parallel Port C data
register. The parallel port outputs can be selected to be serial port outputs by setting the
corresponding bit positions in the Port C Function register (PCFR). When a paralel port
output pin is selected to be a serial port output, the value stored in the dataregister is
ignored.

On reset the active (even-numbered) function register bits are zeroed resulting in Port C to
behave as an 1/0 port. Bit 6 of the Port C data register is zeroed while the remaining even
numbered bits are set to 1.

132 Rabbit 3000 Microprocessor

9.4 Parallel Port D

Parallel Port D, shown in Figure 9-1, has eight pins that can be programmed individually
to be inputs or outputs. When programmed as outputs, the pins can be individually
selected to be open-drain outputs or standard outputs. Port D pins can be addressed by bit
if desired. The output registers are cascaded and timer-controlled, making it possible to
generate precise timing pulses. Port D bits4 and 5 can be used as alternate bits for Serial
Port B, and bits 6 and 7 can be used as alternate bitsfor Serial Port A. Alternate serial port
bit assignments make it possible for the same serial port to connect to different communi-
cations lines that are not operating at the same time.

On reset, the data direction register is zeroed, making all pinsinputs. In addition certain
bitsin the control register are zeroed (bits 0,1,4,5) to ensure that data is clocked into the
output registers when loaded. All other registers associated with port D are not initialized
on reset.

Table 9-7. Parallel Port D Registers

Register Name Mnemonic I/O address R/W Reset
Port D Data Register PDDR 0x60 R/W XXXXXXXX
Port D Control Register PDCR 0x64 w xx00xx00
Port D Function Register PDFR 0x65 w XXXXXXXX
Port D Drive Control Register PDDCR 0x66 w XXXXXXXX
Port D Data Direction Register PDDDR 0x67 w 00000000
Port D Bit O Register PDBOR 0x68 w XXXXXXXX
Port D Bit 1 Register PDB1R 0x69 w XXXXXXXX
Port D Bit 2 Register PDB2R Ox6A w XXXXXXXX
Port D Bit 3 Register PDB3R 0x6B w XXXXXXXX
Port D Bit 4 Register PDB4R 0x6C w XXXXXXXX
Port D Bit 5 Register PDB5R 0x6D w XXXXXXXX
Port D Bit 6 Register PDB6ER Ox6E w XXXXXXXX
Port D Bit 7 Register PDB7R Ox6F w XXXXXXXX

User’s Manual 133

ARXA<_‘
PD7
-
N PD6
ATx—J -
—
ARXB ‘T
PD5
-
] PD4
ATXB |
] f -~
_ inputs
/O Data perclk/2 — _ _ .
. Driver—optional open drain
Timer Al
Timer B1
Timer B2
PD3
-
—
-«
-~ PDO
-«
1
perclk/2
Timer Al
Timer B1
Timer B2

Figure 9-1. Parallel Port D Block Diagram

134 Rabbit 3000 Microprocessor

Table 9-8. Parallel Port D Register functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
PDDR () PD7 PD6 PD5 PD4 PD3 PD2 PD1 PDO
adr = 060h
PDDCR (W) out = out = out = out = out = out = out = out =
adr = 066h open open open open open open open open
drain drain drain drain drain drain drain drain
PDFR (W)
adr = 065h X adt TXA | X at TXB |x X X X
PDDDR (W) dir = dir = dir = dir = dir = dir = dir = dir =
adr = 067h |out out out out out out out out
PDBOR (W)
adr = 068h X X X X X X X PDO
PDB1R (W
adr =0 6(9h) X X X X X X PD1 X
PDB2R (W)
odr = 0BAh X X X X X PD2 X X
PDB3R (W
adr = 06(Bh) X X X X PD3 X X X
PDB4R (W
adr =0 6(Ch) X X X PD4 X X X X
PDB5R (W)
odr = 06Dh X X PD5 X X X X X
PDB6R (W
adr :60 6(Eh) X PD6 X X X X X X
PDB7R (W
adr =0 6I(:h) PD7 X X X X X X X
Table 9-9. Parallel Port D Control Register (adr = 064h)
Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0
00—clock upper nibble on pclk/2 00—clock lower nibble on pclk/2
X 01—clock on timer A1 X 01—clock on timer Al
' 10—clock on timer B1 ' 10—clock on timer B1
11—clock on timer B2 11—clock on timer B2

User’s Manual

135

The following registers are described in Table 9-8 and in Table 9-9.

PDDR—Paralld Port D data register. Read/Write.

PDDDR—Parallel Port D datadirection register. A "1" makes the corresponding pin an
output. Write only.

PDDCR—Paralel Port D drive control register. A "0" makes the corresponding pin a
regular output. A "1" makes the corresponding pin an open-drain output. Write only.

PDFR—Parallel Port D function control register. This port may be used to make port
positions 4 and 6 be serial port outputs. Write only.

PDBXR—These eight registers may be used to set outputs on individual port positions.

PDCR—Parallel Port D control register. This register is used to control the clocking of
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4,
and 5 are reset to zero.

136 Rabbit 3000 Microprocessor

9.5 Parallel Port E

Parallel Port E, shown in Figure 9-2, has eight 1/0O pins that can be individually pro-

grammed as inputs or outputs. PE7 is used as the slave port chip select when the slave port
is enabled. Each of the port E outputs can be configured as an 1/0 strobe. In addition, four

of the port E lines can be used as interrupt request inputs. The output registers are cas-

caded and timer-controlled, making it possible to generate precise timing pul ses.

1/O Data

/scs
[] PE7
7 -«
] -
INT1
s -«
PE4
141 < T INTO
] I nputs
perclk/2 —
Timer Al
Timer B1
Timer B2
] PE3
3 -
Tz -«
INT1
[-
PEO
10 1] < T INTO
_ 1
perclk/2
Timer Al
Timer B1
Timer B2

Figure 9-2. Parallel Port E Block Diagram

User’s Manual

137

Table 9-10. Parallel Port E Registers

Register Name Mnemonic I/O address R/W Reset
Port E Data Register PEDR 0x70 R/W XXXXXXXX
Port E Control Register PECR 0x74 w xx00xx00
Port E Function Register PEFR 0x75 w 00000000
Port E Data Direction Register PEDDR Oox77 w 00000000
Port E Bit O Register PEBOR 0x78 w XXXXXXXX
Port E Bit 1 Register PEB1R 0x79 w XXXXXXXX
Port E Bit 2 Register PEB2R Ox7A w XXXXXXXX
Port E Bit 3 Register PEB3R 0x7B w XXXXXXXX
Port E Bit 4 Register PEB4R 0x7C w XXXXXXXX
Port E Bit 5 Register PEB5R 0x7D w XXXXXXXX
Port E Bit 6 Register PEB6R Ox7E w XXXXXXXX
Port E Bit 7 Register PEB7R Ox7F w XXXXXXXX

The following registers are described in Table 9-11 and in Table 9-12.
 PEDR—Port E dataregister. Reads value at pins. Writes to port E preload register.

» PEDDR—Port E data direction register. Set to "1" to make corresponding pin an out-
put. Thisregister is zeroed on reset.

» PEFR—Port E function register. Set bit to "1" to make corresponding output an 1/0O
strobe. The nature of the 1/0 strobe is controlled by the 1/0 bank control registers
(IBxCR). The data direction must be set to output for the I/O strobe to work.

* PEBXR—These are individual registersto set individual output bits on or off.

 PECR—Paralel Port E control register. This register is used to control the clocking of
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4,
and 5 are reset to zero.

On reset, the data direction register and function register are zeroed, making all pins
inputs, and disabling the alternate output functions. In addition certain bits in the control
register are zeroed (bits 0,1,4,5) to ensure that data is clocked into the output registers
when loaded. All other registers associated with Port E are not initialized on reset.

138 Rabbit 3000 Microprocessor

Table 9-11. Parallel Port E Register functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
PEDR (R/W)
PE7 PE6 PE5 PE4 PE3 PE2 PE1 PEO
adr = 070h
PEFR (W)
adr = 075h at/17 at/16 at /15 at/14 at/13 at/12 at/l1l at/10
PEDDR (W) dir = dir = dir = dir = dir = dir = dir = dir =
adr = 077h out out out out out out out out
PEBOR (W) X X X X X X X PEO
adr = 078h
PEB1R (W
adr = 07(9h) X X X X X X PE1 X
PEB2R (W)
odr = 07Ah X X X X X PE2 X X
PEB3R (W)
adr = 07Bh X X X X PE3 X X X
PEB4R (W
adr = 07(Ch) X X X PE4 X X X X
PEBS5R (W)
odr = 07Dh X X PES X X X X X
PEBG6R (W)
adr = 07Eh X PE6 X X X X X X
PEB7R (W)
adr = 07Fh PE7 X X X X X X X
Table 9-12. Parallel Port E Control Register (adr = 074h)
Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0
00—clock upper nibble on pclk/2 00—clock lower nibble on pclk/2
“x 01—clock on timer A1 “x 01—clock on timer Al
' 10—clock on timer B1 ' 10—clock on timer B1
11—clock on timer B2 11—clock on timer B2

User’s Manual

139

9.6 Parallel Port F

Parallel Port F isabyte-wide port with each bit programmable for datadirection and drive.
These are simple inputs and outputs controlled and reported in the Port F Data Register.
As outputs, the bits of the port are buffered, with the data written to the Port F Data Regis-
ter transferred to the output pins on a selected timing edge. The outputs of Timer A1,
Timer B1, or Timer B2 can be used for this function, with each nibble of the port having a
separate select field to control thistiming.

These inputs and outputs are also used for accessto other peripherals on the chip. As out-
puts, the Parallel Port F outputs can carry the four Pulse-Width Modulator outputs. As
inputs, Parallel Port F inputs can carry the inputs to the quadrature decoders. When Serial
Port C or Serial Port D isused in the clocked serial mode, two pins of Parallel Port F are
used to carry the serial clock signals. When the internal clock is selected in these serial
ports, the corresponding bit of Parallel Port F is set as an output.

The Parallel Port F registers and their functions are described in Table 9-14 and in Table 9-15.

Table 9-13. Parallel Port F Registers

Register Name Mnemonic I/O address R/W Reset
Port F Data Register PFDR 0x38 R/W XXXXXXXX
Port F Control Register PFCR 0x3C w xx00xx00
Port F Function Register PFFR 0x3D w XXXXXXXX
Port F Drive Control Register PFDCR Ox3E w XXXXXXXX
Port F Data Direction Register PFDDR Ox3F w 00000000

Table 9-14. Parallel Port F Register Functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O

PFD R_(RIW) PF7 PF6 PF5 PF4 PF3 PF2 PF1 PFO
adr = 038h
ZEFR:(W(; 3Dh pwm[3] |pwm[2] |pwm[l] |pwm[0] |X X sclk ¢ |sclk d
PEDCR (W) out = out = out = out = out = out = out = out =
adr = 03Eh open open open open open open open open

drain drain drain drain drain drain drain drain
PFDDR (W) dir = dir = dir = dir = dir = dir = dir = dir =
adr = 03Fh |out out out out out out out out

140 Rabbit 3000 Microprocessor

Table 9-15. Parallel Port F Control Register (adr = 03Ch)

Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0
00—clock upper nibble on pclk/2 00—clock lower nibble on pclk/2
X 01—clock ontimer A1 X 0l1—clock ontimer A1
' 10—clock on timer B1 ' 10—clock on timer B1
11—clock on timer B2 11—clock on timer B2

The following registers are described in Table 9-14 and in Table 9-15.
* PFDR—Port F data register. Reads value at pins. Writes to port F preload register.

* PFCR—Parale Port F control register. Thisregister is used to control the clocking of
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4,
and 5 are reset to zero.

» PFFR—Port F function register. Set bit to "1" to enable alternate output function. Bits
7-4 enable the PWM outputs and bits 1-0 enable synchronous serial ports C and D
clock outputs for when the serial port is configured for internal clock generation.

* PFDCR—Paralle Port F drive control register. A "0" makes the corresponding pin a
regular output. A "1" makes the corresponding pin an open-drain output. Write only.

* PFDDR—Port F datadirection register. Set to "1" to make corresponding pin an output.
Thisregister iszeroed on reset.

On reset, the data direction register is zeroed, making all pinsinputs. In addition certain
bitsin the control register are zeroed (bits 0,1,4,5) to ensure that datais clocked into the
output registers when loaded. All other registers associated with port F are not initialized
on reset.

9.6.1 Using Parallel Port A and Parallel Port F

A bug has been discovered in the Rabbit 3000 that results in a conflict between Parallel
Port F and Parallel Port A under certain conditions. Since the bug is easy to avoid, the
Rabbit 3000 masks will not be revised until a later time in case any further bugs are
encountered.

The bug is rooted in an incomplete address decode for the data output register for Parallel
Port A. Thisregister respondsto any of 16 addresses 30 to 3F (hex). When Parallel Port F
was added, the addresses 38 to 3F were used, and the decode for Parallel Port A was not
updated.

There arefive registersin Parallel Port F at addresses in the range of 38 to 3F. Writing to
any of theseregisterswill also cause awrite to the Parallel Port A output register, which is
identical to the slave port number zero output register. If Parallel Port A isused asininput
register or if the auxiliary 1/0 bus (which uses the pins of Parallel Port A as adatabus) is
enabled, then the spurious write has no effect on operation because the Parallel Port A out-
put register is not used. However if Parallel Port A isused as an output or is used asthe
bidirectional bus of the slave port, then writing to any of the Parallel Port F registers will

User’s Manual 141

cause a spurious write to the Parallel Port A register, which will have a spurious effect on
the operation of the Rabbit 3000 chip.

The functionality of the Parallel Port F pinsis not affected for pulse width modulation out-
puts and serial clock outputs, except that the Parallel Port F function and direction regis-
ters should be set up before a conflicting function on Parallel Port A isin use, since
writing to these registers also writes to the Parallel Port A output register.

9.6.1.1 Summary

Parallel Port A Parallel Port F
» Pardlel Inputs * Full Functionality
» Pardle Outputs o Pardle Inputs, PWM, Seria Port Clocks
» Slave Port o Paralel Inputs, PWM, Serial Port Clocks
* Auxiliary I/0 Bus * Full Functionality

* If you enable the auxiliary 1/O bus, which uses Parallel Port A, then the bug does not
manifest itself and you can use the full functionality of Parallel Port F.

» If you use Parallel Port A asinputs, then the bug does not manifest itself and the full
functionality of Parallel Port Fisavailable.

» If youuse Parallel Port A asoutputs, then you cannot use Parallel Port F pins as outputs
too, except that you can use the PWM and clock outputs provided that you are aware
that writing to the control registers of Parallel Port F will also write to the data output
register of Parallel Port A. A smpleway to resolve thisisto leave Parallel Port A asan
input until you complete the setup of Parallel Port F and then switch Parallel Port A to
be an output. You can always use pins on Parallel Port F asinputs.

 If you enable the dave port, then you cannot use Parallel Port F as parallel outputs, but
you can still use the other output functions of Parallel Port F following the precautions
regarding setup described above.

The easiest approach to avoid any problem when there is a conflict is to assign inputs and
outputs in such a manner as to avoid the bug. Either Parallel Port A can be used asinputs,
inwhich case Parallel Port F has full function, or if Parallel Port A cannot be used as
inputs, use any pinson Parallel Port F not used for PWM or serial clock outputs as inputs
and take the precaution of setting up Parallel Port F before the conflicting functionality of
Parallel Port A is enabled.

142 Rabbit 3000 Microprocessor

9.7 Parallel Port G

Parallel Port G is a byte-wide port with each bit programmable for data direction and
drive. These are simple inputs and outputs controlled and reported in the Port G Data Reg-
ister. Asoutputs, the bits of the port are buffered, with the data written to the Port G Data
Register transferred to the output pins on a selected timing edge. The outputs of Timer A1,
Timer B1, or Timer B2 can be used for this function, with each nibble of the port having a
separate select field to control thistiming.

These inputs and outputs are also used for accessto other peripherals on the chip. As out-
puts, Port G can carry the data and clock outputs from Serial Ports E and F. Asinputs, Port
G can carry the data and clock inputs for these two seria ports.

The following registers are described in Table 9-17 and in Table 9-18.

Table 9-16. Parallel Port G Registers

Register Name Mnemonic I/O address R/W Reset
Port G Data Register PGDR 0x48 R/W XXXXXXXX
Port G Control Register PGCR 0x4C w xx00xx00
Port G Function Register PGFR 0x4D w XXXXXXXX
Port G Drive Control Register PGDCR Ox4E w XXXXXXXX
Port G Data Direction Register PGDDR Ox4F w 00000000
Table 9-17. Parallel Port G Data Register Functions
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PGDR (R/W) PG7 PG6 PG5 PG4 PG3 PG2 PG1 PGO
adr = 048h
PGFR (W) X SOUT_E |RCLK_E |TCLK_E |x SOUT_F |RCLK_F |TCLK_F
adr = 04Dh
PGDCR (W) out = out = out = out = out = out = out = out =
adr = O4Eh |oPen open open open open open open open
drain drain drain drain drain drain drain drain
PGDDR (W) dir = dir = dir = dir = dir = dir = dir = dir =
adr = 04Fh |out out out out out out out out

User’s Manual

143

Table 9-18. Parallel Port G Control Register (adr= 04Ch)

Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0
00—clock upper nibble on pclk/2 00—clock lower nibble on pclk/2
X 01—clock ontimer A1 X 0l1—clock ontimer A1
' 10—clock on timer B1 ' 10—clock on timer B1
11—clock on timer B2 11—clock on timer B2

The following registers are described in Table 9-17 and in Table 9-18.

PGDR—Port G data register. Reads value at pins. Writes to port G preload register.

PGCR—Parallel Port G control register. Thisregister is used to control the clocking of
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4,
and 5 are reset to zero.

PGFR—Port G function register. Set bit to "1" to enable alternate output function. Bits
6 and 2 enable the asycnhronous or SDLC/HDLC seria ports E and F outputs. And
bits 5-4 and 1-0 enable the SDLC/HDLC transmit and receive clock outputs for serial
portsE and F.

PGDCR—Parallel Port G drive control register. A "0" makes the corresponding pin a
regular output. A "1" makes the corresponding pin an open-drain output. Write only.

PGDDR—Port G data direction register. Set to "1" to make corresponding pin an out-
put. Thisregister is zeroed on reset.

On reset, the data direction register is zeroed, making all pinsinputs. In addition certain
bitsin the control register are zeroed (bits 0,1,4,5) to ensure that data is clocked into the
output registers when loaded. All other registers associated with port G are not initialized
on reset.

144 Rabbit 3000 Microprocessor

10. I/O BANK CONTROL REGISTERS

The pins of Port E can be set individually to be /O strobes. Each of the eight possible 1/0
strobes has a control register that controls the nature of the strobe and the number of wait
states that will be inserted in the I/O bus cycle. Writes can also be suppressed for any of

the strobes. The types of strobes are shown in Figure 10-1. Each of the eight 1/0 strobesis
active for addresses occupying 1/8th of the 64K external 1/0 address space.

T1 Tw T2
| | | | | |
| | |
ADDR Z| I valid [
| |
writedata 7 valid 7z
|
write strobe : 1
|
|
read data 27, haid72
|
read strobe ' |—
| 1
chip select strobe| | —
| |
| |
|
External 1/0 Timing (with 1 wait state)
Figure 10-1. External I/0O Bus Cycles
Table 10-1 shows how the eight 1/0 bank control registers are organized.
Table 10-1. I/O Bank Control Reg (adr IBXCR = 08xh)
Bits 7,6 Bits 5,4 Bit 3 Bits 2-0
Wait state code X strqbe type
11-1 00—chip select
10-3 Ol_re?d strobe 1—perrn!t Wr!te Ignored
01-7 10—write strobe O—inhibit write
11—or of read and
00-15 write strobe

User’s Manual

145

The eight I/O bank control registers determine the number of 1/0O wait states applied to an
external 1/0 access within the zone controlled by each register even if the associated
strobes are not enabled. Note that the /IORD and /IOWR signals reflect these registers as
well.

The control over the generation of wait states is independent of whether or not the associ-
ated strobe in Port E is enabled. The upper 2 bits of each register determine the number of
walit states. The four choicesare 1, 3, 7, or 15 wait states. On reset, the bits are cleared,
resulting in 15 wait states. There isalways at least one external 1/0 wait state, and thus the
minimum external 1/0 read cycleisthree clockslong. Theinhibit write function appliesto
both the Port E write strobes and the /I[OWR signal.

These control bits have no effect on theinternal 1/0 space, which does not have wait states
associated with read or write access. Internal 1/0 read or write cycles are two clocks long.

The 1/0 strobes greatly simplify the interfacing of external devices. On reset, the upper 5
bits of each register are cleared. Parallel Port E will not output these signals unless the
data-direction register bits are set for the desired output positions. In addition, the Port E
function register must be set to "1" for each position.

Each 1/0 bank is selected by the three most significant bits of the 16-bit 1/0O address.
Table 10-2 shows the relationship between the 1/0O control register and its corresponding
space in the 64K address space.

Table 10-2. External I/0 Register Address Range and Pin Mapping

Coel Begfetey | TOLE | HOATRRESS | 1O Avkitss
Pin A[15:13] Range
IBOCR PEO 000 0x0000-Ox1FFF
IBICR PE1 001 0x2000-0x3FFF
IB2CR PE2 010 0x4000-Ox5FFF
IB3CR PE3 011 0x6000-Ox7FFF
IBACR PE4 | 100 OXB000—OXOFFF
IB5CR PES5 101 OxA000-OxBFFF
IB6CR PE6 110 0xCO00-OxDFFF
IB7CR PE7 111 OXEOQO00-OxFFFF

NOTE: Refer to Section 3.3.8 for afix to abug that manifestsitself if an 1/O instruction
(prefix 1 A or | CE) isfollowed by one of 12 single-byte op codes that use HL asan
index register.

146 Rabbit 3000 Microprocessor

11. TIMERS

There are two timers—Timer A and Timer B. Timer A isintended mainly for generating
the clock for various peripherals, baud clock for the serial ports, a periodic clock for
clocking Parallel Ports D and E, or for generating periodic interrupts. Timers A1-A7 are
general-purpose timers, and Timers A8-A10 are dedicated to specific peripherals. Timer
B can be used for the same functions, but it cannot generate the baud clock. Timer B is
more flexible when it can be used because the program can read the time from a continu-
ously running counter and events can be programmed to occur at a specified future time.

N perclk Timer A System o _ I
perc] Serial E
—»[- A1 I e
perclk/2 - Serial E
—] Seria A
1] v Input 1L [a5 | Serd B
L Capture —
m] Serial C
| | A9 m —_— A6 —
m —] Seria D
Quadrature Iy S N
I A0 Decode LY
Timer Al

perclk/2 \—]7 10-bit counter |___
compare
perclk/8 P Timer B1

- 10 bits g

match reg | Control Timer

Timer B System Synchronized
match preload —IL— outputs
Timer_B2

match preload

Figure 11-1. Block Diagram of Timers A and B

User’s Manual 147

11.1 Timer A
Timer A consistsof ten separate countdown timers A1-A10 as shown in Figure 11-1.

Timers Al and A2-A10 are 8-bit countdown registers as shown in Figure 11-2. The reload
register can contain any number in the range from 0 to 255. The counter divides by (n+1).
For example, if the reload register contains 127, then 128 pulses enter on the left before a
pulse exits on the right. If the reload register contains zero, then each pulse on the left
resultsin a pulse on theright, that is, there is division by one.

¢

8-bit reload register

¢

Clock in load
EEE—— 8-bit down counter

pulse on zero count out

Input clock 1 1] []
Count value 2 2 1 10 0 N N-1

Outputpulse [|

Figure 11-2. Reload Register Operation

The timer systems can be driven by the peripheral clock, or peripheral clock divided by
two. Thisclock isawaysthe same asthe processor clock, or it isfaster than the processor
clock by afactor of eight. The output pulses are always one clock long. Clocking of the
counterstakes place on the negative edge of this pulse. When the counter reaches zero, the
reload register isloaded on the next input pulse instead of a count being performed. The
reload registers may be reloaded at any time since the peripheral clock is synchronous
with the processor clock.

TimersA2, A3, A4, A5, A6 and A7 aways provide the baud clock for Serial PortsE, F, A,
B, C, and D respectively. Except for very low baud rates, clock A1 does not need to be
used to prescale the input clock for timers A2—A7. For example, if the system clock is
11.0592 MHz, and the timer A4 divides by 144, an asynchronous baud rate of 2400 bps can
be achieved in one step (assuming that the timer is clocked by peripheral clock divided by
two). The clock input to the serial port can be 8 or 16 times the baud rate for asynchronous
mode and 8 times the baud rate for synchronous mode. The maximum asynchronous baud
rate with a 11.0592 MHz clock would be (11,059,200/(1* 8) = 1,382,400.

148 Rabbit 3000 Microprocessor

For seven of the counters (A1-A7), the terminal count condition isreported in astatusregis-
ter and can be programmed to generate an interrupt. There is one interrupt vector for Timer
A and acommon interrupt priority. A common status register (TACSR) has abit for each
timer that indicatesif the output pulse for that timer has taken place since the last read of the
status register. When the status register is read, these bits are cleared. No bit will belost.
Either it will be read by the status register read or it will be set after the status register read is
complete. If abit ison and the corresponding interrupt is enabled, an interrupt will occur
when priorities allow. However, a separate interrupt is not guaranteed for each bit with an
enabled interrupt. If the bit isread in the status register, it is cleared and no further interrupt
corresponding to that bit will be requested. It is possible that one bit will cause an interrupt,
and then one or more additional bits will be set before the status register isread. After these
bits are cleared, they cannot cause an interrupt. If any bits are on, and the corresponding
interrupt is enabled, then the interrupt will take place as soon as priorities allow. However, if
thebit is cleared before the interrupt islatched, the bit will not cause an interrupt. The proper
rule to follow isfor the interrupt routine to handle all bits that it sees set.

Although timers A8-A10 are part of Timer A, they are dedicated to the input pul se cap-
ture, PWM, and quadrature decoder peripherals respectively. The peripherals clocked by
these timers can generate interrupts but the timers themselves cannot. Furthermore, these
timers cannot be cascaded with Timer A1l.

11.1.1 Timer A I/O Registers
The 1/O registersfor Timer A arelisted in Table 11-1.

Table 11-1. Timer A I/O Registers

Register Name Mnemonic I/O address R/W Reset
Timer A Control/Status Register TACSR O0xAO R/W 00000000
Timer A Prescale Register TAPR OxA1l w XXXXXXX1
Timer A Time Constant 1 Register TAT1R OxA3 W XXXXXXXX
Timer A Control Register TACR O0xA4 W 00000000
Timer A Time Constant 2 Register TAT2R OxA5 W XXXXXXXX
Timer A Time Constant 8 Register TAT8R OxA6 W XXXXXXXX
Timer A Time Constant 3 Register TAT3R OxA7 W XXXXXXXX
Timer A Time Constant 9 Register TATI9R OxA8 W XXXXXXXX
Timer A Time Constant 4 Register TAT4R OxA9 W XXXXXXXX
Timer A Time Constant 10 Register | TAT10R OxAA W XXXXXXXX
Timer A Time Constant 5 Register TAT5R OxAB W XXXXXXXX
Timer A Time Constant 6 Register TAT6R OxAD W XXXXXXXX
Timer A Time Constant 7 Register TAT7R OxAF W XXXXXXXX

User’s Manual 149

The following table summarizes Timer A’'s capabilities.

Table 11-2. Timer A Capabilities

Timer Cascade | Interrupt Dedicated connection
Al none yes Parallel Ports D-G, Timer B
A2 fromA1l yes Serial Port E
A3 fromA1 yes Serial Port F
A4 fromA1l yes Serial Port A
A5 fromA1l yes Serial Port B
A6 from A1l yes Serial Port C
A7 from A1l yes Serial Port D
A8 none no Input Capture
A9 none no Pulse Width Modul ator
A10 none no Quadrature Decoder

The control/status register for Timer A (TACSR) islaid out as shown in Table 11-3.

Table 11-3. Timer A Control and Status Register (adr = 0A0Oh)

Bit 7 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
Thisbitis
A7 count |A6count |A5count |A4count |A3count |A2count | Al count .
Read write
done done done done done done done only
1—enable
A7 A6 A5 A4 A3 A2 Al Timer A
Write interrupt | interrupt | interrupt | interrupt |interrupt |interrupt |interrupt |main
enable enable enable enable enable enable enable clock
(pclk/2)

Bits 1-7—Read/write, terminal count reached on timers A1-A7. Reading this status regis-
ter clears any bits (bits 1-7) that are on. Writing to these bits enables the interrupts for the
corresponding timer.

Bit 0—Write, set to a"1" to enable the clock (perclk/2) for Timer A, set to "zero" to dis-
able the clock (perclk/2 in Figure 11-1). Bits 1-7 are written (write only) to enable the
interrupt for the corresponding timer.

150

Rabbit 3000 Microprocessor

The control register (TACR) islaid out as shown in Table 11-4.

Table 11-4. Timer A Control Register (adr = 0A4h)

Bit 7
A7

Bit 6
A6

Bit 5
A5

Bit 4
A4

Bit 3
A3

Bit 2
A2

Bits 1,0

Source A7

O—pcl k/2
1-Al

Source A6

O—pcl k/2
1-Al

Source A5

O—pcl k/2
1-Al

Source A4
O—pcl k/2
1-Al

Source A3
O—pcl k/2
1-Al

Source A2
O—pcl k/2

1-Al

00—Interrupt disabled
01—vpriority 1 interrupt
10—priority 2 interrupt

11—priority 3interrupt

The Timer A Prescale Register (TAPR) specifies the main clock for Timer A. By default
Timer A isclocked by peripheral clock divided by two.

The prescale register (TAPR) islaid out as shown in Table 11-5.

Table 11-5. Timer A Prescale Register (adr = 0A1h)

Bits 7:1 Bit 0
These bits are 0—The main clock for Timer A is the peripheral clock.
ignored. 1—Themain clock for Timer A isthe peripheral clock divided by two.

The time constant register for each timer (TATXR) is simply an 8-bit data register holding
anumber between 0 and 255. Thistime constant will take effect the next time that the
Timer A counter counts down to zero. The timer counts modulo (divide-by) n+1, wheren
is the programmed time constant. The time constant registers are write only. Thetime
constant registers are listed in Table 11-1.

11.1.2 Practical Use of Timer A

Timer A isdisabled (bit O in control and status register) on power-up. Timer A isnormally
set up while the clock is disabled, but the timer setup can be changed while the timer is
running when there is a need to do so. Timers that are not used should be driven from the
output of A1 and the reload register should be set to 255. Thiswill cause counting to be as
slow as possible and consume minimum power.

Asfor general-purpose timers, Timer A has seven separate subtimer units, A1 and A2-A7,
that are also referred to astimers.

Most likely, if aserial port isgoing to be used and atimer is needed to provide the baud clock,
that timer will be set up to be driven directly from the clock, and the interrupt associated with
that timer will be disabled. (Serial port interrupts are generated by the serial port logic.)

The value in the reload register can be changed while the timer is running to change the
period of the next timer cycle. When the reload register isinitialized, the contents of the
countdown counter may be unknown, for example, during power-up initiaization. If inter-
rupts are enabled, then the first interrupt may take place at an unknown time. Similarly, if the

User’s Manual 151

timer output is being used to drive the clock for a parallel port or serial port, the first clock
may come at arandom time. If aperiodic clock isdesired, it is probably not important when
thefirst clock takes place unless a phase relationship is desired relative to a different timers.

A phase relationship between two timers can be obtained in several ways. Oneway isto
set both reload registers to zero and to wait long enough for both timersto reload (maxi-
mum 256 clocks). Then both timers' reload registers can be set to new values before or
after both are clocked.

152 Rabbit 3000 Microprocessor

11.2 Timer B

Figure 11-1 shows a block diagram of Timer B. The Timer B counter can be driven
directly by perclk/2, by that clock divided by 8, or by the output of Timer A1. Timer B has
a continuously running 10-bit counter. The counter is compared against two match regis-
ters, the B1 match register and the B2 match register. When the counter transitionsto a
value equal to a match register, an internal pulse with alength of 1 periphera clock is gen-
erated. The match pulse can be used to cause interrupts and/or clock the output registers of
Parallel Ports D and E.

The match registers are loaded from the match preload registers that are written to by an
I/O instruction. The data byte in the match preload register is advanced to the next match
register when the match pulseis generated.

Every time amatch condition occurs, the processor sets aninternal bit that marks the match
valuein TBLxR asinvalid. Reading TBCSR clears the interrupt condition. TBLXR must be
reloaded to re-enable the interrupt. TBMXR does not need to be reloaded every time.

If both match registers need to be changed, the most significant byte needs to be changed
first.

The 1/O registersfor Timer B arelisted in Table 11-6.

Table 11-6. Timer B Registers

Register Name Mnemonic ad(Ij/?ess R/W Reset
Timer B Control/Status Register TBCSR 0xBO R/W | xxxxx000
Timer B Control Register TBCR 0xB1 w Xxxx0000
Timer B MSB 1 Register TBM1R 0xB2 w XXXXXXXX
Timer B LSB 1 Register TBL1R 0xB3 w XXXXXXXX
Timer B MSB 2 Register TBM2R 0xB4 w XXXXXXXX
Timer B LSB 2 Register TBL2R 0xB5 W XXXXXXXX
Timer B Count MSB Register TBCMR OxBE R XXXXXXXX
Timer B Count LSB Register TBCLR OxBF R XXXXXXXX

User’s Manual 153

The control/status register for Timer B (TBCSR) islaid out as shown in Table 11-7.
Table 11-7. Timer B Control and Status Register (TBCSR) (adr = 0BOh)

Bits 7:3 Bit 2 Bit 1 Bit 0

1—A match with match 1—A match with match

register 2 was detected. register 1 was detected.
Thisbit is cleared when Thisbit is cleared when 1—Enable the main clock

Not used this register is read; thisregister is read; for this timer.
setting this bit to 1 enables | setting this bit to 1 enables
the interrupt. the interrupt.

The control register for Timer B (TBCR) islaid out as shown in Table 11-8.
Table 11-8. Timer B Control Register (TBCR)

Bits 7:4 Bits 3:2 Bits 1:0

00—Counter clocked by perclk/2
Not used 01—Counter clocked by output of timer Al
1x—Timer clocked by perclk/2 divided by 8

00—Interrupt disabled
XX—Interrupt priority xx enabled.

The MSB x registersfor Timer B (TBM1R/TBMZ2R) are laid out as shown in Table 11-9.
Table 11-9. Timer B Count MSB x Registers

Timer B Count MSB x Register (TBM1R) (Address = 0xB2)
(TBM2R) (Address = 0xB4)
Bit(s) Value Description
The two M SBs of the comparae value for the Timer B comparator are stored.
7:6 Write | This compare value will be loaded into the actual comparator when the current
compare detects a match.
5:0 These bits are always read as zeroes.

The LSB x registersfor Timer B (TBL1R/TBL2R) are laid out as shown in Table 11-10.
Table 11-10. Timer B Count LSB x Registers

Timer B Count LSB x Register (TBL1R) (Address = 0xB3)
(TBL2R) (Address = 0xB5)
Bit(s) Value Description
The eight LSBs of the comparae value for the Timer B comparator are stored.
7.0 Write | This compare value will be loaded into the actual comparator when the current
compare detects a match.

154 Rabbit 3000 Microprocessor

Table 11-11. Timer B Count MSB Register

Timer B Count MSB Register (TBCMR) (Address = 0xBE)
Bit(s) Value Description
7:6 Read | The current value of the two M SBs of the Timer B counter are reported.
5.0 These bits are always read as zeroes.

Table 11-12. Timer B Count LSB Register

Timer B Count LSB Register (TBCLR) (Address = 0xBF)
Bit(s) Value Description
7:0 Read | The current value of the eight L SBs of the Timer B counter are reported.

11.2.1 Using Timer B

Normally the prescaler is set to divide perclk/2 by a number that provides a counting rate
appropriate to the problem. For example, if the clock is22.1184 MHz, then perclk/2 is
11.0592 MHz. A Timer B clock rate of 11.0592 MHz will cause a complete cycle of the
10-bit clock in 92.6 ps.

Normally an interrupt will occur when either of the comparatorsin Timer B generates a
pulse. The interrupt routine must detect which comparator is responsible for the interrupt
and dispatch the interrupt to a service routine. The service routine sets up the next match
value, which will become the match value after the next interrupt. If the clocked parallel
ports are being used, then a value will normally be loaded into some bits of the parallel
port register. These bits will become the output bits on the next match pulse. (It is neces-
sary to keep a shadow register for the parallel port unless the bit-addressable feature of
Ports D and E isused.)

If you wish to read the time from the Timer B counter, either during an interrupt caused by
the match pulse or in some other interrupt routine asynchronous to the match pulse, you
will have to use a special procedure to read the counter because the upper 2 bitsarein a
different register than the lower 8 bits. The following method is suggested.

1. Read the lower 8 bits (read TBCLR register).
Read the upper 2 bits (read TBCMR register)
Read the lower 8 bits again (read TBCLR register)

If bit 7 changed from 1 to O between the first and second read of the lower 8 hits, there
has been a carry to the upper 2 bits. In this case, read the upper 2 bits again and decre-
ment those 2 bits to get the correct upper 2 bits. Use the first read of the lower 8 bits.

A WD

This procedure assumes that the time between reads can be guaranteed to be less than 256
counts. This can be guaranteed in most systems by disabling the priority 1 interrupts,
which will normally be disabled in any case in an interrupt routine.

User’s Manual 155

It isinadvisable to disable the high-priority interrupts (levels 2 and 3) as that defeats their
purpose.

If speed iscritical, the three reads of the registers can be performed without testing for the
carry. The three register values can be saved and the carry test can be performed by a
lower priority analysis routine. Since the upper 2 bitsare in the TBCMR register at
address OBEh, and the lower 8 bitsarein TBCLR at address OBFh, both registers can be
read with asingle 16-bit 1/O instruction. The following sequence illustrates how the regis-
ters could be captured.

; enter fromexternal interrupt on pulse input transition
; 19 clocks latency plus 10 cl ocks interrupt execution

push af ; 7
push hl
ioi Id a, (TBCLR) ; 11 get lower 8 bits of counter

ioi Id hl,(TBCWR) ;13 get |=upper, h=lower

Timer B can be used for various purposes. The 10-bit counter can be read to record the
time at which an event takes place. If the event creates an interrupt, the timer can be read
in the interrupt routine. The known time of execution of the interrupt routine can be sub-
tracted. The variable interrupt latency isthen the uncertainty in the event time. This can be
aslittle 19 clocksiif the interrupt is the highest priority interrupt. If the system clock is 20
MHz, the counter can count as fast as 10 MHz. The uncertainty in a pulse width measure-
ment can be nearly as low as 38 clocks (2 x 19), or about 2 pusfor a 20 MHz system clock.

Timer B can be used to change a parallel port output register at a particular specified time
in the future. A pulse train with edges at arbitrary times can be generated with the restric-
tion that two adjacent edges cannot be too close to each other since an interrupt must be
serviced after each edge to set up the time for the next edge. This restriction limits the
minimum pulse width to about 5 us, depending on the clock speed and interrupt priorities.

156 Rabbit 3000 Microprocessor

12. RABBIT SERIAL PORTS

The Rabbit 3000 has 6 on-chip serid portsdesignated A, B, C, D, E, and F. All the ports can per-
form asynchronous serial communications at high baud rates. Ports A-D can operate as clocked
ports. Ports A and B can be switched to aternate pins. Ports E and F support SDLC/HDLC syn-
chronous communications in addition to standard asynchronous communications. Port A hasthe
specid capability of being used to remote boot the microprocessor via asynchronous, synchro-
nous, or IrDA (asynchronous serid).

Table 12-1 lists the synchronous serid port signds.
Table 12-1. Serial Port Signals

Serial Port Signal Name Function
Seria Port A TXA Seria Transmit Out
RXA Seria Transmit In
CLKA Clock for clocked mode (bidirectional)
ATXA Alternate serial transmit out
ARXA Alternate serial receivein
Seria Port B TXB Seria Transmit Out
RXB Seria Transmit In
CLKB Clock for clocked mode (bidirectional)
ATXB Alternate serial transmit out
ARXB Alternate serial receivein
Serial Port C TXC Seria Transmit Out
RXC Seria Transmit In
CLKC Clock for clocked mode (bidirectional)
Serial Port D TXD Seria Transmit Out
RXD Seria Transmit In
CLKD Clock for clocked mode (bidirectional)
Seria Port E TXE Seria Transmit Out
RXE Serial Transmit In
TCLKE Optional external transmit clock
RCLKE Optional external receive clock

User’s Manual 157

Table 12-1. Serial Port Signals (continued)

Serial Port Signal Name Function
Seria Port F TXF Seria Transmit Out
RXF Seria Transmit In
TCLKF Optional external transmit clock
RCLKF Optional external receive clock

Figure 12-1 shows a block diagram of the serial ports.

Input to timers
percl k or

per cl k/2 or

| CLKA

Timer A4

Serial Port A > TXA

‘—[— RXA ATXA
ARXA

| CLKB

Timer A5

Seridl Port B » 1XB

4—[— RXB ATXB
ARXB

| CLKC

Timer A6

Seridl Port ¢ ——» 1XC
<« RXC

| CLKD

Timer A7

prescaled (Timer A1)

Serial Port D ——» 1XD

+— RXD

RCLKE
| TCLKE

Timer A2

Serial PortE ——» TXE

<+— RXE

RCLKF
| TCLKF

Timer A3

Serial Port F ——» TXF
<« RXF

Figure 12-1. Block Diagram of Rabbit Serial Ports

158

Rabbit 3000 Microprocessor

Theindividual serial ports are capable of operating at baud rates in excess of 500,000 bps
in the asynchronous mode, and 8 times faster than that in the synchronous mode. Either 7
or 8 data bits may be transmitted and received in the asynchronous mode. The so-called
"9th" bit or address bit mode of operation is also supported. The “9th” bit can be set high
or low by accessing the appropriate serial port register. Although Parity and multiple stop
bits are not directly supported by the hardware, the “9th” bit can be used to issue an extra
stop bit (Sth-bit high) or toggled to indicate parity.

User’s Manual 159

12.1 Serial Port Register Layout

Figure 12-2 shows afunctional block diagram of a serial port. Each serial port has a data
register, a control register and a status register. Writing to the data register starts transmis-
sion. The least significant bit (LSB) is always transmitted first. Thisis true for both asyc-
nchronous and synchronous communication. If the write is performed to an alternate data
register address, the extra address bit or 9th bit (8th bit if 7 data bits) is sent. When data
bits have been received, they are read from the data register (L SB first). The control regis-
ter is used to set the transmit and receive parameters. The status register may be tested to
check on the operation of the serial port.

long stop register
Read Data Write Data
: RN
Data In Reg oth bit Oth bit
Data Out Reg Zero one

alterngte data out
fifoportsE, Fonly| Fegist

fifoportsE, F only

4-bytesd
(4-by eep) (4-bytes deep)
address register
Input Shift Reg output shift
reg
RstSerBlia:Ii;j:ta n Tx serial data out
LSB First
Bit 0 1 2 3 4 5 6 7 stop
TX I I S N Transnitting OD6h
0 1 1 0 1 0 1 1)
Sart Bit Stop Bit

Bit 0 1 2 3 4 5 6 7 A stop L
Transmitting 0D6h

WJ L L] with 9th bit zero
0110 1 0 1 1

Sart Bit

9th bit Stop Bit

Signals Shown at Microprocessor Tx Pin

Figure 12-2. Functional Block Diagram of a Serial Port

160 Rabbit 3000 Microprocessor

The clock input to the serial port unit must be 8 or 16 (selectable) times the baud rate in the
asynchronous mode and 2 times the baud rate for the clocked serial mode when the internal
clock isused. Timers A2-A7 supply theinput clock for Serial Ports A—F. These timers can
divide the frequency by any number from 1 to 256 (see Chapter 11). Theinput frequency to
the timers can be selected in different ways described in the documentation for the timers.
One choice isthe peripheral clock—with that choice and a well-chosen crystal frequency
for the main oscillator, the most commonly used baud rates can be obtained down to
approximately 2400 bps or lower by prescaling timer A0 at the highest Rabbit clock fre-
guencies (see Section A.4in Appendix A).

User’s Manual 161

12.2 Serial Port Registers

Each seria port has 6 registers shown in the tables below. The status, control and extended

registers may have somewhat different formats for different serial ports.

Table 12-2. Serial Port A Registers

Register Name Mnemonic I/O Address R/W Reset
Serial Port A Data Register SADR 0xCO0 R/W XXXXXXXX
Serial Port A Address Register SAAR 0xC1 w XXXXXXXX
Serial Port A Long Stop Register SALR 0xC2 w XXXXXXXX
Serial Port A Status Register SASR 0xC3 R 0xx00000
Serial Port A Control Register SACR 0xC4 w xx000000
Serial Port A Extended Register SAER 0xC5 w 00000000

Table 12-3. Serial Port B Registers

Register Name Mnemonic I/O Address R/W Reset
Serial Port B Data Register SBDR 0xDO R/W XXXXXXXX
Serial Port B Address Register SBAR 0xD1 w XXXXXXXX
Serial Port B Long Stop Register SBLR 0xD2 w XXXXXXXX
Serial Port B Status Register SBSR 0xD3 R 0xx00000
Serial Port B Control Register SBCR 0xD4 w xx000000
Serial Port B Extended Register SBER 0xD5 W 00000000

Table 12-4. Serial Port C Registers

Register Name Mnemonic I/O Address R/W Reset
Serial Port C Data Register SCDR OxEO R/W XXXXXXXX
Serial Port C Address Register SCAR OxE1 w XXXXXXXX
Serial Port C Long Stop Register SCLR OxE2 w XXXXXXXX
Serial Port C Status Register SCSR OxE3 R 0xx00000
Serial Port C Control Register SCCR OxE4 w xx000000
Serial Port C Extended Register SCER OxE5 W 00000000

162

Rabbit 3000 Microprocessor

Table 12-5. Serial Port D Registers

Register Name Mnemonic I/O Address R/W Reset
Serial Port D Data Register SDDR OxFO R/W XXXXXXXX
Serial Port D Address Register SDAR OxF1 w XXXXXXXX
Serial Port D Long Stop Register SDLR OxF2 w XXXXXXXX
Serial Port D Status Register SDSR OxF3 R 0xx00000
Serial Port D Control Register SDCR OxF4 w xx000000
Serial Port D Extended Register SDER OxF5 W 00000000

Table 12-6. Serial Port E Registers

Register Name Mnemonic I/O Address R/W Reset
Serial Port E Data Register SEDR 0xC8 R/W XXXXXXXX
Serial Port E Address Register SEAR 0xC9 w XXXXXXXX
Serial Port E Long Stop Register SELR O0xCA w XXXXXXXX
Serial Port E Status Register SESR 0xCB R 0xx00000
Serial Port E Control Register SECR 0xCC w xx000000
Serial Port E Extended Register SEER 0xCD W 000x000x

Table 12-7. Serial Port F Registers

Register Name Mnemonic I/O Address R/W Reset
Serial Port F Data Register SFDR 0xD8 R/W XXXXXXXX
Serial Port F Address Register SFAR 0xD9 w XXXXXXXX
Serial Port F Long Stop Register SFLR OxDA w XXXXXXXX
Seria Port F Status Register SFSR 0xDB R 0xx00000
Serial Port F Control Register SFCR 0xDC w xx000000
Serial Port F Extended Register SFER 0xDD w 000x000x

User’s Manual

163

Table 12-8. Data Register All Ports

Serial Port x Data Register (SADR) (Address = 0xCO0)
(SBDR) (Address = 0xDO0)
(SCDR) (Address = OxEOQ)
(SDDR) (Address = 0xFO0)
(SEDR) (Address = 0xC8)
(SFDR) (Address = 0xD8)
Bit(s) Value Description
Read Returns the contents of the receive buffer.
7.0
Write | Loads the transmit buffer with a data byte for transmission.
Table 12-9. Address Register All Ports
Serial Port x Address Register (SAAR) (Address = 0xC1)
(SBAR) (Address = 0xD1)
(SCAR) (Address = OxE1)
(SDAR) (Address = 0xF1)
(SEAR) (Address = 0xC9)
(SFAR) (Address = 0xD9)
Bit(s) Value Description
Returns the contents of the receive buffer. In Clocked Serial mode reading the
Read data from this register automatically causes the receiver to start abyte receive
operation (the current contents of the receive buffer are read first), eliminating
the need for software to issue the Start Recelve command.
7:0 Loads the transmit buffer with an address byte, marked with a“zero” address bit,
for transmission. In HDLC mode, the last byte of aframe must be written to this
Write register to enable subsequent CRC and closing Flag transmission. In Clocked
Serial mode writing the data to this register causes the transmitter to start a byte
transmit operation, eliminating the need for the software to issue the Start
Transmit command.

164

Rabbit 3000 Microprocessor

Table 12-10. Long Stop Register All Ports

Serial Port x Long Stop Register (SALR) (Address = 0xC2)
(SBLR) (Address = 0xD2)
(SCLR) (Address = 0xE2)
(SDLR) (Address = 0xF2)
(SELR) (Address = 0xCA)
(SFLR) (Address = 0xDA)
Bit(s) Value Description
Read Returns the contents of the receive buffer.

7.0

Write

L oads the transmit buffer with an address byte, marked with a“one”’ address bit,
for transmission. In HDLC mode the last byte of aframeiswritten to thisregister

to enabl e subsequent closing Flag transmission.

User’s Manual

165

Table 12-11. Status Register Asynchronous Mode Only (All Ports)

Serial Port x Status Register (SASR) (Address = 0xC3)
(SBSR) (Address = 0xD3)
(SCSR) (Address = OxE3)
(SDSR) (Address = 0xF3)
(SESR) (Address = 0xCB)
(SFSR) (Address = 0xDB)
Bit(s) Value Description (Async mode only)

0 The receive data register is empty—no input character is ready.

Thereisabyte in the receive buffer. The transition from "0" to "1" setsthe

7 receiver interrupt request flip-flop. The interrupt FF is cleared when the

1 character isread from the data buffer. Theinterrupt FF will be immediately set
again if there are more characters available in the FIFO or shift register to be
transferred into the data buffer.

0 The byte in the receive buffer is data, received with avalid Stop bit.

Address bit or 9th (8th) bit received. Thishit is set if the character in the receiver
dataregister has a 9th (8th) bit. This hit is cleared and should be checked before
6 reading a data register since a new data value with a new address bit may be

1 loaded immediately when the data register is read.

The byte in the receive buffer is an address, or a byte with aframing error. If an
address bit is not expected. If the datain the buffer isall zeros, thismay be a

Break.
0 The receive buffer was not overrun.
5 Thishit isset if the receiver is overrun. This happensif the shift register and the data
1 register are full and astart bit is detected. This bit is cleared when the receiver data
register isread.
4 0 Thishit is always zero in async mode.

0 The transmit buffer is empty.

Transmitter data buffer full. This bit is set when the transmit data register is full,
that is, abyte iswritten to the serial port dataregister. It is cleared when abyteis
3 transferred to the transmitter shift register or FIFO, or awrite operationis

1 performed to the serial port status register. This bit will request an interrupt on
thetransition from 1 to O if interrupts are enabled. Transmit interrupts are cleared
when the transmit buffer iswritten, or any value (which will beignored) is
written to this register.

0 The transmitter isidle.

Transmitter busy bit. Thisbit is set if the transmitter shift register isbusy sending
data. It is set on the falling edge of the start bit, which is also the clock edge that
2 transfers data from the transmitter data register to the transmitter shift register.

1 The transmitter busy bit is cleared at the end of the stop bit of the character sent.
Thisbit will cause an interrupt to be latched when it goes from busy to not busy
status after the last character has been sent (there are no more datain the
transmitter data register).

1.0 00 These bits are always zero in async mode.

166 Rabbit 3000 Microprocessor

Table 12-12. Status Register Clocked Serial (Ports A-D only)

Serial Port x Status Register (SASR) (Address = 0xC3)
(SBSR) (Address = 0xD3)
(SCSR) (Address = OxE3)
(SDSR) (Address = 0xF3)
Bit(s) Value Description (Clocked serial mode only)
0 The receive data register is empty
7 1 Thereisabyte in the receive buffer. The serial port will request an interrupt
whilethisbit is set. The interrupt is cleared when the receive buffer is empty.
6 0 Thisbit is aways zero in clocked serial mode.
0 The receive buffer was not overrun.
5
1 The receive buffer was overrun. This bit is cleared by reading the receive buffer.
4 0 Thisbit is aways zero in clocked serial mode.
0 The transmit buffer is empty.
The transmit buffer is not empty. The serial port will request an interrupt when
3 1 the transmitter takes a byte from the transmit buffer. Transmit interrupts are
cleared when the transmit buffer is written, or any value (which will be ignored)
iswritten to this register.
0 The transmitter isidle.
2 The transmitter is sending a byte. Aninterrupt is generated when the transmitter
1 clearsthis bit, which occurs only if the transmitter is ready to start sending
another byte but the transmit buffer is empty.
1.0 00 These bits are always zero in clocked serial mode.

User’s Manual

167

Table 12-13. Status Register HDLC Mode (Ports E and F only)

Serial Port x Status Register (SESR) (Address = 0xCB)
(SFSR) (Address = 0xD3)
Bit(s) Value Description (HDLC mode only)
0 The receive data register is empty
7 1 There isabyte in the receive buffer. The serial port will request an interrupt
whilethisbit is set. The interrupt is cleared when the receive buffer is empty.
00 The bytein the receive buffer is data.
01 The byte in the receive buffer was followed by an Abort.
6,4
10 The bytein the receive buffer isthe last in the frame, with valid CRC.
1 The byte in the receive buffer isthe last in the frame, with a CRC error.
0 The receive buffer was not overrun.
5
1 The receive buffer was overrun. This bit is cleared by reading the receive buffer.
0 The transmit buffer is empty.
The transmit buffer is not empty. The serial port will request an interrupt when
3 1 the transmitter takes a byte from the transmit buffer, unless the byte is marked as
the last in the frame. Transmit interrupts are cleared when the transmit buffer is
written, or any value (which will be ignored) is written to this register.
00 Transmit interrupt due to buffer empty condition.
Transmitter finished sending CRC. An interrupt is generated at the end of CRC
01 transmission. Data written in response to this interrupt will cause only one Flag
to be transmitted between frames, and no interrupt will be generated by this Flag.
2:1
10 Transmitter finished sending an Abort. Aninterrupt is generated at the end of an
Abort transmission.
1 The transmitter finished sending a closing Flag. Data written in response to this
interrupt will cause at |east two Flags to be transmitted between frames.
0 The byte in the receiver buffer is 8 bits.
0
1 The byte in the receiver buffer isless than 8 bits.

168

Rabbit 3000 Microprocessor

Table 12-14. Serial Port Control Register Ports A and B

Serial Port x Control Register (SACR) (Address = 0xC4)
(SBCR) (Address = 0xD4)
Bit(s) Value Description
7:6 00 No operation. These bits are ignored in the Async mode.
01 In clocked serial mode, start a byte receive operation.
10 In clocked serial mode, start a byte transmit operation.
1 In clocked serial mode, start a byte transmit operation and a byte receive
operation simultaneously.
5.4 00 Parallel Port C isused for input.
01 Parallel Port D is used for input.
1x Disable the receiver input.
32 00 Async mode with 8 bits per character.
Async mode with 7 bits per character. In this mode the most significant bit of a
01 L) i) i
byte isignored for transmit, and is always zero in receive data.
Clocked serial mode with external clock.
10 Serial Port A clock ison Perallel Port PB1
Serial Port B clock is on Parallel Port PBO
Clocked serial mode with internal clock.
1 Serial Port A clock ison Perallel Port PB1
Serial Port B clock is on Parallel Port PBO
1.0 00 The Serial Port interrupt is disabled.
01 The Serial Port uses Interrupt Priority 1.
10 The Serial Port uses Interrupt Priority 2.

User’s Manual

169

Table 12-15. Serial Port Control Register Ports C and D

Serial Port x Control Register (SCCR) (Address = OxE4)
(SDCR) (Address = 0xF4)
Bit(s) Value Description
00 No operation. These bits are ignored in the async mode.
01 In clocked serial mode, start a byte receive operation.
76 10 In clocked serial mode, start a byte transmit operation.
1 In clocked serial mode, start a byte transmit operation and a byte receive
operation simultaneoudly.
0 Enable the receiver input.
5
1 Disable the receiver input.
4 X Thisbit isignored.
00 8 hits per character.
o1 7 bits per character. In this mode the most significant bit of abyteisignored for
transmit, and is always zero in receive data.
Clocked serial mode with external clock.
3:2 10 Serial Port C clock is on Parallel Port PF1
Serial Port D clock ison Parallel Port PFO
Clocked serial mode with internal clock.
1 Serial Port C clock ison Parallel Port PF1
Serial Port D clock ison Parallel Port PFO
00 The serial port interrupt is disabled.
01 The serial port uses Interrupt Priority 1.
1.0
10 The serial port uses Interrupt Priority 2.
1 The serial port uses Interrupt Priority 3.

170

Rabbit 3000 Microprocessor

Table 12-16. Serial Port Control Register Ports E and F

Serial Port x Control Register (SECR) (Address = 0xCC)
(SFCR) (Address = 0xDC)
Bit(s) Value Description
00 No operation. These bits are ignored in the Async mode.
01 In HDLC mode, force receiver in Flag Search mode.
7:6
10 No operation.
1 In HDLC mode, transmit an Abort pattern.
0 Enable the receiver input.
5
1 Disable the receiver input.
4 X Thisbit isignored.
00 Async mode with 8 bits per character.
Async mode with 7 bits per character. In this mode the most significant bit of a
01 L) i) i
byte isignored for transmit, and is always zero in receive data.
HDL C mode with external clock. The external clocks are supplied as follows:
3:2 10 * Transmit clock (Seria Port F)—pins PGO and PGlon Parallel Port G
* Receive clock (Serial Port E)—pins PG4 and PG5 on Parallel Port G.
HDL C mode with internal clock. The clock is 16x the datarate, and the DPLL is
1 used to recover the receive clock. If necessary, the clocks are supplied asfollows:
* Transmit clock (Seria Port F)—pins PGO and PG1on Parallel Port G
* Receive clock (Serial Port E)—pins PG4 and PG5 on Parallel Port G.
00 The serial port interrupt is disabled.
01 The serial port uses Interrupt Priority 1.
1.0
10 The serial port uses Interrupt Priority 2.
1 The serial port uses Interrupt Priority 3.

User’s Manual

171

Table 12-17. Extended Register Asynchronous Mode All Ports

Serial Port x Extended Register (SAER) (Address = 0xC5)
(SBER) (Address = 0xD5)
(SCER) (Address = OxE5)
(SDER) (Address = 0xF5)
(SEER) (Address = 0xCD)
(SFER) (Address = 0xDD)
Bit(s) Value Description (Async mode only)
75 XXX These bits are ignored in async mode.
0 Normal async data encoding.
4
1 Enable RZI coding (3/16ths bit cell IrDA-compliant).
0 Normal Break operation. This option should be selected when address bits are
expected.
3
1 Fast Break termination. At the end of Break a dummy character is written to the
buffer, and the receiver can start character assembly after one bit time.
0 Async clock is 16X datarate.
2
1 Async clock is 8X datarate.
1.0 XX These bits are ignored in async mode.

172

Rabbit 3000 Microprocessor

Table 12-18. Extended Register Clocked Serial Mode (Ports A-D only)

Serial Port x Extended Register (SAER) (Address = 0xC5)
(SBER) (Address = 0xD5)
(SCER) (Address = OxE5)
(SDER) (Address = 0xF5)
Bit(s) Value Description (Clocked serial mode only)
0 Normal clocked serial operation.
! 1 Timer synchronized clocked serial operation.
0 Timer-synchronized clocked serial uses Timer B1.
° 1 Timer-synchronized clocked serial uses Timer B2.
00 Normal clocked serial clock polarity, inactive High. Internal or external clock.
01 Normal clocked serial clock polarity, inactive Low. Internal clock only.
>4 10 Inverted clocked serial clock polarity, inactive Low. Internal or external clock.
11 Inverted clocked serial clock polarity, inactive High. Internal clock only.
32 XX These bits are ignored in clocked serial mode.
0 No effect on transmitter.
! 1 Terminate current clocked serial transmission. No effect on buffer.
0 No effect on receiver.
° 1 Terminate current clocked serial reception.

User’s Manual

173

Table 12-19. Extended Register HDLC Mode (Ports E and F only)

Serial Port x Extended Register (SEER) (Address = 0xCD)
(SFER) (Address = 0xDD)
Bit(s) Value Description (HDLC mode only)
000 NRZ data encoding for HDLC receiver and transmitter.
010 NRZI data encoding for HDLC receiver and transmitter.
75 100 Biphase-Level (Manchester) data encoding for HDLC receiver and transmitter.
110 Biphase-Space data encoding for HDL C receiver and transmitter.
111 Biphase-Mark data encoding for HDLC receiver and transmitter.
0 Normal HDL C data encoding.
4 1 Enable RZI coding (1/4th bit cell IRDA-compliant). This mode can only be used
with internal clock and NRZ data encoding.
0 Idle line condition is Flags.
° 1 Idleline conditionis all ones.
0 Transmit Flag on underrun.
? 1 Transmit Abort on underrun.
1.0 XX These bits are ignored in HDL C mode.

174

Rabbit 3000 Microprocessor

12.3 Serial Port Interrupt

A common interrupt vector is used for the receive and transmit interrupts. There is a sepa-
rate interrupt request flip-flop for the receiver and transmitter. If either of these flip-flops
isset, aserial port interrupt is requested. The flip-flops are set by arising edge only. The
flip-flops are cleared by a pulse generated by an I/O read or write operation as shown in
Figure 12-3. When an interrupt isrequested, it will take placeimmediately when priorities
allow and an instruction execution is complete. Theinterrupt islost if the request flip-flop
is cleared before the interrupt takes place. If the flip-flop is not cleared in the interrupt,
another interrupt will take place when priorities are lowered.

Transmitter IRQ

I
Transmitter Dafa Request Interrupt
Buffer Empty or |
Transmitter not Busy Write Transmitier
Data Register or .
Write Status Register RECEIVEr |RQ
I
Receiver Dafa
Buffer Full |
Read Receiver Data
Register

Figure 12-3. Generation of Serial Port Interrupts

The receive interrupt request flip-flop is set after the stop bit is sampled on receive, nomi-
nally 1/2 of the way through the stop bit. Databits are transferred on this same clock from
the receive shift register to the receive data register.

The transmit interrupt request flip-flop is set on the leading edge of the start bit for data
register empty and at the trailing edge of the stop bit for shift register empty (transmitter
idle). Unless the data register is empty on thistrailing edge of the stop bit, the transmitter
does not becomeidle. The transmitter becomesidle only if the dataregister isempty at the
trailing edge of the stop bit.

The seria port interrupt vectors are shown in Table 6-1.

User’s Manual 175

12.4 Transmit Serial Data Timing

On transmit, if the interrupts are enabled, an interrupt is requested when the transmit regis-
ter becomes empty and, in addition, an interrupt occurs when the shift register and trans-
mit register both become empty, that is, when the transmitter becomes idle. The shift
register is empty when the last bit is shifted out. When the transmit data register contains
data and the shift register finishes sending data, the data bits are clocked from the transmit
register to the shift register, and the shift register is never idle. Theinterrupt request is
cleared either by writing to the dataregister or by writing to the statusregister (which does
not affect the status register). The dataregister normally is clocked into the shift register
each time the shift register finishes sending data, leaving the data register empty. This
causes an interrupt request. The interrupt routine normally answers the interrupt before
the shift register runs dry (9 to 11 baud clocks, depending on the mode of operation). The
interrupt routine stores the next dataitem in the data register, clearing the interrupt request
and supplying the next data bits to be sent. When all the characters have been sent, the
interrupt service routine answers the interrupt once the data register becomes empty.
Sinceit has no more data, it clearsthe interrupt request by storing to the statusregister. At
this point the routine should check if the shift register is empty; normally it won't be. If it
IS, because the interrupt was answered late, the interrupt routine should do any final
cleanup and store to the status register again in case the shift register became empty after
the pending interrupt is cleared. Normally, though, the interrupt service routine will return
and there will be afinal interrupt to give the routine a chance to disable the output buffers,
asin the case for RS-485 transmission.

176 Rabbit 3000 Microprocessor

12.5 Receive Serial Data Timing

When the receiver isready to receive data, afalling edge indicates that a start bit must be
detected. Thefalling edge isdetected asadifferent Rx input between two different clocks,
the clock being 8x or 16x the baud rate. Once the start bit has been detected, data bits are
sampled at the middle of each data bit and are shifted into the receive shift register. After
7 or 8 data bits have been received, the next bit will be either a 9th (8th) address bit, or a
stop bit will be sampled. If the Rx lineislow, it isan address bit and the address bit
received bit in the status register will be enabled. If an address bit is detected, the receiver
will attempt to sample the stop bit. If the lineis high when sampled, it isastop bit and a
new scan for a new start bit will begin after the sample point. At the same time, the data
bits are transferred into the receive data register and an interrupt, if enabled, is requested.

On receive, an interrupt is requested when the receiver data register has data. This hap-
pens when data bits are transferred from the receive shift register to the dataregister. This
also sets bit 7 of the status register. The interrupt request and bit 7 are cleared when the
dataregister isread.

Aninterrupt isrequested if bit 7 ishigh. Theinterrupt is requested on the edge of the
transmitter data register becoming empty or the transmitter shift register becoming empty.
The transmitter interrupt is cleared by writing to the status register or to the data register.

On receive, the scan for the next start bit starts immediately after the stop bit is detected.
The stop bit is normally detected at a sample clock that nominally occurs in the center of
the stop bit. If there is a 9th (8th) address bit, the stop bit follows that bit.

The serial clock can be configured to be either 16x the data rate or 8x the data rate.

Serial Port
nnnnnnnwqggqq{mnnnnnnnnnnnnnnnnr Input Clock s
8 clocks
1 | [_
\/ i stop bit
start bit W."Ft) 'ng
poin Receiver Data _ [
Ready Bit
Asynchronous Receive
1 [_
Transmitter Data Reg Full —
Asynchronous Transmit

Figure 12-4. Serial Port Synchronization

User’s Manual 177

12.6 Clocked Serial Ports

Ports A-D can operate in clocked mode. The data line and clock line are driven as shown in
Figure 12-4. The data and clock are provided as 8-bit bursts with the L SB shifted out and/or
received first. By default the transmit shift register advances on the falling edge of the clock
and the receiver samples the data on the rising edge of the clock. The serial port can generate
the clock or the clock can be provided externaly.

The clock polarity is programmable in clocked serial mode according to Figure . The clocked
serial transfer may also be synchronized to the output of either of the match conditionsin
Timer B to give precisely timed transfers.

To enable the clocked serial mode, a code must be in bits (3,2) of the control register, enabling
the clocked serial mode with either an internal clock or an external clock. The transition
between the external and the internal clock should be performed with care. Normally apullup
resistor is needed on the clock lineto prevent spurious clocks while neither party isdriving the
clock.

CLK (Mode 00)

CLK (Mode01) |

CLK (Mode 10)

CLK (Mode 11)

TX DOXDlXD2;m;D4;D5;D6;D7§

|
|

Rx X o X oo X m

Figure 12-5. Clock Polarities Supported in Clocked Serial Mode

In clocked serial mode the shift register and the data register work in the same fashion as for
asynchronous communications. However, to initiate basic sending or receiving, a command
must be issued by writing to bits (7,6) of the control register for each byte sent or received.
One command is for sending a byte, adifferent command is for receiving a byte, and yet
another command can initiate a transmit and receive at the same time for full duplex commu-
nication. Alternatively, aread or write to the Serial Ports A-D Address registers (SXAR) elim-
inates the need to issue separate receive and transmit commands. In clocked serial mode,
reading the data from the corresponding SxAR register automatically causes the receiver to
start a byte receive operation, eliminating the need for software to issue the Start Receive
command. Any data contained in the receive buffer will be read first before being replaced

178 Rabbit 3000 Microprocessor

with new incoming data. Similarly, writing the data to the SXAR register causes the trans-
mitter to start a byte transmit operation, eliminating the need for the software to issue the
Start Transmit command. The effect of these codesis different, depending on whether the
mode isinternal clock or external clock.

To transmit in internal clock mode, the user must first load the data register (which must
be empty) and then store the send code. When the shift register finishes sending the cur-
rent character, if any, the dataregister will be loaded into the shift register and transmitted
by an 8-clock burst. One character can bein the process of transmitting while another
character is waiting in the data register tagged with the send code. The send code is effec-
tively double-buffered.

Toreceive acharacter in internal clock mode, the receive shift register should beidle. The
user then stores the receive code in the control register. A burst of 8 clocks will be gener-
ated and the sender must detect the clocks and shift output data to the data line on the fall-
ing edge of each clock. The receiver will sample the data on the rising edge of each clock
for clock modes 00 and O1 or the falling edge for clock modes 10 and 11. The receive
mode cannot double-buffer characters when using the internal clock. The shift register
must be idle before another character receive can beinitiated. However, the interrupt
request and character ready takes place on the rising edge of the last clock pulse. If the
next receive code is stored before the natural location of the next falling edge, another
receive will beinitiated without pausing the clock. To do this, the interrupt has to be ser-
viced within 1/2 clock.

To transmit each byte in external clock mode, the user must load the dataregister and then
store the send code. When the shift register isidle and the receiver provides aclock burst,
the data bits are transferred to the shift register and are shifted out. Once thetransfer is
made to the shift register, a new byte can be loaded into the transmit register and a new
send code can be stored.

To receive abyte in external clock mode, the user must set the receive code for the first
byte and then store the receive code for the next byte after each byte is removed from the
dataregister. Since the receive code must be stored before the transmitter sends the next
byte, the receiver must service the interrupt within 1/2 baud clock to maintain full-speed
transmission. Thisisusually not practical unless aflow control arrangement is made or
the transmitter inserts gaps between the clock bursts.

In order to carry on high-speed communication, the best arrangement will usually be for
the receiver to provide the clock. When the receiver provides the clock, the transmitter
should always be able to keep up because it is double-buffered and has afull character
time to answer the transmitter data register empty interrupt. The receiver will answer
interrupts that are generated on the last clock rising edge. If the interrupt can be serviced
within 1/2 clock, there will be no pause in the datarate. If it takes the receiver longer to
answer, then there will be a gap between bytes, the length of which depends on the inter-
rupt latency. For example, if the baud rate is 400,000 bps, then up to 50,000 bytes per sec-
ond could be transmitted, or a byte every 20 us. No datawill belost if the transmitter can

User’s Manual 179

answer itsinterrupts within 20 ps. There will be no slow down if the receiver can answer
itsinterrupt within 1/2 clock or 1.25 ps. If it can answer within 1.5 clocks, or 2.75 ps, the
datarate will dow to 44,444 bytes per second. If it can answer in 2.5 clocks or 6.25 s,
the data rate slows to 40,000 bytes per second. If it can answer in 3.5 clocks or 8.75 s,
the data rate will slow to 36,363 bytes per second, and so forth.

If two-way half-duplex communication is desired, the clock can be turned around so that
the receiver always providesthe clock. Thisis dightly more complicated since the
receiver cannot initiate amessage. If the receiver attempts to receive a character and the
transmitter is not transmitting, the last bit sent will be received for al eight bits.

180 Rabbit 3000 Microprocessor

12.7 Clocked Serial Timing
12.7.1 Clocked Serial Timing With Internal Clock

For synchronous serial communication, the serial clock can be either generated by the
Rabbit or by an external device. The timing diagram in Figure 12-6 below can be applied
to both full-duplex and half-duplex clocked serial communication where the serial clock is
generated internally by the Rabbit. Other SPI compatible clock modes supported by the
Rabbit 3000 are shown in Figure 12-5. With an internal clock, the maximum serial clock
rateisper cl k/2.

CYCLE 1 2 3 4 5 6 7 8
cka |/ VL W W S S
TXA q LSB Y BIT1 BIT2 Y BIT3 { BIT4 (BIT5 \ BIT6 MSB
RXA LSB BIT1 { BIT2 \ BIT3 \ BIT4 (BIT5 \ BIT6 {\ MSB

e N S S A A

Figure 12-6. Full-Duplex Clocked Serial Timing Diagram with Internal Clock (Mode 00)

12.7.2 Clocked Serial Timing with External Clock

In a system where the Rabbit serial clock is generated by an external device, the clock sig-
nal has to be synchronized with the internal peripheral clock (per cl k) before data can be
transmitted or received by the Rabbit. Depending on when the external serial clock is gen-
erated, in relation to per cl k, it may take anywhere from 2 to 3 clock cyclesfor the exter-
nal clock to be synchronized with the internal clock before any data can be transferred.
Figure 12-7 shows the timing relationship among per cl k, the external serial clock, and
data transmit.

Figure 12-7. Synchronous Serial Data Transmit Timing with External Clock (Mode 00)

User’s Manual 181

Figure 12-8 shows the timing relationship among per cl k, the external serial clock, and
datareceive. Note that RxA is sampled by the rising edge of per cl k.

perck /. /. /S

CLKA
(Ext.)

RxA | X

X

3
<Valid

Figure 12-8. Synchronous Serial Data Receive Timing with External Clock (Mode 00)

When clocking the Rabbit externally, the maximum serial clock frequency is limited by
the amount of time required to synchronize the external clock with the Rabbit per cl k. If
we sum the maximum number of per cl k cycles required to perform clock synchroniza-
tion for each of the receive and transmit cases, then the fastest external serial clock fre-
guency would be limited to per cl k/6.

182 Rabbit 3000 Microprocessor

12.8 Synchronous Communications on Ports E and F

Serial Port E and F are adual-function serial portsthat can be used in either asynchronous
or HDL C mode. Four bytes of buffering are available for both receiver and transmitter to
reduce interrupt overhead. An interrupt is generated whenever at least one byteis avail-
able in the receiver buffer and every time a byte isremoved from the transmitter buffer.

Serial Port E is clocked by the output of Timer A2 and Serial Port F by A3. In asynchro-
nous mode this clock can be either sixteen (the default) or eight times the datarate. In
HDL C mode this clock is sixteen times the data rate. Note that the fastest output from
Timer A2 or A3 isthe same frequency as the peripheral clock. Thus the maximum data
rate is the peripheral clock frequency divided by eight in async mode and divided by six-
teen in HDLC mode.

The HDLC receiver employs aDigital Phase-Locked-Loop (DPLL) to generate a synchro-
nized receive clock for the incoming data stream. HDL C mode also allows for an external
1x (same speed as the data rate) clock for both the receiver and the transmitter. HDLC
receive and transmit clocks can be input or output, as appropriate, viathe specified pins.
When using an external clock, the maximum datarate is one-sixth of the periphera clock
rate.

In asynchronous mode the port can send and receive seven or eight bits and has the option
of appending and recognizing an additional address bit. On transmit, the address bit is
automatically appended to the data when this datais written to the address register or long
stop register. Writing to the address register appends an “zero” address bit to the data,
while writing to the long stop register appends an “one” address bit to the data. The
address bit is followed by anormal stop bit. Normal datais written to the data register to
be transmitted. On receive, astatus bit distinguishes normal datafrom “address’ data. This
status bit is set to one if a*“zero” address hit is received. In non-address bit applications,
thisindicates aframing error. This status bit can also indicate areceived break, if the
accompanying datais all zeros (thisis the definition of break). Asynchronous mode oper-
ates full-duplex. Either the receive data available, transmit buffer empty or transmit idle
conditions can be programmed to generate an interrupt.

The HDL C mode allows full-duplex synchronous communication. Either an internal or
external clock may be selected for both the receiver and the transmitter. HDL C mode
encapsulates data within opening and closing Flags, and sixteen bits of CRC precedes the
closing Flag. All information between the opening and closing Flag is"zero-stuffed”. That
is, if five consecutive ones occur, independent of byte boundaries, a zero is automatically
inserted by the transmitter and automatically deleted by the receiver. ThisallowsaFlag
byte (07Eh) to be unique within the serial bit stream. The standard CRC-CCITT polyno-

mia (x18 + x12 + x® + 1) isimplemented, with the generator and checker preset to all ones.
Both receive and transmit operation are essentialy automatic. In the receiver, each byteis

marked with status to indicate end-of-frame, short frame and CRC error. The receiver
automatically synchronizes on Flag bytes and presets the CRC checker appropriately. If

User’s Manual 183

the current receive frame is not needed (because it is addressed to a different station, for
example) aFlag Search command is available. Thiscommand forces the receiver to ignore
the incoming data stream until another Flag is received. In the transmitter, the CRC gener-
ator is preset and the opening Flag is transmitted automatically after the first byte is writ-
ten to the transmitter buffer, and CRC and the closing flag are transmitted after the byte
that is written to the buffer through the Address Register. If no CRC isrequired, writing
the last byte of the frame to the Long Stop Register automatically appends a closing flag
after the last byte. If the transmitter underflows, either an Abort or a Flag will be transmit-
ted, under program control. A command is available to send the Abort pattern (seven con-
secutive ones) if atransmit frame needsto be aborted prematurely. The Abort command
takes effect on the next byte boundary, and causes the transmission of an FEh (a zero fol-
lowed by seven ones), after which the transmitter will send the idle line condition. The
Abort command also purges the transmit FIFO. The idle line condition may be either
Flags or all ones.

Both the receiver and transmitter contain four bytes of buffering for the data. Status bits
are buffered along with the datain both receiver and transmitter. The receiver automati-
cally generates an interrupt at the end of areceived frame, and the transmitter generates an
interrupt at the end of CRC transmission, at the end of the transmission of an Abort
sequence, and at the end of the transmission of aclosing Flag.

The transmitter is not capable of sending an arbitrary number of bits, but only a multiple
of bytes. However, the receiver can receive frames of any bit length. If the last "byte" in
the frame is not eight bits, the receiver sets a status flag that is buffered along with thislast
byte. Software can then use the table below to determine the number of valid data bitsin
thislast "byte." Note that the receiver transfers all bits between the opening and closing
Flags, except for the inserted zeros, to the receiver data buffer.

Last Byte Bit Pattern Valid Data Hits
bbbbbbb0
bbbbbb01
bbbbb011
bbbb0111
bbb01111
bb011111
b0111111

RN W OO N

Several types of dataencoding are available in the HDLC mode. In addition to the normal
NRZ, they are NRZI, Biphase-Level (Manchester), Biphase-Space (FMO0) and Biphase-
Mark (FM1). Examples of these encodings are shown in the Figure below. Note that in
NRZI, Biphase-Space and Biphase-Mark the signal level does not convey information.
Rather it is the placement of the transitions that determine the data. In Biphase-Level itis
the polarity of the transition that determines the data.

184 Rabbit 3000 Microprocessor

Serial Clock _l | | | | |

B

L

NRZ Data

|
NRZI | \

]
W

NRZI /

[
(

|
|
Biphase-L evel 1

|
Biphase-Space :

|
|
|
|
|

Biphase-Space

Biphase-Mark

Biphase-Mark !

data " "0" " " "0" "0" "1t "o

In HDL C modetheinternal clock comes from the output of Timer A2. Thistimer output is
divided by sixteen to form the transmit clock, and isfed to the Digital Phase-L ocked Loop
(DPLL) to form the receive clock. The DPLL isbasicaly just a divide-by-16 counter that
uses the timing of the transitions on the receive data stream to adjust its count. The DPLL
adjust the count so that the output of the DPLL will be properly placed in the bit cellsto
sample the receive data. To work properly, then, transitions are required in the receive data
stream. NRZ data encoding does not guarantee transitionsin all cases (along string of
zeros for example), but the other data encodings do. NRZI guarantees transitions because
of the inserted zeros, and the Biphase encodings all have at least one transition per bit cell.

The DPLL counter normally counts by sixteen, but if atransition occurs earlier or later
than expected the count will be modified during the next count cycle. If the transition
occurs earlier than expected, it means that the bit cell boundaries are early with respect to
the DPLL-tracked bit cell boundaries, so the count is shortened, either by one or two
counts. If the transition occurs later than expected, it means that the bit cell boundaries are
late with respect to the DPL L-tracked bit cell boundaries, so the count is lengthened,
either by one or two counts. The decision to adjust by one or by two depends on how far
off the DPLL-tracked bit cell boundaries are. Thistracking allowsfor minor differencesin
the transmit and receive clock frequencies.

With NRZ and NRZI data encoding, the DPLL counter runs continuously, and adjusts
after every receive data transition. Since NRZ encoding does not guarantee a minimum
density of transitions, the difference between the sending data rate and the DPLL output

User’s Manual 185

clock rate must be very small, and depends on the longest possible run of zerosin the
received frame. NRZI encoding guarantees at least one transition every six bits (with the
inserted zeros). Since the DPLL can adjust by two counts every bit cell, the maximum dif-
ference between the sending data rate and the DPLL output clock rate is 1/48 (~2%).

With Biphase data encoding (either -Level, -Mark or -Space), the DPLL runsonly aslong
astransitions are present in the receive data stream. Two consecutive missed transitions
causes the DPLL to halt operation and wait for the next available transition. This mode of
operation is necessary because it is possible for the DPLL to lock onto the optional transi-
tionsin the receive data stream. Since they are optional, they will eventually not be
present and the DPLL can attempt to lock onto the required transitions. Since the DPLL
can adjust by one count every bit cell, the maximum difference between the sending data
rate and the DPLL output clock rate is 1/16 (~6%).

With Biphase data encoding the DPLL is designed to work in multiple-access conditions
where there may not be Flags on an idle line. The DPLL will properly generate an output
clock based on the first transition in the leading zero of an opening Flag. Similarly, only the
completion of the closing Flag is necessary for the DPLL to provide the extratwo clocks to
the receiver to properly assemble the data. In Biphase-Level mode, this means the transi-
tion that defines the last zero of the closing Flag. In Biphase-Mark and Biphase-Space
modes this means the transition that defines the end of the last zero of the closing Flag.

The figure below shows the adjustment ranges and output clock for the different modes of
operation of the DPLL. Each mode of operation will be described in turn.

| | | | | | | | | | | | | | |

Bit el I T S A S S N B B
I | | | | | | | | | | | | | | | I

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | |

NRZI adj none | qdd one | ! add two ! | ! subtqact two | subFract one | none
S T T S S O S S S A R

| | | | | | | | - - ‘

NRZI ClOCk \ | | | | | | | | | | | | | | | |
N / T T T T S T R

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | |

Bi-L adj | ignoretransitions | subtract dne | ndne | add oné | ignoretransitions |
S T T (S Y R S S S A R

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | |

Bi-L Clock | | | | / | | | | | | | \ | | | |
| | | | | : : : : : : : : | | | |

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | |

Bi-S adj none add one l | | igrhoretrlansitibns | | l subtract gne none
S T T T S T N S S S A

| | | | | | | | | | | | | | | | |

T T T T | | | | | | | | T T T 1

BisClock L0 N_L_ L e
| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | |

| | | | | | | | | | | | |

Bi-M adj :none qdd ong | : : igqloretr:ansitipns : : | sub‘tract qne nonq
S T T S S O S S S A R

| | | | | | | |
BiMClock 10 N1 oo

186 Rabbit 3000 Microprocessor

With NRZ and NRZI encoding all transitions occur on bit-cell boundaries and the data
should be sampled in the middle of the bit cell. If atransition occurs after the expected bit-
cell boundary (but before the midpoint) the DPLL needs to lengthen the count to line up
the bit-cell boundaries. This correspondsto the “add one” and “add two” regions shown. If
atransition occurs before the bit cell boundary (but after the midpoint) the DPLL needsto
shorten the count to line up the bit-cell boundaries. This correspondsto the “ subtract one”
and “subtract two” regions shown. The DPLL makes no adjustment if the bit-cell bound-
aries are lined up within one count of the divide-by-sixteen counter. The regions that
adjust the count by two alow the DPLL to synchronize faster to the data stream when
starting up.

With Biphase-Level encoding there is a guaranteed “clock” transition at the center of
every hit cell and optional “data’ transitions at the bit cell boundaries. The DPLL only
uses the clock transitionsto track the bit cell boundaries, by ignoring all transitions occur-
ring outside awindow around the center of the bit cell. Thiswindow is half abit-cell wide.
Additionally, because the clock transitions are guaranteed, the DPLL requires that they
always be present. If no transition is found in the window around the center of the bit cell
for two successive bit cellsthe DPLL isnot in lock and immediately enters the search
mode. Search mode assumes that the next transition seen isaclock transition and immedi-
ately synchronizesto thistransition. No clock output is provided to the receiver during the
search operation. Decoding Biphase-Level datarequires that the data be sampled at either
the quarter or three-quarter point in the bit cell. The DPLL here uses the quarter point to
sample the data.

Biphase-Mark and Biphase space encoding are identical as far asthe DPLL is concerned,
and are similar to Biphase-Level. The primary difference isthe placement of the clock and
datatransitions. With these encodings the clock transitions are at the bit-cell boundary and
the data transitions are at the center of the bit cell, and the DPLL operation is adjusted
accordingly. Decoding Biphase-Mark or Biphase-Space encoding requires that the data be
sampled by both edges of the recovered receive clock.

An optional IRDA (Infrared Data Association) -compliant encode and decode function is
available in both asynchronous mode and HDL C mode. The encoder sends an active-High
pulse for azero and no pulse for aone. In the asynchronous 16x mode this pulse is 3/16ths
of abit cell wide, while in the asynchronous 8x mode it is 1/8th of a bit cell wide. In
HDL C mode the pulseis 1/4th of a bit cell wide. In all modes the decoder watches for
active-Low pulses, which are stretched to one bit time wide to recreate the normal asyn-
chronous waveform for the receiver. Enabling the IRDA-compliant encode/decode modi-
fiesthe transmitter in HDL C mode so that there are always two opening Flags transmitted.

User’s Manual 187

12.9 Serial Port Software Suggestions

The receiver and transmitter share the same interrupt vector, but it is possible to make the
receive and transmit interrupt service routines (I SRs) separate by dispatching the interrupt
to either of two different routines. Thisis desirable to make the ISR less complex and to
reduce the interrupt off time. No interrupts will be lost since distinct interrupt flip-flops
exist for receive and transmit. The dispatcher can test the receiver data register full bit to
dispatch. If thisbit ison, the interrupt is dispatched for receive, otherwise for transmit.
The receiver receivesfirst consideration because it must be serviced attentively or data
could belost.

The dispatcher might look as follows.

interrupt:

PUSH AF ;10

IO LD A (SCSR) ; 7 get status register serial port C
JP mreceive ; 7 go service the receive interrupt

el se service transmt interrupt

The individual interrupts would assume that register AF has been saved and the status reg-
ister has been loaded into Register A.

The interrupt service routines can, as a matter of good practice and obtaining optimum
performance, remove the cause of the interrupt and re-enable the interrupts as soon as pos-
sible. This keepsthe interrupt latency down and allows the fastest transmission speed on
all serial ports.

All the seria portswill normally generate priority level 1 interrupts. In exceptional circum-
stances, one or more serial ports can be configured to use a higher priority interrupt.
There isan exception to be aware of when a serial port hasto operate at an extremely high
speed. At 115,200 bps, the highest speed of a PC seria port, the interrupts must be serviced
in 10 baud times, or 86 s, in order not to lose the received characters. If all six seria ports
were operating at this receive speed, it would be necessary to service the interrupt in less
than 21.5 psto assure no lost characters. In addition, the time taken by other interrupts of
equal or higher priority would have to be considered. A receiver service routine might
appear asfollows below. The byte at buf pt r isused to address the buffer where data bits
are stored. It isnecessary to save and increment this byte because characters could be han-
dled out of order if two receiver interrupts take place in quick succession.

receive:

PUSH HL ; 10 save HL

PUSH DE ; 10 save DE

LD HL, struct ; 6

LD A, (HL) 5 get in-pointer

LD E, A ; 2 save in pointer in E

I NC HL ; 2 point to out-pointer

CWP A (HL) 5 see if in-pointer=out-pointer (buffer full)
JR Z,roverrun 5 go fix up receiver over run

INC A ; 2 incenent the in pointer

AND A, mask 4 mask such as 11110000 if 16 buffer |ocs
DEC HL ;2

188 Rabbit 3000 Microprocessor

LD (HL), A ; 6 update the in pointer
IO LD A (SCDR) ; 11 get data register port C, clears interrupt request
| PRES ; 4 restore the interrupt priority

; 68 clocks to here

; to level before interrupt took place

; nmore interrupts could now take place,

; but receiver data is in registers

; now handl e the rest of the receiver interrupt routine
LD HL, buf base ;6

LD D0 ;6

ADD HL, DE ; 2 location to store data
LD (HL), A ;6 put away the data byte
POP DE 7

POP HL 7

POP AF 7

RET ; 8 frominterrupt

;117 clocks to here

Thisroutine gets the interrupts turned on in about 68 clocks or 3.5 s at a clock speed of
20 MHz. Although two characters may be handled out of order, thiswill beinvisibleto a
higher level routine checking the status of the input buffer because all the interrupts will
be completed before the higher level routine can perform a check on the buffer status.

A typical way to organize the buffersisto have an in-pointer and an out-pointer that incre-
ment through the addresses in the data buffer in a circular manner. The interrupt routine
manipul ates the in-pointer and the higher level routine manipulates the out-pointer. If the
in-pointer equals the out-pointer, the buffer is considered full. 1f the out-pointer plus 1
eguals the in-pointer, the buffer isempty. All increments are done in acircular fashion,
most easily accomplished by making the buffer a power of two in length, then anding a
mask after the increment. The actual memory address is the pointer plus a buffer base
address.

12.9.1 Controlling an RS-485 Driver and Receiver

RS-485 uses a half-duplex method of communication. One station enables its driver and
sends amessage. After the message is complete, the station disables the driver and listens
tothelinefor areply. The driver must be enabled before the start bit is sent and not dis-
abled until the stop bit has been sent. The transmitter idle interrupt is normally used to
disable the RS-485 driver and possibly enable the receiver.

12.9.2 Transmitting Dummy Characters

It may be desired to operate the serial transmitter without actually sending any data. “Dummy”
characters are transmitted to pass time or to measure time.

The output of the transmitter may be disconnected from the transmitter output pin by manip-
ulating the control registers for Parallel Port C or D, which are used as output pins. For
example, if Serial Port B isto be temporarily disconnected from its output pin, whichis bit
4 of Parallel Port C, this can be done as follows.

1. Storea"1" inbit 4 of the parallel port data output register to provide the quiescent state
of thedriveline.

User’s Manual 189

2. Clear bit 4 of the Parallel Port C function register so that the output no longer comes
from the seria port. Of course, this should not be done until the transmitter isidle.

A similar procedure can be used if the serial port is set up to use alternate output pins on
port D. Only Seria Ports A and B can use alternate outputs on Parallel Port D.

If an RS-485 driver is being used, dummy characters can be transmitted by disabling the
driver after the stop bit has been sent. Thisis an alternative to the above procedure.

12.9.3 Transmitting and Detecting a Break

A break is created when the output of the transmitter isdriven low for an extended period.
If abreak isreceived, it will appear as a series of charactersfilled with zeros and with the
9th bit detected low. This could only be confused with alegitimate message if a protocol
using the 9th bit wasin effect. Break is not usually used as a message in such protocols.

A break can be transmitted by transmitting a byte of zeros at avery slow baud rate.
Another and probably better method isto disconnect the transmitter from the output pin,
and use the parallel port bit to set the line low while sending dummy charactersto time out
the break.

The use of break as a signaling device should be avoided because it is low, erratically sup-
ported by different types of hardware, and usually creates more problemsthan it solves.

12.9.4 Using A Serial Port to Generate a Periodic Interrupt

A serial port may be used to generate a periodic interrupt by continuously transmitting
characters. Since the Tx output viaParallel Port C or D can be disabled, the transmitted
characters are transmitted to nowhere. Because the character output path is double-buff-
ered, there will be no gapsin the character transmission, and the interrupts will be exactly
periodic. The interrupts can happen every 9, 10 or 11 baud times, depending on whether 7
or 8 hits are transmitted and on whether the 9th (8th) bit is sent.

12.9.5 Extra Stop Bits, Sending Parity, 9th Bit Communication Schemes

Some systems may require two stop bits. 1n some cases, it may be necessary to send a par-
ity bit. Certain systems, such as some 8051-based multidrop communications systems,
use a 9th data bit to mark the start of amessage frame. The Rabbit 3000 can receive parity
or message formats that contain a 9th bit without problem. Transmitting messages with
parity or messages that always contain a9th bit isalso possible. It is quite easy to do so for
byte formats that use only 7 data bits, in which case the 9th bit or parity bit is actually an
8th bit. Sending a 9th low bit is supported by hardware. Sending a 9th bit asa high value
requires awrite to the Serial Port A-F Long Stop Register (SXLR) which isthe same as
two stop hits.

190 Rabbit 3000 Microprocessor

Figure 12-9 illustrates the standard asynchronous serial output patterns.

stop bit

0 7 !

L

start bit data bits oth bit low

Character with 9th bit low stop bit

0 77

L

/stop bit

0 7 \ '
L —
. Character w. 9th bit high
start bit g 9th bit high

Generated by a Write to SxLR

start bit Character w/o 9th bit low

Signal shown at output pin on processor. A “1” is high.

Figure 12-9. Asynchronous Serial Output Patterns

12.9.6 Parity, Extra Stop Bits with 7-Data-Bit Characters

If only 7 data bits are being sent, sending an additional parity or signal bit iseasily solved
by sending 8 bits and always setting bit 7 (the eighth bit) of the byteto "1" or “0” depend-
ing on what is desired. No specia precautions are needed if two stop bits are to be
received. If parity isreceived with 7 data bits, receive the data as 8 bits, and the parity will
be in the high bit of the byte.

12.9.7 Parity, Extra Stop Bits with 8-Data-Bit Characters

In order to receive parity with 8 data bits, a check is made on each character for a 9th bit
low. The Sth bit, or parity bit, islow if bit 6 of the serial port status register (SxSR) is set to
a"1" after the character isreceived. If the 9th bit is not a zero, then the serial port treats it
as an extrastop bit. So if the 9th bit low flag is not set, it should be assumed that the parity
bitisa"1."

Setting the 9th bit high or low can easily be done in the Rabbit 3000. The 9th bit can be
set low by awrite to the Serial Port A-F Address Register (SXAR) and the 9th bit can be
set high by awrite to the Serial Port A-F Long Stop Register (SXLR).

User’s Manual 191

12.9.8 Supporting 9th Bit Communication Protocols

This section describes how 9th bit communication protocols work. 9th bit communication
protocols are supported by processors such as the 8051 and the Z180, and by companies
such as Cimentrics Technology. The data bytes have an extra 9th bit appended where a
parity bit would normally be placed. Requests from the network master to one of its slaves
consist of aframe of bytes—the first byte has the 9th bit set to "1" (asthe signal is
observed at the Tx pin of the processor) and the following bytes have the 9th bit set to "0."
Thefirst byteisidentified as the address byte, which specifies the slave unit where the
message is directed. This enables a slave to find the start of a message, which isthe byte
with the 9th bit set, and to determine if the message is directed to it. If the messageis
directed to a particular slave, the slave will then read the charactersin the rest of the mes-
sage; otherwise the slave will continue to scan for a start of message character containing
its address.

Normally the 9th bit isset to "1" only on the first byte of arequest transmitted by the net-
work master. The subsequent bytes and the slave replies have the 9th bit set to zero. Since
the majority of the traffic has a 9th bit set low, it isonly necessary to stretch the stop bit for
the first bytes or address bytes. This can be done without sacrificing performance by send-
ing adummy character (transmitter disconnected) after the address byte.

Some microprocessor serial ports have a“wake up” mode of operation. In this mode, char-
acters without the 9th bit set to "1" are ignored, and no interrupt is generated. When the
start of aframe is detected, an interrupt takes place on that byte. If the byte contains the
address of the dlave, then the “wake up” mode is turned off so that the remaining charac-
tersin the frame can be read. This scheme reduces the overhead associated with messages
directed to other slaves, but it does not really help with the worst-case load. In most cases,
the worst-case compute load is the governing factor for embedded systems. In addition, it
is quite easy for the interrupt driver to dismiss characters not directed to the system. For
these reasons, the “wake up” mode was not implemented for the Rabbit.

The 9th bit protocols suffer from amajor problem that the IBM-PC uarts can support the
9th bit only by using special drivers.

12.9.9 Rabbit-Only Master/Slave Protocol

If only Rabbit microprocessors are connected, the 9th bit low can be set on the address
byte, and the remaining bytes can be transmitted in the normal 8-bit mode. Thisis more
efficient than other 9th bit protocols because only the first byte requires 11 baud times; the
remaining bytes are transmitted in 10 baud times.

12.9.10 Data Framing/Modbus

Some protocols, for example, Modbus, depend on a gap in the data frame to detect the
beginning of the next frame. The 9th bit protocol is another way to detect the start of a
data frame.

The Modbus protocol requires that data frames begin with a minimum 3.5-character quiet
time. The receiver usesthis 3.5-character gap to detect the start of aframe. In order for

192 Rabbit 3000 Microprocessor

the receiving interrupt service routine to detect this gap, it is suggested that dummy char-
acters be transmitted to help detect the gap. This can be done in the following manner.
The transmitter starts transmitting dummy characters when the first character interrupt is
received. Each timethereisan interrupt, either receiver dataregister full or transmitter
dataregister empty, adummy character istransmitted if the transmitter dataregister is
empty. Although the transmitter and receiver operate at approximately the same baud rate,
there can be a difference of up to about 5% between their baud rates. Thus the receiver
full and transmitter empty interrupts will become out of phase with each other, assuming
that the remote station transmits without gaps between characters. A counter is zeroed
each time a character is received, and the counter is incremented each time a character is
transmitted. If this counter holds (n), thisindicates that a gap has been detected in the
frame; the length of the gap is(n - 1) to (n) characters. The start of frame could be marked
by (n) reaching 3, indicating that the existence of a gap at least two characters long.

User’s Manual 193

194 Rabbit 3000 Microprocessor

13. RABBIT SLAVE PORT

When a Rabbit microprocessor is configured as a slave, Parallel Port A and certain other
data lines are used as communication lines between the slave and the master. The slave
unit isa Rabbit configured as a lave. The master can be another Rabbit or any other type
of processor. Rabbits configured as slaves can themselves have slaves.

The master and slave communicate with each other viathe slave port. The slave portisa
physical device that includes data registers, a data bus and various handshaking lines. The
dave port isapart of the slave Rabbit, but logically it isan independent device that is used
to communicate between the two processors. A diagram of the slave port is shown in
Figure 13-1.

SPSR

W‘/
i

_ SPDZR

k

81-83 l -
- SDO'SD7>

98 | sa1 mE mB _ SPDIR
97 | sA0

95

—>

ISWR | | SPDOR
96 _| /sRD
2l | /scs CPU
<190 | /SLAVEATTN v,

Figure 13-1. Rabbit Slave Port

The slave port has three data registers for each direction of communication. Three regis-
ters, named SPDOR, SPD1R, and SPD2R, can be written by the master and read by the
slave. Three different registers, also named SPDOR, SPD1R, and SPD2R, can be written
by the dlave and read by the master. The same names are used for different registers since
it isusually clear from the context which register is meant. If it is necessary to distinguish
between registers, we will refer to the registers as “ SPDOR writable by the slave’ or
“SPDOR writable by the master.”

User’s Manual 195

A status register can be read by either the slave or the master. The status register has full/
empty bitsfor each of the six registers. A dataregister is considered full when it iswritten
to by whichever sideis capable of writing to it. If the same register is then read by either
sideit is considered to be empty. The flag for that register isthus set to a"1" when the reg-
ister iswritten to, and the flag is set to a"0" when the register isread.

The registers appear to be internal 1/0 registersto the slave. To the master, at least for a
Rabbit master, the registers appear to be external I/O registers. The figure below showsthe
sequence of events when the master reads/writes the slave port registers.

Slave Port Read Cycle
/SCS T\ T
1 Tsu(SCS) <——>ITh(SCS)
SA1, SA0 —) —
:<—>: Tsu(SA) <> Th(SA)
ISRD \ /
| ! Tw(SRD)
SD[7:0] — X —
>!Ten(SRD) ' Tdis(SRD)
I 1Ta(SRD)
ISWR :

i<— Tsu(SWR — SRD)

Slave Port Write Cycle

/SCS T\ _ -
:<—>: Tsu(SCS) :«—»: Th(SCS)
SA1, SA0 —_X X—
>, TSU(SA) > Th(SA)
ISWR \ /
! TW(SWR)
:J\ N 1

' Th(SD)

[}
! 1
le—> Tsu(SD)

%
O
N
A=

ISRD _AIV |

l«———> Tsu(SRD — SWR)

Figure 13-2. Slave Port R/W Sequencing

196 Rabbit 3000 Microprocessor

The following table explains the parameters used in Figure 13-2.

Symbol Parameter Milzri:g)um Ma>((rir:)um
Tsu(SCS) /SCS Setup Time 5 —
Th(SCS) /SCS Hold Time 0 —
Tsu(SA) SA Setup Time 5 —
Th(SA) SA Hold Time 0 —
Tw(SRD) /SRD Low Pulse Width 40 —
Ten(SRD) /SRD to SD Enable Time 0 —
Ta(SRD) /SRD to SD Access Time — 30
Tdis(SRD) /SRD to SD Disable Time — 15
Tsu(SRW — SRD) | /SWR High to /SRD Low Setup Time 40 —
Tw(SWR) /SWR Low Pulse Width 40 —
Tsu(SD) SD Setup Time 10 —
Th(SD) SD Hold Time 5 —
Tsu(SRD — SWR) | /SRD High to /SWR Low Setup Time 40 —

The two SPDOR registers have specia functionality not shared by the other data registers.
If the master writes to SPDOR, an inbound interrupt flip-flop is set. If slave port interrupts
are enabled, the slave processor will take a dave port interrupt. If the slave writesto the
other SPDOR register, the slave attention line (/SLAVEATTN, pin 100) is asserted (driven
low) by the slave processor. Thisline can be used to create an interrupt in the master.
Either side that isinterrupted can clear the signal that is causing an interrupt request by writ-
ing to the slave port status register. The data bits are ignored, but the flip-flop that is the
source of the interrupt request is cleared. Figure 13-3 shows alogical schematic of this func-
tionality.

User’s Manual 197

Master writes SPDOR

Slave inbound interrupt requested

Visible in status register

Slave writes status register

Slave writes SPDOR
/ISLAVEATTN (PB7)

N D

AN
Visible in status register

Master writes status register

Figure 13-3. Slave Port Handshaking and Interrupts

Figure 13-4 shows a sample connection of two slave Rabbits to a master Rabbit. The mas-
ter drivesthe dave reset line for both slaves and provides the main processor clock from
itsown clock. There is no requirement that the master and slave share a clock, but doing
so makes it unnecessary to connect a crystal to the slaves. Each Rabbit in Figure 13-4 has
to have RAM memory. The master must also have flash memory. However, the slaves do
not need nonvolatile memory since the master can cold boot them over the slave port and
download their program. In order for thisto happen, the SMODEO and SMODEL1 pins
must be properly configured as shown in Figure 13-4 to begin a cold boot process at the
end of the slave reset.

198 Rabbit 3000 Microprocessor

Master Rabbit First Slave Rabbit
DO-D7 g - SDO-SD7 .
/IORD /SRD
/IOWR ISWR
AO SAO
Al SA1l SMODEO
CLK /IXTALB1
portout IRESET SMODE1
INTOA /SLAVEATTN
n7 /SCS
INT1A N
/16
Second Slave Rabbit
-
+
Reset
Pulldown SMODEO |
/SLAVEATTN SMODEL
/SCS

Figure 13-4. Typical Connection Slave Rabbit to Master Rabbit

The slave port lines are shown in Figure 13-1. The function of these lines is described
below.

SD0O-SD7—These are bidirectional data lines, and are generally connected to the data
bus of the master processor. Multiple slaves can be connected to the data bus. The slave
drives the data lines only when /SCS and /SRD are both pulled low.

SA1, SA0—These are address lines used to select one of the four data registers of the
daveinterface. Normally these lines are connected to the low-order address lines of the
master. The master always drives these lines which are always inputs to the slave.

/SCS—Input. Slave chip select. The slave ignoresread or write requests unless the chip
select islow. If aRabbit is used as a master, this line can be connected to one of the
master’s programmable chip select lines/10-/17.

/SRD—Input. If /SCSisalso low, thisline pulled low causes the contents of the register
selected by the addresslinesto be driven on the data bus. If a Rabbit is used as a master,
thisline is normally connected to the global 1/0 read strobe /IORD.

ISWR—Input. If /SCSisalso low, this line causes the data bits on the data bus to be
clocked into the register selected by the address lines on the rising edge of /SWR or
/SCS, whichever risesfirst. If a Rabbit is used as a master, thislineis normally con-
nected to the global 1/0 write strobe /IOWR.

User’s Manual 199

* /SLAVEATTN—Thislineisset low (asserted) if the dave writesto the SPDOR register.
Thislineisset high if the master writes anything to the slave status register. Thislineis
usually connected to cause the master to be interrupted when it goes low.

The datalines of the slave port are shared with Parallel Port A that uses the same package
pins. The slave port can be enabled, and Parallel Port A be disabled, by storing an appro-
priate code in the slave port control register (SCR). After the processor isreset, all the pins
belonging to the slave interface are configured as parallel-port inputs unless (SMODEL,
SMODEDQO) are set to (0,1), in which case the slave port is enabled after reset and the slave
starts the cold-boot sequence using the slave port.

13.1 Hardware Design of Slave Port Interconnection

Figure 13-4 shows atypical circuit diagram for connecting two slave Rabbits to a master
Rabbit. The designer has the option of cold-booting the slave and downloading the pro-
gram to RAM on each cold start. Another option isto configure the dave with both RAM
and flash memory. In this case, the slave will only have the program downloaded for
maintenance or upgrades. Usually, the flash would not be written to on every startup
because of the limited number of lifetime writes to flash memory. The daves reset in
Figure 13-4 isunder the program control of the master. If the master isreset, the slave will
also be reset because the master’s drive of the reset line will be lost on reset and the pull-
down resistor will pull the slaves’ resets low. This may be undesirable because it forces
the slave to crash if the master crashes and has a watchdog timeout.

13.2 Slave Port Registers

The dlave port registers are listed in Table 13-1. These registers, each of which is actually
two separate registers, one for read and one for write, are accessible to the slave at the 1/0
addresses shown in the table and they are accessible to the master at the external address
shown which specifies the value of the save address (SA0, SA1) input to the slave when
the master reads or writes the registers. The register that can be written by the slave can
only be read by the master and vice versa. If one side were to attempt to read aregister at
the same time that the other side attempted to write the register the result of the read could
be scrambled. However, the protocols and handshaking bits used in communication are
normally such that this never happens.

Table 13-1. Slave Port Registers

Register Mnemonic Internal External
Address Address
Slave Port Data O Register SPDOR 20h 0
Slave Port Data 1 Register SPD1R 21h 1
Slave Port Data 2 Register SPD2R 22h 2
Slave Port Status Register SPSR 23h 3
Slave Port Control Register SPCR 24h N.A.

200 Rabbit 3000 Microprocessor

If the user for some reason wants to depart from the suggested protocols and poll aregister
while waiting for the other side to write something to the register, the user should be aware
that all the bits might not change at the exact same time when the result changes, and a
transitional value could be read from the register where some bits have changed to the new
value and others have not. To avoid being confused by atransitional value, the user can
read the register twice and make sure both values are the same before accepting the value,
or the user can test only one bit for a change. The transitional value can only exist for one
read of the register, and each bit will have its old value change to the new value at some
point without wavering back and forth. The existence of atransitional value could be very
rare and has the potential to create a bug that happens often enough to be serious, but so
infrequently asto be difficult to diagnose. Thus, the user is cautioned to avoid this situa-

tion.

Table 13-2 describes the dlave port control register.

Table 13-2. Slave Port Control Register (SPCR) (adr = 024h)

address bus.

Bit 7 Bits 6,5 oy Bit 3,2 Bits 1,0
(Write Only) (Read Only) (Write Only) (Write Only)

00—disable dave port, port A
is abyte wide input port 00—no slave
01—disableslave port, port A | 'Nterrupt

0—obey SMODE is abyte wide output port

- Reads SMODE

pins oins S 10—enable the slave port pp—enable slave

1—ignore SMODE | 1 ieq smoded 11—Enabletheawilliary 1/0 | POrtInterrupt

pins bus. Parallel Port A isused | 01 priority 1
for the data bus and Parallel | 10 priority 2
Port B[7:2] is used for the 11 priority 3

The functionality of the bitsisasfollows:

Bit 7—If setto "0," the cold-boot feature will be enabled. Normally thisbitissettoa"1"

after the cold boot is complete. The cold boot for the slave port is enabled automatically if
(SMODE1, SMODEQ) lines are set to (0,1) after the reset ends. This features disables the
normal operation of the processor and causes commands to be accepted via the slave port
register SPDOR. These commands cause data to be stored in memory or 1/0 space. When
the master that is managing the cold boot has finished setting up memory and I/O space,
the (SMODEL, SMODEO) pins are changed to code (0,0), which causes execution to start
at address zero. Typically thiswill start execution of a secondary boot program. At some
point, bit 7 will be set to a"1" so that the SMODEX pins can be used as normal input pins.

Bits 6,5—May be used to read the input pins SMODE, SMODEQ.

Bits 3,2—A “10" written to bits 3,2 enables the slave port disabling Parallel Port A and vari-
ous other port lines. Bits 3,2 are automatically set to a"10" if acold boot is done viathe
dave port. If bit 3is"0," then bit 2 controls whether Parallel Port A isan input (bit 2 = 0)
or an output (bit 2=1). A “11” written to bits 3,2 enables the Auxilliary 1/0 bus.

User’s Manual

201

Bits 1,0—This 2-bit field setsthe priority of the slave port interrupt. Theinterrupt is disabled
by (0,0).
Table 13-3 describes the dave port status register. The status register has 6 bitsthat are set if
the particular register isfull. That meansthat the register has been written by the processor that

canwriteto it but it has not been read by the processor that can read it. The bitsfor SPDOR are
used to control the dave interrupt and the handshaking lines as shown in Figure 13-3.

Table 13-3. Slave Port Status Register (SPSR) (adr = 023h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

l—setby |1—setby |1—setby 1—setby |1—set by 1—set by

1—set by 1—set by ; ; dave

master master master master Jave write savewrite |davewrite writeto

writeto writeto writeto writeto t0 SPDOR to SPD2R. |to SPD1R. SPDOR
SPD2R. SPD1R. SPDOR. " | Cleared Cleared '

SPDOR. Cleared by Cleared
Cleared Cleared Cleared when when

Cleared by master when

. when dave | when dave | when dave . master master

slave write writeto master
reads reads reads reads reads

to SPSR. . . - SPSR. . . reads
register. register. register. register. register. register

13.3 Applications and Communications Protocols for Slaves

The communications protocol used with the slave port depends on the application. A slave
processor may be used for various reasons. Some possible applications are listed below.

Keep in mind that the Rabbit can also be operated as a slave processor viaa serial port and
some of the protocols will work well viaa serial communications connection. If a seridl
connection is used, the protocol becomes more complicated if errorsin transmission need
to be taken into account. If the physical link can be controlled so that transmission errors
do not occur, aredlistic possibility if the interconnection environment is controlled, the
seria protocol issimpler and faster than if error correction needs to be taken into account.

13.3.1 Slave Applications

» Motion Controller—Many types of motion control require fast action, may be com-
pute-intensive or both. Traditional servo system solutions may be overly expensive or
not work very well because of system nonlinearities. The basic communications model
for amotion controller isfor the master to send short messages—positioning com-
mands—to the slave. The slave acknowledges execution of the commands and reports
exception conditions.

» Communications Protocol Processor—Communications protocols may be very com-
plex, may require fast responses, or may be compute-intensive.

» Graphics Controller—The Rabbit can be used to perform operations such as drawing
geometric figures and generating characters.

» Digital Signal Processing—AIthough the Rabbit is not a speciality digital signal pro-
cessor, it has enough compute speed to handle some types of jobs that might otherwise

202 Rabbit 3000 Microprocessor

require a speciality processor. The slave processor can process data to perform pattern
recognition or to extract a specific parameter from a data stream.

13.3.2 Master-Slave Messaging Protocol

In this protocol the master sends messages to the dave and receives an acknowledgement
message. The protocol can be polled or interrupt driven. Generally, the master sends a
message that has a message type code, perhaps a byte count, and the text of the message.
The slave responds with a similar message as an acknowledgement. Nothing happens
unless the master sends a message. The slave is not allowed to initiate a message, but the
slave could signal the master by using a parallél port line other than /SLAVEATN or by
placing datain one of the registers the master can read without interfering with the mes-
sage protocol.

The master sends a message byte by storing it in SPDOR. The slave notices that SPDOR is
full and reads the byte. When the master notices that SPDOR is empty because the slave
read it, the master stores the next byte in SPDOR. Either side can tell if any register is
empty or full by reading the status register. When the slave acknowledges the message
with areply message, the process is reversed. To perform the protocol with interrupts, a
dlave interrupt can be generated each time the slave receives a character. The slave can
acknowledge the master by reading SPDOR if the master is polling for the slave response
to each character. If the master isto be interrupted to acknowledge each character, the
dlave can create an interrupt in the master by storing a dummy character in SPDOR to cre-
ate a master interrupt, assuming that the /SLAVEATTN lineiswired to interrupt the mas-
ter. The acknowledgement message works in a similar manner, except that the master
writes adummy character to interrupt the slave to say that it has the character.

Several problems can ariseif there are dual interrupts for each character transmitted. One
problem is that the message transmission rate will free run at a speed limited by the inter-
rupt latency and compute speed of each processor. This could consume a high percentage
of the compute resources of one or both processors, starving other processes and espe-
cialy interrupt routines, for compute time. If thisis a problem, then atimed interrupt can
be used to drive the process on one side, thus limiting the data transmission rate.

Another solution, which may be better than limiting the transmission rate, isto use inter-
rupts only for the first byte of the message on the save side, and then lower the interrupt
priority and conduct the rest of the transaction as a polled transaction. On the master side
the entire transaction can be a polled transaction. In this case, the entire transaction takes
place in the interrupt routine on the slave, but other interrupts are not inhibited since the
priority has been lowered.

A typical slave system consists of a Rabbit microprocessor and aRAM memory con-
nected to it. The clock can be provided either by connecting a crystal, or crystals to the
slave or by providing an external clock, which could be the master’s clock. The reset line
of the slave would normally be driven by the master. At system startup time the master
resets the slave and cold bootsit viathe slave port. (The SMODE pins must be configured

User’s Manual 203

for this.) Once the software is loaded into the slave, the slave can begin to perform its
function.

As asimple example, suppose that the slave isto be used as afour-port UART. It has the
capability to send or receive characters on any of its four serial ports. Leaving aside the
question of setup for parameters, such as the baud rate, we could define a protocol asfol-
lows.

SPDOR readable by master is a status register with bits indicating which of the four
receivers and four transmittersis ready, that is, has a character received or is ready to
send a character.

SPDOR writable by the master is a control register used to send commands to the dave.
SPD1R is used to send or receive data characters or control bytes.

Theline/SLAVEATTN iswired to the external interrupt request of the master so that
the master isinterrupted when the slave writesto SPDOR. Typically the slave will write
to SPDOR when there is a change of status on one of the serial ports.

The slave can interrupt the master at any time by storing to SPDOR. It will do this every
time an enabled transmitter isready to accept acharacter or every time an enabled receiver
receives acharacter. When it storesto SPDOR, it will store a code indicating the reason for
the interrupt, that is, receive or transmit and channel number. If the cause isreceive, the
received character will also be placed in SPD1R writable by the slave. When the master is
interrupted for any reason, the master will sneak apeek at SPDOR by reading SPSR. If the
interrupt is caused by areceive character, it will remove the character from SPD1R and
read SPDOR to handshake with the slave.

If the master isinterrupted for transmitter ready, as determined by the sneak peek, it will
place the outgoing character in SPD1R and write a code to SPDOR indicating transmit and
channel number. Thiswill cause the slave to be interrupted, and the slave will take the
character and handshake by reading SPDOR. This handshake does not interrupt the master.

204 Rabbit 3000 Microprocessor

14. RABBIT 3000 CLOCKS

The Rabbit 3000 normally uses two clocks, the main clock and the 32.768 kHz clock. The
32.768 kHz clock is needed for the battery-backable clock, the watchdog timer, and the
cold-boot function. The main oscillator provides the run-time clock for the microproces-

sor. Figure 14-1 shows the oscillator circuits.

VBAT R1 and R2 control the

power consumed by the
unbuffered inverter.

R1

XTALB2 2kQ

SN74AHC1GU04
O —" W\

33 pF

U2A
NC7SP14

To Rabbit 3000
L CLK32K O—

1MQ

—

— 11.0592 MHz

||
B

XTALB1

32.768 kHz
C1— T 33 pF

e

C1 values may vary or
C1 may be eliminated

(a) 32.768 kHz Oscillator

33pF =

v (b) Main Oscillator

Figure 14-1. Rabbit 3000 Oscillator Circuits

NOTE: You may have to adjust resistors and capacitors for various frequencies and crys-
tal load capacitances. The main oscillator capacitor varies from 15 to 33 pF.

User’s Manual

205

The 32.768 kHz oscillator is slow to start oscillating after power-on. For thisreason, a
wait loop in the BIOS waits until this oscillator is oscillating regularly before continuing
the startup procedure. If the clock is battery-backed, there will be no startup delay since
the oscillator is aready oscillating. The startup delay may be as much as 5 seconds. Crys-
talswith low seriesresistance (R < 35 kQ) will start faster. The required oscillator circuit
isshownin Figure 14-1(a).

The output of the oscillator is fed to the Rabbit through a Schmitt trigger buffer. The
Schmitt trigger serves two primary functions. Firgt, it prevents power supply or high-fre-
quency switching noise (primarily from address lines) from getting coupled into the slow
rising clock signal generated by the oscillator; and second, it buffers the output of the
oscillator to generate fast rising/falling square waves with 4 nsrise/fall times.

TN235, External 32.768 kHz Oscillator Circuits, provides further information on oscilla-
tor circuits and selecting the values of componentsto use in the oscillator circuit.

14.1 Low-Power Design

The power consumption is proportional to the clock frequency and to the square of the
operating voltage. Thus, operating at 3.3 V instead of 5V will reduce the power consump-
tion by afactor of 10.9/25, or 43% of the power required at 5 V. The clock speed is
reduced proportionally to the voltage at the lower operating voltage. Thusthe clock speed
at 3.3V will be about 2/3 of the clock speed at 5 V. The operating current is reduced in
proportion to the operating voltage.

The Rabbit 3000 does not have a"standby" mode that some microprocessors have. Instead,
the Rabbit has the ability to switch its clock to the 32.768 kHz oscillator. Thisis called the
seepy mode. When thisis done, the power consumption is decreased dramatically. The
current consumption is often reduced to the region of 100 pA at this clock speed. The
Rabbit executes about 6 instructions per millisecond at this low clock speed. Generally,
when the speed is reduced to this extent, the Rabbit will be in atight polling loop looking
for an event that will wake it up. The clock speed isincreased to wake up the Rabbit.

206 Rabbit 3000 Microprocessor

15. EMI CONTROL

EMI or electromagnetic interference from unintentional radiation is of concern to the
microprocessor system designer.

One concern is passing the tests sometimes required by the U.S. Federal Communications
Commission (FCC) or by the European EMC Directive. For example, in the U.S. the FCC
requires that computing devices intended for use in the home or in office environments
(but not industrial or medical environments) not have unintentional electromagnetic radia-
tion above certain limits of field strength that depend on frequency and whether the device
isintended for home or office use. Thisis verified by measuring radiation from the device
at atest site. The device under test (DUT) is operated in atypical fashion with atypical
mechanical and electrical configuration while the electromagnetic radiation is measured
by acalibrated antennalocated either 3 or 10 m from the device. The output of the antenna
Is connected to a spectrum analyzer. For the purposes of the test, the spectral power is
measured by using a filter with a bandwidth of 120 kHz. The peak power is measured by
using a“quasi peak” detector in the spectrum analyzer. The quasi peak detector has a
charge time constant of 1 ms and a discharge time constant of 550 ms. In this manner the
peak radiated signal strength is measured. The tests required by the FCC and the EC are
practically identical.

The Rabbit 3000 has important features that aid in the control if EMI.

» The power supply for the processor core is on separate pins from the power supply for
the I/O buffers associated with the processor and various peripheral devices.

» A spectrum spreader in the clock circuit can be enabled to spread the spectrum of the
clock by varying the clock frequency in aregular pattern.

» Thebuilt in clock doubler alows the external oscillator circuitry to operate at 1/2 the
ultimate clock frequency.

* Inmost casesit isnot necessary to route the system clock outside the package, although
apinisprovided for this purpose in the unusual circumstances where it might be neces-
sary. The high speed clock on PC board traces is a magjor cause of EMI.

If all the EMI suppression features of the Rabbit 3000 are properly utilized and low EMI
design techniques are used on the printed circuit board, system EMI will likely be reduced
to avery low level, probably much lower than is necessary to pass government tests.

User’s Manual 207

15.1 Power Supply Connections and Board Layout

Refer to Technical Note TN221, PC Board Layout Suggestions for the Rabbit 3000
Microprocessor, for recommendations on laying out a PC board to minmize EMI emsis-
sions.

15.2 Using the Clock Spectrum Spreader

The spectrum spreader is very powerful for reducing EMI because it will reduce all sources
of EMI above 100 MHz that are related to the clock by about 15 dB. Thisisavery large
reduction since it is common to struggle to reduce EMI by 5 dB in order to pass government
tests.

15dB_| >
Strong Spreading
10 _|
\Normal Spreading
5 _]

| | | | | |
50 100 150 200 250 300 3%0
MHz

Figure 15-1. Peak Spectral Amplitude Reduction from Spectrum Spreader

The spectrum spreader modul ates the clock so as to spread out the spectrum of the clock
and its harmonics. Since the government tests use a 120 kHz bandwidth to measure EMI,
spreading the energy of a given harmonic over awider bandwidth will decrease the
amount of EMI measured for a given harmonic. The spectrum spreader not only reduces
the EMI measured in government tests, but it will also often reduce the interference cre-
ated for radio and television reception.

The spectrum spreader has three settings under software control (see Table 15-1 and
Table 15-2): off, standard spreading and strong spreading.

Two registers control the clock spectrum spreader. These registers must be loaded in a spe-
cific manner with proper time delays. GCMOR isonly read by the spectrum spreader at the
moment when the spectrum spreader is enabled by storing 080h in GCM1R. If GCM1R is
cleared (when disabling the spectrum spreader), there is up to a500-clock delay before the
spectrum spreader is actually disabled. The proper procedureisto clear GCM 1R, wait for
500 clocks, set GCMOR, and then enable the spreader by storing 080h in GCM1R.

208 Rabbit 3000 Microprocessor

Table 15-1. Spread Spectrum Enable/Disable Register

Global Clock Modulator 0 Register (GCMOR) (Address = 0x0A)
Bit(s) Value Description
0 Enable normal spectrum spreading.
! 1 Enable strong spectrum spreading.
6:0 These bits are reserved.
Table 15-2. Spread Spectrum Mode Select
Global Clock Modulator 1 Register (GCM1R) (Address = 0x0B)
Bit(s) Value Description
0 Disable the spectrum spreader.
! 1 Enable the spectrum spreader.
6:0 These bits are reserved.

When the spectrum spreader is engaged, the frequency is modulated, and individual clock
cycles may be shortened or lengthened by an amount that depends on whether the clock
doubler is engaged and whether the spectrum spreader is set to the normal or strong set-
ting. The frequency modulation amplitude and the change in clock cycle length is greater
at lower voltages or higher temperatures since it is sensitive to process parameters. The
spectrum spreader also introduces a time offset in the system clock edge and an equal off-
set in edges generated relative to the system clock. A feedback system limits the worst
casetime error of any signal edge derived from the system clock to plus or minus 20 nsfor
the normal setting and plus or minus 40 ns for the strong setting at 3.3 V. The maximum
time offset isinversely proportional to operating voltage. The time error will not usually
interfere with communications channels, except perhaps at the extreme upper data rates.
More details on dealing with the clock variation introduced are available el sewhere (see
Chapter 16, “AC Timing Specifications’).

If the input oscillator frequency is4 MHz or less the spectrum spreader modulation of fre-
quency will enter the audio range of 20 kHz or less and may generate an audible whistlein
FM stations. For thisreason it may be desirable to disable the spreader for low speed oscil-
lators (where it is probably unnecessary anyway). However, in practical casesthe whistle
may not be audible due to the very low level of the interference from a system with low
oscillator frequency and the spectrum spreader engaged. Each halving of clock frequency
reduces the amplitude of the harmonics at a given frequency by 6 dB or more.

The effect of pure harmonic noise on an FM station is to either completely block out a sta-
tion near the harmonic frequency or to disturb reception of that station. If the spectrum
spreader is engaged then interference will be spread across the band but will generally be

User’s Manual 209

so low as to be undetectable, except perhaps for extremely weak stations. The effect of a
pure harmonic on TV reception isto create a herringbone pattern created by a harmonic
falling within the station’s band. If the spreader is engaged the pattern will disappear

unlessthe station is very weak, in which case the interference will be seen as noise distrib-
uted over the screen.

210 Rabbit 3000 Microprocessor

16. AC TIMING SPECIFICATIONS

The Rabbit 3000 processor may be operated at voltages between 1.8 V and 3.6 V, and at
temperatures from —40°C to +85°C with use possible use over the extended range -55°C to
+105°C. For long lifeit is desirable not to exceed a die temperature of 125°C. Most users
will operate the Rabbit at 3.3 V.

16.1 Memory Access Time

Required memory address and output enable access time for some important typical cases
are given in the table below. It is assumed that the clock doubler is used, that the clock
spreader is enabled in the normal mode, that the memory early output enableis on, and
that the address bus has 60 pF load.

Table 16-1. Memory Requirements at 3.3V, -40°C to +85°C, Adr Bus 60 pF

Clock B Clock Doubler |Memory Address | Memory Output
Frequency Nominal Delay Access Enable Access

(MHz) (ns) (ns) (ns) (ns)

18.43 54 20 97 60

22.11 45 20 78 51

24.00 42 19 72 45

25.80 39 17 66 43

29.49 34 16 56 37

44.24 225 10 335 22

All important signals on the Rabbit 3000 are output synchronized with the internal clock.
Theinternal clock is closely synchronized with the external clock (CLK) that may be
optionally output from pin 2 of the TQFP package. The delay in signal output depends on
the capacitive load on the output lines. In the case of the address lines, which are critically
important for establishing memory access time requirements, the capacitive loading is
usually in the range of 25-100 pF, and the load is due to the input capacitance of the mem-
ory devices and PC trace capacitance. Delays are expressed from the waveform midpoint
in keeping with the convention used by memory manufacturers.

User’s Manual 211

Figure 16-1 illustrates the parameters used to describe memory access time.

S

> ! < setup time data to clock

X

T

__ capacitive
loading

Figure 16-1. Parameters Used to Describe Memory Access Time

Table 16-2 lists the delays in gross memory access time for several values of Vpp.

Table 16-2. Data and Clock Delays Vpp £#10%, Temp, -40°C—+85°C (maximum)

Clock to Address Output Delay Spectrum Spreader Delay
(ns) Data Setup (ns)
VDD Time Delay
(ns) Normal Strong
30 pF 60 pF 90 pF
dbl/no dbl | dbl/no dbl

33 6 8 1 1 3/4.5 4.5/9
2.7 7 10 13 15 3.5/5.5 5.5/11
25 8 1 15 15 4/6 6/12
18 18 24 33 3 8/12 11/22

When the spectrum spreader is enabled with the clock doubler, every other clock cycleis
shortened (sometimes lengthened) by a maximum amount given in the table above. The
shortening takes place by shortening the high part of the clock. If the doubler is not
enabled, then every clock is shortened during the low part of the clock period. The maxi-
mum shortening for a pair of clocks combined is shown in the table.

212

Rabbit 3000 Microprocessor

Figure 16-2 and Figure 16-3 illustrate the memory read and write cycles. The Rabbit 3000
operates at 2 clocks per bus cycle plus any wait states that might be specified.

Memory Read (no wait states)

| T1 | T2 |
CLK —|| | | |~
A[19:0] X valid X
> (_Tadr
/CSx | \ yan
>l < Tesx 21 [Tesx

/OEXx)‘ _,
Toex?| = > < Toex
Tsetup~>| |«
D[7:0] valid
Thold I

Memory Write (no extra wait states)

| T1 | Tw——r T2 ——
CLK —
A[1 90] valid >C
g <_Tadr
/CSx | *
> Tesx Tesx™| I©
/WEX + ,~/ _
> Twex Twex ™| <

D[?O] I/ valid >“
> ’:‘ ToHzv | Tovuzl I~

Figure 16-2. Memory Read and Write Cycles

User’s Manual 213

The following memory read time delays were measured.

Table 16-3. Memory Read Time Delays

Output Capacitance

Time Delay
30pF | 60pF | 90 pF

Max. clock to address delay (T.q) 6ns 8ns 11ns

Max. clock to memory chip select delay (Tcgy) 6ns 8ns 11ns

Max. clock to memory read strobe delay (Togy) 6ns 8ns 11ns

Min. data setup time (Tggtyp) 1ns

Min. data hold time (Thg1q) Ons

The measurements were taken at the 50% points under the following conditions.
e T=-40°Ct085°C,V =33V
 Interna clock to nonloaded CLK pindelay < 1 ns @ 85°C/3.0V

The following memory write time delays were measured.

Table 16-4. Memory Write Time Delays

Output Capacitance

Time Delay
30pF | 60pF | 90 pF

Max. clock to address delay (Tog,) 6 ns 8ns 11 ns

Max. clock to memory chip select delay (Tcsy) 6 ns 8ns 11ns

Max. clock to memory write strobe delay (Tyyex) 6 ns 8ns 11ns

Max. high Z to datavalid rel. to clock (Tpyzy) 10ns 12ns 15ns

Max. datavalid to high Z rel. to clock (Tpynz) 10ns 12ns 15ns

The measurements were taken at the 50% points under the same conditions that the mem-
ory read delays were measured.

See Table 16-2 for delays at other voltages.

214 Rabbit 3000 Microprocessor

Memory Read (no wait states)
| T1 | T2 |
CLK 7 | | L
A[19:0] X valid X
—> <—Ta:dr
/CSx T\ __ Y
> [Tesx > [Tesx
/OEX])L Yy
T X—» < —> <« T X
OF Tsetup-’ OF
D[7:0]
Thold
Memory Write (no extra wait states)
| T1 | Tw—— T2 ——
CLK — |
A[1 90] I valid >C
> < Taldr
/CSx | | *
- Tesx Tesx™| <
/WEX ™ i ,~/ —
Twex™ Twex™| <
D[?O] I/ valid >“
g ’:‘ ToHzv | TovHz™l 1<

Figure 16-3. Memory Read and Write Cycles—Early
Output Enable and Write Enable Timing

User’s Manual

215

Figure 16-4 illustrates the sources that create memory access time delays.

clock period shortening
due to spectrum spreader

<
]) clock

| |
| |
| >|< address | ><
| | |
| .
| — | data out a
clockto = | | | X | . .
address | | — - datain setup time
output | |- Awemory acce&—»l |
[time
| |
W' | : output enable (early)
! |
|
4>: | — [_nemory output enable
| ime

Figure 16-4. Sources of Memory Access Time Delays

The gross memory accesstimeis 2T, where T isthe clock period. To calculate the actual
memory access time, subtract the clock to address output time, the datain setup time, and
the clock period shortening due to the clock spectrum spreader from 2T.

Example

clock = 29.49 MHz,

T=34ns,

operating voltageis 3.3V,

bus loading is 60 pF,

address to output time = 8 ns (see Table 16-2),
datasetup time=1ns,

the spectrum spreader is on in normal mode, resulting in aloss of 3 ns,

The accesstimeis given by

accesstime = 2T - (clock to address) - (data setup) - (spreader delay)
=68ns-8ns-1ns-3ns
= 56 ns

216 Rabbit 3000 Microprocessor

The required memory output enable accesstime is more complicated sinceit is affected by
the clock doubler delays. The clock doubler setup register creates anominal delay time
ranging from 6 to 20 ns, resulting in anominal clock low time ranging from 6 to 20 ns.
The clock low time depends on internal delays, and is subject to variation arising from
process variation, operating voltage and temperature. Minimum and maximum clock low
times for various doubler settings are given in the formulas and in the graph below.

Max. delay @ 3.3V =6.1+1.21(n- 6)
Min. delay @ 3.3V =3.7 + 0.75(n - 6)
Max. delay @25V = 7.6+ 1.67(n-6)
Min. delay @ 2.5V =4.7 + 1.03(n - 6)
Max. delay @ 1.8V =12.2+ 2.7(n - 6)
Min. delay @ 1.8V = 6.6 + 1.44(n - 6)

[nisthe nominal delay, 6-20 ns)

60.0
50.0 - A
A
A
A
400 - R
A
’é‘ A ¢33V
= N -
E 30.0 - N . - m25V
2 A LT A A A18V
A = A o
200 1 4 st A e .
A - A . [
m, As* "™
A m A o [| *
Ao u *
A - u ‘ * a " u . ¢ ¢
10.0 =‘$...’.
 BME B R
] *
g
0.0 ‘ T T T
0 5 10 15 20 25
Nominal Delay (ns)
Figure 16-5. Clock Doubler Max-Min Clock Low Times
User’s Manual 217

The following factors have to be taken into account when calculating the output enable
access time required.

The gross output enable accesstimeis T + minimum clock low time (it is assumed that
the early output enable option is enabled) Thisis reduced by the spectrum spreader
loss, the time from clock to output for the output enable signal, the data setup time, and
acorrection for the asymmetry of the original oscillator clock.

Example

Clock = 29.49 MHz,
T=34ns,
operating voltage is 3.3V,

the clock doubler hasanominal delay of 16 ns, resulting in aminimum clock low time
of 12.8 ns,

the spectrum spreader is on in normal mode, resulting in aloss of 3 ns,
clock to output enable is 5 ns (assuming 20 pF load),

the clock asymmetry is 52-48, resulting in aloss of 4% of the clock period, or 1.4 ns.

The output enable accesstimeis given by

accesstime
=T + (min. clock low) - (clock to output enable) - (spreader delay) - (asymmetry delay)
- (data setup time)
34ns+128ns-5ns-3ns-1.36ns-1ns
36.5ns

218 Rabbit 3000 Microprocessor

16.2 1/O Access Time
Figure 16-6 illustrates the I/O read and write cycles.

External I/O Read (no extra wait states)

71— tw——f—— 12—

CLK —
A[15:0] X valid X
7 Tadr
/CSx | |, .
1 Tcsx Tesx| <7
/I0CSx K -
1 Tiocsx Tiocsx|<]
/IORD -
TiorD TiorRD[<]
/BUFEN -
TBUFEN TBUFEN[<
Tsetup:+>
D[?O] < ><I valid >‘
| Thold<—"!
External I/0O Write (no extra wait states)
——T1 L r
CLK —‘ ‘ ‘
A[15:0] K valid : X
7 Tadr |
|
/CSx | | | NS
| Tcsx : Tesx|[
/I0CSx K ! xX_
1 Tiocsx ; Tiocsx
/IOWR ‘
Tiowr Tiowr
/BUFEN 6
TBUFEN TBUFEN
D[7:0] valid —
ToHzy | TovHZI<—

Figure 16-6. /O Read and Write Cycles—No Extra Wait States

NOTE: /IOCSx can be programmed to be active low (default) or active high.

User’s Manual 219

The following 1/0 read time delays were measured.

Table 16-5. I/O Read Time Delays

Output Capacitance
Time Delay

30pF | 60 pF | 90 pF

Max. clock to address delay (T.q,) 6ns 8ns 11ns

Max. clock to memory chip select delay (Tcgy) 6ns 8ns 11ns

Max. clock to I/O chip select delay (T)ocse) 6ns 8ns 11 ns

Max. clock to 1/0 read strobe delay (T,orp) 6 ns 8ns 11ns

Max. clock to I/O buffer enable delay (Tgyren) 6ns 8ns 11 ns

Min. data setup time (Tggyp) 1ns

Min. data hold time (Thg1q) Ons

The measurements were taken at the 50% points under the following conditions.
e T=-40°Ct085°C,V =33V
* Interna clock to nonloaded CLK pindelay < 1 ns @ 85°C/3.0 V

The following 1/0 write time delays were measured.

Table 16-6. I/O Write Time Delays

Output Capacitance

Time Delay
30 pF | 60pF | 90 pF

Max. clock to address delay (Tog,) 6ns 8ns 11ns

Max. clock to memory chip select delay (Tcsy) 6 ns 8ns 11ns

Max. clock to 1/0 chip select delay (T;ocsy) 6ns 8ns 11ns

Max. clock to I/O write strobe delay (T,owr) 6 ns 8ns 11ns

Max. clock to I/O buffer enable delay (Tgyren) 6ns 8ns 1lns

Max. high Z to datavalid rel. to clock (Tpyzy) 10ns 12ns 15ns

Max. datavalid to high Z rel. to clock (Tpynz) 10ns 12ns 15ns

The measurements were taken at the 50% points under the same conditions that the 1/0
read delays were measured.

I/O bus cycles have an automatic wait state and thus require 3 clocks plus any extrawait
states specified.

See Table 16-2 for delays at other voltages.

220 Rabbit 3000 Microprocessor

16.3 Further Discussion of Bus and Clock Timing

The clock doubler is normally used, except in situations where low-frequency systems are
specifically being used. The clock doubler works by oring the clock with a delayed ver-
sion of itself. The nominal delay varies from 6 to 20 ns, and is settable under program con-
trol. Any asymmetry in the oscillator waveform before it is doubled will result in alternate
clocks having dlightly different periods. Using the suggested oscillator circuit, the asym-
metry is no worse than 52%—-48%. Thisresultsin a given clock being shortened by the
ratio 50/52, or 4%. Memory access time is not affected because memory bus cycleis 2
clocks long and includes both along and a short clock, resulting in no net change due to
asymmetry. However, if an odd number of wait states is used, then the memory access
time will be affected dlightly.

When the clock spectrum spreader is enabled, clock periods are shortened by a small
amount depending on whether the “normal” or the “strong” spreader setting is used, and
depending on the operating voltage. If the clock doubler is used, the spectrum spreader
affects every other cycle and reduces the clock high time. If the doubler is not used, then
the spreader affects every clock cycle, and the clock low time isreduced. Of course, the
spectrum spreader also lengthens clock cycles, but only the worst case shortening is rele-
vant for calculating worst case access times. The numbers given for clock shortening with
the doubler disabled are the combined shortening for 2 consecutive clock cycles, worst
case.

In computing memory requirements, the important considerations are address access time,
output enable access time, and minimum write pulse required. Increasing the clock dou-
bler delay increases the output enable time, but decreases memory write pulse width. The
early write pulse option can be used to ensure a long-enough write pulse, but then it must
be ensured that the write pulse does not begin before the address lines have stabilized.

User’s Manual 221

Oscillator 48% 52%

Oscillator delayed
and inverted

Doubled clock L L L L L L

Delay -
time
0.48P

' [o
| | N
: 052p | 043P : 0.52p | :
| | |
| || || |l
I || || ||
I || | | B
address, /CS | H M |
Example :><| - i | '?C
write Dataout | | I | }7
Cycle I | | |
| N N N
write pulse : i : :\ : : VIH
|
B N | :
early writepulse | —— | Yo
option | ; 1™ m
| [[
| l
address, /CS i a—— Hy
Example ! [T "
Read | | Valid data out from mem
Cycle output enb! | || |1
I S

early output enb | I |
option b !

Figure 16-7. Clock Doubler and Memory Timing

222 Rabbit 3000 Microprocessor

16.4 Maximum Clock Speeds

The Rabbit 3000 is rated for aminimum clock period of 17 ns(commercial specifications)
and 18 ns (industrial specifications). The commercial rating calls for a +5% voltage varia-
tion from 3.3 V and atemperature range from -40 to + 70°C. The industrial ratings stretch

the voltage variation to £10% and a temperature range from -40 to + 85°C. This corre-

sponds to maximum clock frequencies of 58.8 MHz (commercial) and 55.5 MHz (indus-
trial). If the clock doubler or spectrum spreader is used, these maximum ratings must be
reduced as shown in the following table. When the doubler is used, the duty cycle of the
clock becomes acritical parameter. The duty cycle should be measured at the separate
clock output pin (pin 2). The minimum period must be increased by any amount that the
clock high timeis greater or less than specified in the duty-cycle requirement.

Table 16-7. Maximum Clock Speeds at 3.3 V [Preliminary]

Commercial Ratings

Industrial Ratings

Duty Cycle
Conditions Minimum Maximum Minimum Maximum Requirements
Period Frequency Period Frequency (ns)
(ns) (MHz) (ns) (MHz)

No doubler or 17 58.8 18 55.5
spreader
Spreader only 20 50.0 21 476
normal
Spreader only 21 476 22 45.4
strong
Doubler only 1> (clock low -
(8 nsdelay) 19 526 20 S0.0 clock high) >0
Doubler only
(internal 50% 20 50 21 47.6 1> (clock low -
clock) clock high) > -1
Spreader
normal with 4> (clock low -
doubler 21 476 22 454 ek high) > 2
(8 ns delay)
Spreader
normal with
doubler (8 ns 24 416 25 w0 (k‘"r‘l’.c':]'ow)
delay), interna clock high) > -1
50% clock
Spreader only 215 46.5 225 45.0
strong
Spreader strong i
with doubler 23 435 2% ame 8> (clocklow
(8 s delay) clock high) > 6

User’s Manual

223

Example

The spreader and doubler are enabled, with 8 ns nominal delay in the doubler. The high
and low clock are equal to within 1 ns. This violates the duty cycle requirement by 3 ns
since (clock low - clock high) can be as small as-1 ns, but the requirement isthat it not be
less than 2 ns. Thus, 3 ns must be added to the minimum period of 21 ns, giving amini-
mum period of 24 ns, and a maximum frequency of 41.6 MHz (commercial).

Since the built-in high-speed oscillator buffer generates a clock that is very closeto having
a50% duty cycle, to obtain the highest clock speeds using the clock doubler you must use
an external oscillator buffer that will allow for duty-cycle adjustment by changing the
resistance of the power and ground connections as shown bel ow.

+3.3V

Adjust the values of
these resistors to — XTALA1
vary the duty cycle

Figure 16-8. External Oscillator Buffer

224 Rabbit 3000 Microprocessor

16.5 Power and Current Consumption

With the Rabbit 3000 it is possible to design systems that perform their task with very low
power consumption. Unlike competitive processors, the Rabbit 3000 has short chip select
features designed to minimize power consumption by external memories, which can easily
become the dominant power consumers at low clock frequenciesif not well handled.

The preferred configuration for a Rabbit-based system isto use an external crystal or reso-
nator that has a frequency ¥z of the maximum internal clock frequency. The oscillator fre-
guency can be doubled or divided by 2, 4, 6, or 8, giving a variety of operating speeds
from the same crystal frequency. In addition, the 32.768 kHz oscillator the drives the bat-
tery-backable clock can be used as the main processor clock and, to save the substantial
power consumed by the fast oscillator, the fast oscillator can be turned off. This scenario
Is called the sleepy mode with a clock speed in the range of 2 kHz to 32 kHz, and with an
operating system current consumption in the range of 10 to 120 pA depending on fre-
quency and voltage.

Up to an operating speed of 29.5 MHz, a SST39L F512020 256K x 8, 45 ns access time
flash memory combined with any of several 55 nslow-power SRAMs is assumed for cal-
culating the current consumption estimates bel ow.

A crystal frequency of 3.6864 MHz is a good choice for alow-power system consuming
between 2 and 18 mA at 3.3 V asthe clock frequency is throttled between 0.46 MHz and
7.37 MHz. The required memory access time is about 250 ns, however, afaster memory
may result in less power since a short chip select cycle can then be used.

A crystal frequency of 11.0592 MHz is a good choice for a medium-power system con-
suming between 5 and 50 mA at 3.3V asthe clock frequency isthrottled between 1.4 MHz
and 22 MHz. The required memory accesstimeis 70 ns.

A crystal frequency of 14.7456 MHz is agood choice for afaster medium-power system
consuming between 6 and 65 mA at 3.3 V asthe clock frequency is throttled between 1.8
and 29.5 MHz. The required memory accesstimeis 55 ns.

A maximum-speed system that will require fast RAM for program and data can be con-
structed using a 25.8048 MHz crystal. This system will consume between 12 and 112 mA
at 3.3V asthe clock speed isthrottled between 3 and 51.6 MHz. The required memory
accesstime is about 20 ns.

Typical system current consumptions are shown in the graphs below. These are for the
processor and oscillator only, and do not include current consumed by memory and other
devices. It is assumed that approximately 30 pF is connected to each address line, particu-
larly AO and A1, which account for three quarters of the charging current due to the
address lines.

User’s Manual 225

120

X
100 -
80
X xtal=25.80
< A A xtal=14.74
£ 60
~ M xtal=11.05
-]
xtal=3.68
40
A
[
20 7 R(‘
0 JJ
0 10 20 30 40 50 60
Clock Frequency (MHz)
Figure 16-9. Rabbit 3000 System Current vs. Frequency at 3.3V
40
35 =
X
30 -
]

25 X xtal=25.80
< A xtal=14.74
£ 20 1
= x & W xtal=11.05

15 - * xtal=3.68

10 - X2

]
5 L
.
.
0 2 4 6 8 10 12 14 16

Clock Frequency (MHz)

Figure 16-10. Rabbit 3000 System Current vs. Frequency at 3.3 V

(enlarged view over 0—-16 MHz range)

226

Rabbit 3000 Microprocessor

L owering the operating voltage will greatly reduce current consumption and power. Drop-
pingto 2.7V from 3.3 V will result in 70% current consumption and 60% of the power.
Further dropping to 1.8 V will reduce current to 40% and power to 20% compared to 3.3 V.
Naturally this complicates the selection of memories, especially at 1.8 V.

It isimportant to know that the lowest speed crystal will not always give the lowest power
consumption because when the crystal is divided internally the short chip select option can
be used to reduce the chip select duty cycle of the flash memory or fast RAM, greatly
reducing the static current consumption associated with some memories.

In sleepy mode, power consumption consists of the processor core, the external recom-
mended external tiny logic 32 kHz oscillator, and the memory. The oscillator consumes
17 pA at 3.3V, and thisdrops rapidly to about 2 pA at 1.8 V. The processor core con-
sumes between 3 and 50 PA at 3.3V asthe frequency isthrottled from 2 kHz to 32 kHz,
and about 40% as much at 1.8 V. If the flash memory specified above is used for memory
and a self-timed 106 ns chip select is used, then the memory will consume 22 pA at

32 MHz and 1.4 pA at 2 kHz.

In addition to these items, a low-power reset controller may consume about 8 pA and
CMOS leakage may consume several YA, increasing with higher temperatures. The graph
below shows current consumption including thetiny logic core, but not including memory
or the reset controller.

80

70 -

60 /;
—e— 1.8V
50 4
/ —m— 2.2V
40 —A— 2.7V

- e
=y
—— e o

2.048 4.096 8.192 16.384 32.768

I (HA)

Clock Frequency (kHz)

Figure 16-11. Sleepy Mode Current Consumption

User’s Manual 227

16.6 Current Consumption Mechanisms

The following mechanisms contribute to the current consumption of the Rabbit 3000
while it is operating.

1. A current proportional to voltage and clock frequency that results from the charging of
internal and external capacitances. At 3.3V (see 2 below) approximately 57% of the
current is due to charging and 43% is due to crossover current.

2. A crossover current that is proportional to clock frequency and to the overdrive voltage,
Vc. The crossover current results from a brief short circuit when both the P and N tran-
sistors of aCMOS buffer are turned on at the same time, and is proportional to V scaled
by afactor of ((V/2) —0.7), where V isthe voltage the Rabbit 3000 is operating at. This
component drops as the voltage drops, and becomes negligible at 1.4 V.

3. The current consumed by the built-in main oscillator when turned on. This current is
also proportional to V x ((V/2) —0.7), and isequal to 1 mA at 3.3 V.

4. The current drawn by thelogic that isdriven at the oscillator (crystal frequency). Thisis
considered distinctly because it varies with the crystal frequency, but is not reduced
when the clock frequency is divided. This current becomes zero when the main oscilla
tor isturned off, and is2.5 mA at 3.3V when the crystal frequency is 14.7 MHz. This
current is divided between capacitive and crossover components in the same manner as
the currentsin (1) and (2) above.

All of the above currents can be combined according to the following formula:
Itotal =0.32xV xf +0.23x Ve xf +0.30 x Vc+0.029 x V x fc + 0.025 x V¢ x fc

whereVc =V x ((V/2) —0.7), fc = frequency of crystal oscillator in MHz, and f = clock
frequency in MHz

228 Rabbit 3000 Microprocessor

16.7 Sleepy Mode Current Consumption

In sleepy mode the unit operates from the 32.768 kHz clock, which may be divided down
to asslow as 2.048 kHz. The current consumption is given by:

Itotal =0.32xV xf+0.23xVcxf+5xVc
wheref isin kHz, V isthe operating voltage, and Vc =V x ((V/2) - 0.7).
L eakage, the standby current of the reset generator, the current consumption of the oscilla-
tor and the real-time clock, and the current consumption of memories must be added to the

sleepy mode current consumption. Generally the self-timed chip select mode is used to
reduce memory current consumption.

User’s Manual 229

16.8 Memory Current Consumption

Since there are many different memories available, let’s ook at an example using one of
the recommended flash and SRAM memories.

Flash memory—SST part SST39LF512020, 256K x 8, 45 ns access time. Standby cur-
rent: nil.

» Static Current (chip select low): 3.5 mA @ 3.3V
* Dynamic Current: 7 mA at 14.7 MHz bus speed and 3.3V
The total current is 10 mA at aclock speed of 29.49 MHz or abus speed of 5 MHz.

The static part of the current is computed using
3.5 x (chip select duty cycle).
The dynamic part is computed using
05xfinmA,
where f isthe bus speed in MHz.
At 0.46 MHz (3.68 MHz/8), and using a short chip select, the duty cycleis about 10%,
giving astatic current of about 0.35 mA. The dynamic current is 0.25 mA, for atotal cur-

rent of 0.6 mA. Added to the approximately 2.5 mA operating current gives atotal current
of 3.1 mA at 0.46 MHz.

In sleepy mode with a self-timed chip select of 106 ns and a clock speed of 32 kHz, the
duty cycle will be 0.106/66 = 1/600, and the static current will be 3.5/600= 6 pA. If the
clock isdivided down by afactor of 2, then the static current isreduced to 3 pA. The
dynamic current will be 16 pA at 32 kHz (1000x0.5xf) and 8 pA at 16 kHz.

230 Rabbit 3000 Microprocessor

16.9 Battery-Backed Clock Current Consumption

When using the suggested tiny logic oscillator, the oscillator and clock consume current as
shown in Figure 16-12 below. Normally aresistor is placed in the battery circuit to limit
the current to about 3 A, which results in a voltage setpoint of about 1.7 V. When operat-
ing at 3.3V in sleepy mode, the current of the oscillator and the real-time clock—about
12 pA—must be added.

Using the suggested tiny logic oscillator circuit, the external 32.768 kHz oscillator con-
sumes the following current in HA, where V is the operating voltage.

losc = 0.35xV2 + 0.31xV

Generally the oscillator will not start unless the voltage is about 1.4 V. However, the oscil-
lator will continue to run until the voltage drops to about 0.8 V. If the oscillator stops, the
current draw is very much lower than when it is running. Below about 1.4 V most of the
current draw is used to charge and discharge the capacitive load.

The current consumed by the battery-backed portion of the Rabbit 3000, which isdriven
by the 32.768 kHz oscillator, is given by

Irab=0.91xV2-1.04xV (V >1.14V)
where lrabisin pA. For V <1.14V, the current is negligible.

—a— Total Battery Backed
—m— R3000 Real Time Clock
—e—Tiny Logic 32 kHz Osc

12.00

10.00 -

8.00 -

6.00

Current (UA)

4.00

S N I I S S N ¥

Battery-Backup Voltage (V)

Figure 16-12. Current Consumption—Real-Time Clock and 32 kHz Oscillator Circuit

User’s Manual 231

16.10 Reduced-Power External Main Oscillator

The circuit in Figure 16-13 can be used to generate the main clock using less power than
with the built-in oscillator buffer. The power consumption is less because of the current-
limiting resistors that cannot be used with the built-in buffer. The 2.2 kQ series resistor
must be reduced as the clock frequency increases, as must be the current-limiting resistors.

+3.3V

__, To Rabbit 3000
XTALA1
2.2kQ 33 pF

VW l =
SN74HCT1G04DBVR =

/ 3.68 MHz

T—«Nv{;«/w—% MO B2 (6220)
T ||
\/ i
Optional current-reducing 33 pF =
resistors

Figure 16-13. Reduced-Power External Main Oscillator

Table 16-8 lists results for the reduced-power external oscillator with no current-limiting

resistors.

Table 16-8. Current Draw Using Reduced-Power External Oscillator
(0 Q current-limiting resistors)

Voltage Current (incl built-in buffer)
V) (mA)
33 0.635
25 0.380
18 0.252

Design Recommendations

e Add current-limiting resistors to reduce current without inhibiting oscillator start-up

* Increasethe 1 MQ resistor to improve gain

e Minimize loop areato reduce EMI

232

Rabbit 3000 Microprocessor

17. RABBIT BIOS AND VIRTUAL DRIVER

When a program is compiled by Dynamic C for a Rabbit target, the Virtual Driver is auto-
matically incorporated into the program. Virtual Driver isthe name given to someinitial-
ization routines and a group of services performed by the periodic interrupt. The Rabbit
BIOS, software that handles startup, shutdown and various basic features of the Rabbit, is
compiled to the target along with the application program.

Z-World provides the full source code for the BIOS and Virtual Driver so the user can
modify them and examine details of the operation that are not apparent from the documen-
tation.

More details on the BIOS and Virtual Driver software can be found in the Dynamic C
User’s Manual, the Rabbit 3000 Designer’s Handbook, and the source code in the
Dynamic C libraries.

17.1 The BIOS

The BIOS provided with Dynamic C will work with all Z-World and Rabbit Semiconduc-
tor Rabbit board products.

The BIOS is compiled separately from the user’s application. It occupies space at the bot-
tom of the root code segment. When execution of the user’s program starts at address zero
on power-up or reset, it starts in the BIOS. When Dynamic C cold-boots the target and
downloads the binary image of the BIOS, the BIOS symbol tableis retained to make its
entry points and global data available to the user application. Board specific drivers are
compiled with the user’s program after the BIOS is compiled.

17.1.1 BIOS Services
The BIOS includes support for the following services.
e System startup: including setup of memory, wait states and clock speed.

» Writing to flash. Writes to the primary code memory require turning off interrupts for
up to 20 ms or so. To protect the System Identification Block (see the Rabbit 3000
Designer’s Handbook for more information on the System ID Block), the flash driver
will not write to that block. A routine that can actually write this block is not included
in the BIOS to make it hard to accidently corrupt this block.

* Run-time exception handling and logging to handle fatal errors and watchdog time-outs
(error logging not implemented in older versions).

» Debugging and PC-target communication

User’s Manual 233

17.1.2 BIOS Assumptions

The BIOS makes certain assumptions concerning the physical configuration of the proces-
sor. Processors are expected to have RAM connected to /CS1, /WEL, and /OEL. Flashis
expected to be connected to /CSO, /WEO, and /OEQ. (See the Rabbit 3000 Designer’s
Handbook Memory Planning chapter if you want to design a board with RAM only.) The
crystal frequency is expected to be n*1.8432 MHz.

The Rabbit 3000 Designer’s Handbook has a chapter on the Rabbit BIOS with more
details.

17.2 Virtual Driver

The Virtual Driver is compiled with the user’s application. It includes support for the fol-
lowing services.

* Hitting the hardware watchdog timer.
» Decrementing software watchdog timers.

» Synchronizing the system timer variables with the real-time clock and keeping them
updated.

e Driving uC/OS-I1 multi-tasking.
 Driving dlice statement multi-tasking.
17.2.1 Periodic Interrupt

The periodic interrupt that drives the Virtual Driver occurs every 16 clocks or every 488
us. If the 32.768 kHz oscillator is absent, it is possible to substitute a different periodic
interrupt. This aternative is not supported by Z-World since the cost of connecting acrys-
tal isvery small. The periodic interrupt keeps the interrupts turned off (that is, the proces-
sor priority israised to 1 from zero) for about 75 clocks, so it contributes little to interrupt
latency.

The periodic interrupt isturned on by default before mai n() iscalled. It can be disabled if
needed. The Dynamic C Users's Manual chapter on the Virtual Driver provides more
details on the periodic interrupt.

The Rabbit 3000 microprocessor requires the 32 kHz oscillator in order to boot via
Dynamic C, unless a custom loader and BI1OS are used.

17.2.2 Watchdog Timer Support

A microprocessor system can crash for avariety of reasons. A software bug or an electri-
cal upset are common reasons. When the system crashes the program will typically settle
into an endless loop because parameters that govern looping behavior have been cor-

rupted. Typically, the stack becomes corrupted and returns are made to random addresses.

The usual corrective action taken in response to a crash is to reset the microprocessor and
reboot the system. The crash can be detected either because an anomaly is detected by pro-

234 Rabbit 3000 Microprocessor

gram consistency checking or because a part of the program that should be executing peri-
odically is not executing and the watchdog times out.

The Virtual Driver’s periodic interrupt hits the hardware watchdog timer with a 2 second
time-out. If the periodic interrupt stops working, then the watchdog will time out after 2
seconds. The Virtual Driver provides anumber of additional “virtual” watchdog timersfor
use in other parts of the code that must be entered periodically. The user program must hit
each virtual watchdog periodically.

The best practiceisto let the periodic interrupt hit the hardware watchdog exclusively, and
use virtual watchdogs for other code that must be run periodically. If hitsto the hardware
watchdog are scattered through a program, then it may be possible for the code to enter an
endless |oop where the watchdog is hit, and therefore rendered useless for detecting the
endless loop condition. If no virtual watchdogs are used, an undetected endless loop con-
dition could still occur since the periodic interrupt can still hit the hardware watchdog.

If any of the virtual watchdogs times out, then hits are withheld from the hardware watch-
dog and it times out, resulting in a hardware reset. Virtual watchdogs may be allocated,
deallocated, enabled and disabled. The advantage of the virtual watchdogsisthat if any of
them fail an error is detected.

The Dynamic C Users's Manual chapter on the Virtual Driver provides more details on
virtual watchdogs.

User’s Manual 235

236 Rabbit 3000 Microprocessor

18. OTHER RABBIT SOFTWARE

18.1 Power Management Support

The power consumption and speed of operation can be throttled up and down with rough
synchronism. Thisis done by changing the clock speed or the clock doubler. The range of
control is quite wide: the speed can vary by afactor of 16 when the main clock is driving
the processor. In addition, the main clock can be switched to the 32.768 kHz clock. In this
case, the lowdown isvery dramatic, afactor of perhaps 500. In this ultraslow mode, each
clock takes about 30 ps, and atypical instruction takes 150 us to execute. At this speed,
the periodic interrupt cannot operate because the interrupt routine would execute too
slowly to keep up with an interrupt every 16 clocks. Only about 3 instructions could be
executed between ticks.

A different set of rules appliesin the ultraslow or “sleepy” mode. The Rabbit 3000 auto-
matically disables periodic interrupts when the clock mode is switched to 32 kHz or one of
the multiples of 32 kHz. This means that the periodic-interrupt hardware does not function
when running at any of these 32 kHz clock speeds simply because there are not enough
clock cycles available to service the interrupt. Hence virtual watchdogs (which depend on
the periodic interrupt) cannot be used in the sleepy mode. The user must set up an endless
loop to determine when to exit sleepy mode. A routine, updat eTi mer s() , isprovided to
update the system timer variables by directly reading the real-time clock and to hit the
watchdog while in sleepy mode. If the user’s routine cannot get around the loop in the
maximum watchdog timer time-out time, the user should put several callsto

updat eTi mer s() intheloop. The user should avoid indiscriminate direct access to the
watchdog timer and real-time clock. The least significant bits of the real-time clock cannot
be read in ultra slow mode because they count fast compared to the instruction execution
time. To reduce bus activity and thus power consumption, it is useful to multiply zero by
zero. Thisrequires 12 clocks for one memory cycle and reduces power consumption. Typ-
ically anumber of mul instructions can be executed between each test of the condition
being waited for.

Dynamic C libraries also provide functions to change clock speedsto enter and exit dleepy

mode. See the Rabbit 3000 Designer’s Handbook chapter Low Power Design and Sup-
port for more details.

User’s Manual 237

18.2 Reading and Writing 1/0 Registers
The Rabbit has two 1/0 spaces: internal 1/O registers and external 1/0 registers.

18.2.1 Using Assembly Language

The fastest way to read and write 1/O registersin Dynamic C isto use a short segment of
assembly language inserted in the C program. Accessisthe same as for accessing data
memory except that the instruction is preceded by a prefix (I O or | OE) to indicate the
internal or external 1/0 space. For example:

/1 conpute value and wite to Port A Data Register

val ue=x+y

#asm

Id a, (val ue) ; value to wite

ioi |d (PADR),a ; wite value to PADR
#endasm

In the example abovethe | O prefix changes a store to memory to a store to an internal
I/O port. The prefix i oe isused for writes to external 1/O ports.

18.2.2 Using Library Functions

Dynamic C functions are available to read and write I/O registers. These functions are pro-
vided for convenience. For speed, assembly code is recommended. For a complete
description of the functions noted in this section, refer to the Dynamic C User’s Manual
or from the Help menu in Dynamic C, accessthe HTML Function Reference or Function
Lookup options.

To read internal 1/0 registers, there are two functions.

int RdPortl (i nt PORT) ; I/ returns PORT, high byte zero
int BitRdPortl (int PORT, int bitcode); // bit code 0-7

To writeinternal I/O registers, there are two functions.

void WPortl (int PORT, char *PORTShadow, int val ue);
void BitWPortl (int PORT, char *PORTShadow, int value, int bitcode);

The external registers are also accessible with Dynamic C functions.

int RdPortE(i nt PORT) ; I/ returns PORT, high byte zero
int BitRdPortE(int PORT, int bitcode); // bit code 0-7

int WPortE(int PORT, char *PORTShadow, int val ue);

int BitWPortE(int PORT, char *PORTShadow, int value, int bitcode);

In order to read a port the following code could be used:

k=RdPort| (PADR); // returns Port A Data Register

238 Rabbit 3000 Microprocessor

18.3 Shadow Registers

Many of the registers of the Rabbit’s internal 1/O devices are write-only. This saves gates
on the chip, making possible greater capability at lower cost. Write-only registers are eas-
ier to use if amemory location, called a shadow register, is associated with each write-
only register. To make shadow register names easy to remember, the word shadow is
appended to the register name. For example the register GOCR (Global Output Control
register) has the shadow GOCRShadow Some shadow registers are defined in the BIOS
source code as shown below.

char GCSRShadow, // d obal Control Status Register

char GOCRShadow;, // dobal CQutput Control Register

char GCDRShadow, // d obal C ock Doubl er Register
If the port is awrite-only port, the shadow register can be used to find out the port’s con-
tents. For example GCSR has a number of write-only bits. These can be read by consult-
ing the shadow, provided that the shadow register is always updated when writing to the
register.

k=GCSRShadow,
18.3.1 Updating Shadow Registers

If the address of a shadow register is passed as an argument to one of the functions that
write to the internal or external 1/O registers, then the shadow register will be updated as
well as the specified 1/O register.

A NULL pointer may replace the pointer to ashadow register asan argument to W Por t | ()
and W Por t E() ; the shadow register associated with the port will not be updated. A pointer
to the shadow register is mandatory for Bi t W Port 1 () andBi t W Port E() .

18.3.2 Interrupt While Updating Registers

When manipulating /O registers and shadow registers, the programmer must keep in
mind that an interrupt can take place in the middle of the sequence of operations, and then
the interrupt routine may manipulate the same registers. If this possibility exists, then a
solution must be crafted for the particular situation. Usually it is not necessary to disable
the interrupts while manipulating registers and their associated shadow registers.

18.3.2.1 Atomic Instruction

Asan example, consider the Parallel Port D datadirection register (PDDDR). Thisregister
iswrite only, and it contains 8 bits corresponding to the 8 I/O pins of Parallel Port D. If a
bitinthisregisterisa“1,” the corresponding port pin isan output, otherwise it isan input.
It is easy to imagine a situation where different parts of the application, such as an inter-
rupt routine and a background routine, need to be in charge of different bitsinthe PDDDR
register. The following code sets a bit in the shadow and then setsthe /O register. If an
interrupt takes place between the set and the LDD, and changes the shadow register and
PDDDR, the correct value will still be setin PDDDR.

User’s Manual 239

I d hl, PDDDRShadow ; point to shadow register

| d de, PDDDR ; set de to point to I/Oreg

set 5, (hl) ; set bit 5 of shadow register

; use ldd instruction for atom c transfer

ioi 1dd ; (io de)<-(hl) side effect: hl--, de--

In this case, the | dd instruction when used with an 1/0O prefix provides a convenient data
move from a memory location to an 1/O location. Importantly, thel dd instruction is an
atomic operation so there is no danger that an interrupt routine could change the shadow
register during the move to the PDDDR register.

18.3.2.2 Non-atomic Instructions

If the following two instructions were used instead of the | dd instruction,

Id a, (hl)

|d (PDDDR),a ; output to PDDDR
then an interrupt could take place after thefirst instruction, change the shadow register and
the PDDDR register, and then after a return from the interrupt, the second instruction
would execute and store an obsolete copy of the shadow register in the PDDDR, setting it
to awrong value.

18.3.3 Write-only Registers Without Shadow Registers

Shadow register are not needed for many of the registers that can be written to. In some
cases, writing to registersis used as a handy way of changing a peripheral’s state, and the
databitswritten are ignored. For example, awrite to the status register in the Rabbit seria
portsis used to clear the transmitter interrupt request, but the data bits are ignored, and the
status register is actually aread-only register except for the special functionality attached
to the act of writing the register. Anillustration of awrite-only register for which a shadow
Isunnecessary isthetransmitter dataregister in the Rabbit seria port. The transmitter data
register isawrite-only register, but thereislittle reason to have a shadow register since
any data bits stored are transmitted promptly on the seria port.

18.4 Timer and Clock Usage

The battery-backable real-time clock is a 48 bit counter that counts at 32768 counts per
second. The counting frequency comes from the 32.768 kHz oscillator which is separate
from the main oscillator. Two other important devices are aso powered from the 32.768
kHz oscillator: the periodic interrupt and the watchdog timer. It is assumed that all mea-
surements of time will derive from the real-time clock and not the main processor clock
which operates at a much higher frequency (e.g. 22.1184 MHz). This alows the main pro-
cessor oscillator to use less expensive ceramic resonators rather than quartz crystals.
Ceramic resonators typically have an error of 5 partsin 1000, while crystals are much
more accurate, to afew seconds per day.

240 Rabbit 3000 Microprocessor

Two library functions are provided to read and write the real-time clock:

unsigned long int read_rtc(void) ; I/ read bits 15-46 rtc

void wite_rtc(unsigned long int time) ; // wite bits 15-46

/1 note: bits 0-14 and bit 47 are zeroed
However, it is not intended that the real-time clock be read and written frequently. The
procedure to read it is lengthy and has an uncertain execution time. The procedure for
writing the clock is even more complicated. Instead, Dynamic C software maintainsalong
variable SEC_TI MER in memory. SEC_TI MERis synchronized with the real-time clock
when the Virtual Driver starts, and updated every second by the periodic interrupt. It may
be read or written directly by the user’s programs. Since SEC_TI MER isdriven by the
same oscillator as the real-time clock there is no relative gain or loss of time between the
two. A millisecond timer variable, MS_TI MER, is also maintained by the Virtual Driver.

Two utility routines are provided that can be used to convert times between the traditional
format (10-Jan-2000 17:34:12) and the seconds since 1-Jan-1980 format.

/1 converts time structure to seconds

unsigned |l ong nktinme(struct tm*timeptr);

/'l seconds to structure
unsigned int nktm(struct tm*timeptr, unsigned long tine);

The format of the structure used is the following

struct tm{

char tm sec; /] seconds 0-59

char tmm n; /] 0-59

char tm hour; /] 0-59

char tm nday; // 1-31

char tm non; /l 1-12

char tmyear; /1 00-150 (1900-2050)
char tm wday; /1 0-6 O==sunday

s
The day of the week isnot used to compute the long seconds, but it is generated when
computing from long seconds to the structure. A utility program, set cl ock. c, isavail-
able to set the date and time in the real-time clock from the Dynamic C STDIO console.

User’s Manual 241

242 Rabbit 3000 Microprocessor

19. RABBIT INSTRUCTIONS

Summary

“Load Immediate Data” on page 246

“8-bit Indexed Load and Store” on page 246

“16-bit Indexed Loads and Stores’ on page 246
“16-bit Load and Store 20-bit Address’ on page 247
“Register to Register Moves’ on page 247
“Exchange Instructions’ on page 248

“Stack Manipulation Instructions’ on page 248
“16-bit Arithmetic and Logical Ops’ on page 248
“8-bit Arithmetic and Logical Ops’ on page 249
“8-bit Bit Set, Reset and Test” on page 250

“8-bit Increment and Decrement” on page 250

“8-bit Fast A Register Operations’ on page 251
“8-bit Shifts and Rotates’” on page 251

“Instruction Prefixes’ on page 252

“Block Move Instructions’ on page 252

“Control Instructions - Jumps and Calls’ on page 253
“Miscellaneous Instructions” on page 253
“Privileged Instructions’ on page 254

“Instructions in Alphabetical Order With Binary Encoding” on page 257

User’s Manual

243

Spreadsheet Conventions

ALTD (“A” Column) Symbol Key

Flag

Description

f

ALTD selects alternate flags

fr

ALTD selects alternate flags and register

r

ALTD selects alternate register

S

ALTD operation is a specia case

IOl and IOE (“I” Column) Symbol Key

Flag Description
b 10l and | OE affect source and destination
d 10l and | OE affect destination
s 10l and | OE affect source
Flag Register Key
S|zZ|uv'|C Description

Sign flag affected

Sign flag not affected

Zero flag affected

Zero flag not affected

LV flag contains logical check result

LV flag contains arithmetic overflow result

LV flag iscleared

LV flag is affected

* | Carry flag is affected

- | Carry flag is not affected

0 | Carry flag iscleared

1 |Carry flagisset

* TheL/V (logical/overflow) flag serves adua purpose—
L/V issetto 1 for logical operationsif any of the four
most significant bits of theresult are 1, and L/V isreset to
0if al four of the most significant bits of the result are O.

244

Rabbit 3000 Microprocessor

Symbols

Rabbit | z180 Meaning
Bit select:
000 = hit 0, 001 = bit 1,
b b 010 = hit 2, 011 = hit 3,

100 = bit 4, 101 = hit 5,
110 = bit 6, 111 = bit 7

Condition code select:

cc cc 00=NZ,01=2,
10=NC,11=C
d d 7-bit (signed) displacement. Expressed in two’'s complement.
dd ww | Word register select destination: 00 = BC, 01 = DE, 10=HL, 11=SP
dd’ Word register select alternate: 00 = BC’, 01 = DE’, 10 =HL’
e j 8-bit (signed) displacement added to PC.

Condition code select:

000 = NZ (non zero),001 = Z (zero),

f f 010 = NC (non carry), 011 = C (carry),

100=LZ" (logical zero), 101 = LOT (logical one),
110 =P (sign plus), 111 = M (sign minus)

m m MSB of a 16-bit constant.
m m 16-bit constant.
n n 8-hit constant or LSB of a 16-bit constant.
Byte register select:
000=B,001=_C,
r. g g, g |010=D,011=E,
100=H, 101 =L,
111=A
Ss ww | Word register select (source): 00=BC, 01 = DE, 10=HL, 11=SP
Restart address select:
v v 010 = 0020h, 011 = 0030h,
100 = 0040h, 101 = 0050h,
111 =0070h
XX XX Word register select: 00=BC,01=DE, 10=1X,11=SP
vy vy Word register select: 00=BC, 01=DE, 10=1Y, 11 =SP
7z 7z Word register select: 00 =BC, 01 =DE, 10=HL, 11 = AF

* Logical zeroif al four of the most significant bits of the result are O.
T Logical oneif any of the four most significant bits of the result are 1.

User’s Manual 245

19.1 Load Immediate Data

I nstruction clk A | SZVC Qperation

LD I X, m 8 - - - - IX=m
LD 1Y, m 8 - - - - 1lY=m
LD dd, mm 6 r - - - - dd = m
LD r,n 4 r - - - - r =n

19.2 Load & Store to Immediate Address

I nstruction clk A | SZVC CQperation

LD (m), A 10 d---- (m) =A

LD A, (m) 9 r s---- A=(m)

LD (m), HL 13 d---- (m) =L; (m+l) =H

LD (m), I X 15 d- - - - (m) =1XL; (m+1l) = 1XH
LD (m), 1Y 15 d- - - - (m) =1YL; (m+1l) = 1YH
LD (m), ss 15 d- - - - (m) =ssl; (m+l) = ssh
LD HL, (mm) 11 r s--- - L=(m); H=(m+l)

LD I X, () 13 S - - - - IXL=(m); IXH=(m+1)
LD 1Y, (m) 13 S - - - - IYL=(m); IYH=(m+1)
LD dd, (m) 13 r s- - - - dd = (m); ddh = (mm+1)

19.3 8-bit Indexed Load and Store

I nstruction clk A | SZVC Qperation
LD A (BO) 6 r s---- A=(BO
LD A (DE) 6 r s---- A= (DB
LD (BO), A 7 d---- (BO =A
LD (DE), A 7 d---- (D =A
LD (HL), n 7 d- - - - (H) =n
LD (H),r 6 d---- (H) =r =B, C D E H L, A
LD r, (HL) 5 r s- - - - r =(H)
LD (I X+d), n 11 d- - - - (IX+td) =n
LD (I X+d),r 10 d- - - - (IX+d) =7
LD r, (I X+d) 9 r s- - - - 1 = (IX+d)
LD (1Y+d),n 11 d- - - - (lY+d) =n
LD (1Y+d),r 10 d- - - - (ly+d) =r
LD r, (1Y+d) 9 r s - - - - 1 = (lY+d)

19.4 16-bit Indexed Loads and Stores

I nstruction clk A | SZVC CQperation

LD (HL+d),HL 13 d- - - - (H+d) =1L; (HL+d+1) = H

LD HL, (HL+d) 11 rs---- L =(HH+d); H= (HL+d+1)

LD (SP+n), HL 11 - - - - (SP+n) =L; (SP+n+l) = H

LD (SP+n),1X 13 - - - - (SP+n) = IXL; (SP+n+l) = I XH
LD (SP+n),1Y 13 - - - - (SP+n) = 1YL, (SP+n+l) = IYH
LD HL, (SP+n) 9 r - - - - L = (SP+tn); H = (SP+n+l)

LD I X (SP+n) 11 - - - - IXL = (SP+n); | XH = (SP+n+1)
LD 1Y, (SP+n) 11 - - - - 1YL = (SP+n); |YH = (SP+n+1)
LD (I X+d),HL 11 d- - - - (IX+d) =1L; (IX+td+l) = H

LD HL, (1 X+d) 9 r s - - - - L = (IX+td); H= (IX+d+1)

LD (1Y+d),HL 13 d- - - - (lY+d) =1L; (lY+d+l) = H

LD HL, (1 Y+d) 11 rrs- - - - L =(lY+d); H=(1Y+d+1)

246 Rabbit 3000 Microprocessor

19.5 16-bit Load and Store 20-bit Address

I nstruction clk A | SZVC CQperation
LDP (HL),HL 12 - - - - (H) =1L; (H+1) = H
(Adr[19:16] = A[3:0])

LDP (I X),HL 12 - - - - (IX) =L (IX+1) = H
(Adr[19:16] = A[3:0])
LDP (1Y),HL 12 - - - - (1Y) =L (IY+1) = H
(Adr[19:16] = A[3:0])
LDP HL, (HL) 10 - - - - L= (H); H= (H+1).
(Adr[19:16] = A[3:0])
LDP HL, (1 X) 10 - - - - L=(1X; H=(IX+1).
(Adr[19:16] = A[3:0])
LDP HL, (1Y) 10 - - - - L=(1Y); H=(1Y+1).
(Adr[19:16] = A[3:0])
LDP (m),HL 15 - - - - (m) =1L; (m+l) = H
(Adr[19:16] = A[3:0])
LDP (m),IX 15 - - - - (m) = IXL; (m+l) = | XH
(Adr[19:16] = A[3:0])
LDP (m),1Y 15 - - - - (m) = 1YL, (m+1l) = IYH
(Adr[19:16] = A[3:0])
LDP HL, () 13 - - - - L=(m); H=(m+l).
(Adr[19:16] = A[3:0])
LDP 1 X, () 13 - - - - IXL = (m); IXH=(m+l).
(Adr[19:16] = A[3:0])
LDP 1Y, (m) 13 - - - - 1YL= (m); I'YH = (m+1).

(Adr[19:16] = A[3:0])
Note that the LDP instructions wrap around on a 64K page boundary. Since the LDP instruc-
tion operates on two-byte values, the second byte will wrap around and be written at the
start of the page if you try to read or write across a page boundary. Thus, if you fetch or
store at address Oxn,0xFFFF, you will get the bytes located at Oxn,0xFFFF and
0xn,0x0000 instead of 0xn,0xFFFFand 0x(n+1),0x0000 as you might expect. Therefore,
do not use LDP at any physical address ending in OxFFFF.

19.6 Register to Register Moves
I nstruction clk A | SZVC Qperation

LDr,g 2 r - --- r1r=¢9,r, ganyof B, C D E H L, A
LD A EIR 4 fr **x - - A=ER
LD AITIR 4 fr **x - - A=1IR
LD A, XPC 4 r - - - - A=MU
LD EIR A 4 EIR=A
LDIIR A 4 IR =A
LD XPC, A 4 - - - - XPC=A
LD HL, I X 4 r - - - - H =1X
LD HL, 1Y 4 r - - - - H=1Y
LD I X, HL 4 I X = H
LD 1Y, HL 4 Y = HL
LD SP, HL 2 SP = HL
LD SP, I X 4 SP =1X
LD SP, 1Y 4 SP =1Y
LD dd’', BC 4 dd’ = BC (dd’: 00-BC, 01-DE', 10-HL')
LD dd’', DE 4 dd’ = DE (dd’: 00-BC, 01-DE', 10-HL')

User’s Manual 247

19.7 Exchange Instructions

I nstruction clk A | SZVC Qperation
EX (SP), HL 15 r - - - - H<>(SP+l); L <-> (SP)
EX (SP), I X 15 I XH <-> (SP+1); IXL <-> (SP)
EX (SP), 1Y 15 I'YH <-> (SP+1); IYL <-> (SP)
EX AF, AF 2 AF <-> AF
EX DE , HL 2 S if (!ALTD) then DEE <-> HL
else DEE <-> HL’
EX DE , HU’ 4 S DE <-> HU
EX DE, HL 2 s if (IALTD) then DE <-> HL
el se DE <-> HU’
EX DE, HU’ 4 S DE <-> HU’
EXX 2 BC <-> BC; DE <-> DE';
HL <-> HU’
EX DE,HL
D]E] [B]C]
EX AFAF S——%
EX DEHU EX DE’,HL
o] E] [B]C

EX DE' HL

EXX - exchange HL ,HL' ,DE,DE’ ,BC,BC’

19.8 Stack Manipulation Instructions

I nstruction clk
ADD SP, d 4
POP | P 7
POP | X 9
POP |Y 9
POP zz 7
PUSH I P 9
PUSH | X 12
PUSH 1Y 12
PUSH zz 10

A
f

I SZVC

- *

19.9 16-bit Arithmetic and Logical Ops

I nstruction clk
ADC HL, ss 4
ADD HL, ss 2
ADD | X, xx 4

A
fr

fr

I SZVC
**V*

- *

- *

Operati on

SP =SP +d-- d=0 to 255
IP = (SP); SP = SP+1

IXL = (SP); I XH = (SP+1);
SP = SP+2

IYL = (SP); IYH = (SP+1);
SP = SP+2

zzl = (SP); zzh = (SP+1);
SP=SP+2 -- zz= BC, DE, HL, AF
(SP-1) = 1P, SP = SP-1
(SP-1) = I XH, (SP-2) = I XL;
SP = SP-2

(SP-1) = IYH (SP-2) = IVYL;
SP = SP-2

(SP-1) = zzh; (SP-2) = zzl;
SP=SP-2 --zz= BC, DE, HL, AF
Operati on

HL = H + ss + CF - $s=BC,
DE, HL, SP

HL = HL + ss

I X = 1X + xx - xx=BC,

DE, |X, SP

248

Rabbit 3000 Microprocessor

ADD 1Y, yy

ADD SP, d
AND HL, DE
AND | X, DE
AND 1Y, DE
BOOL HL

BOCOL | X
BOCOL 1Y
DEC | X
DEC | Y
DEC ss

I NC I X
INC IY
I NC ss
MJL

HL

< X
CECEY

R
OR |
OR |

T
M

L

RR DE
RR HL
RR I X
RRI1Y
SBC HL, ss

N B D DN N B BDN A N

D

N A BMDN

A ADDNODN

fr
fr

fr

orrr
coooo

-

<r-r-r-rrr

*

* O OO

Y =1Y +yy -- yy=BC
DE, 1Y, SP

SP =SP +d-- d=0 to 255
HL = HL & DE

IX = 1 X & DE

Y = 1Y & DE

if (HL!=0) HL = 1,

set flags to match HL
if (IX!=0) IX=1
if (1Y!=0) 1y=1

IX=1X-1
lY =1Y -1
ss =ss - 1 -- ss= BC,
DE, HL, SP
IX=1X+1
lY =1Y + 1
ss = ss + 1 -- ss= BC,
DE, HL, SP

HL: BC = BC * DE, signed

32 bit result. DE unchanged
H. = HL | DE -- bitw se or
IX=1X]| DE

lY=1Y| DE

{CY,UE} :{DE,CY} o

left shift with CF

{DE, Cv} = {Cv, DE}

{HL, CY} = {CY, HL}
{I1X, CY} = {CY,Ix
{1v,cv} = {cv,1v}
HL=HL- ss- CY

(cout if (ss-CY)>hl)

19.10 8-bit Arithmetic and Logical Ops

I nstruction
ADC A, (HL)
ADC A, (1 X+d)
ADC A, (1 Y+d)
ADC A n

ADC Ar

ADD A, (HL)
ADD A, (1 X+d)
ADD A, (1 Y+d)
ADD A, n

ADD A r

AND (HL)
AND (| X+d)
AND (I Y+d)
AND n

AND r

CP* (HL)

CP* (I X+d)
CP* (1Y+d)

O© ©OUI NP, OCOOONMOOOONDIMOOOU O

=~

A
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
f
f
f

|

S
S
S

n n

*

K KKrrrmrmm<<<<K<<K<<K<<K<K<K<K<K<K<LKKL

*O OO OO0 *

*

C Operation

= + (HL) + CF
(I X+d) + CF
(1'Y+d) + CF
n + CF

r + CF
(HL)

(1 X+d)
(1'Y+d)

n

r

(HL)

& (1 X+d)

& (1Y+d)

T T TRTIT
Q@+ + + + + + + + +

>>>2>2>2>2>2>2>2>2>>>>>>>>
I
>>>>2>2>2>2>>>>>>>>

User’s Manual

249

CP* n 4 f **V* A-n

CP* r 2 f VR AT

OR (HL) 5 fr s** L0 A=A]| (H)

OR (1 X+d) 9 frs** L0 A=A]| (IX+d)

OR (1 Y+d) 9 frs** L0 A=A]| (1Y+d)

OR n 4 fr ** L0 A=A]|n

R 2 fr ** L0 A=A]|Tr

SBC* (IX+d) 9 fr s**V* A=A- (IX+td) - CY

SBC* (1Y+d) 9 frs**V* A=A- (IY+d) - CY
SBC* A (HL) 5 fr s**VvV* A=A- (H) - CY

SBC* A n 4 fr * % V* A= An-CY (cout if (r-CY)>A)
SBC* Ar 2 fr * % V* A= Ar-CY (cout if (r-CY)>A)
SUB (HL) 5 fr s**VvV* A=A- (H)

SUB (| X+d) 9 fr s**V* A=A- (IX+d)

SUB (1 Y+d) 9 fr s**V* A=A- (1Y+d)

SUB n 4 fr **x V* A=A-n

SUB r 2 fr *xrVrE O A=A-

XOR (HL) 5 fr s** L0 A=[A&~H)] | [~A & (HL)]
XOR (| X+d) 9 fr s** L0 A=[A&~(IXd)] | [~A & (IX+d)]
XOR (1 Y+d) 9 fr s** L0 A=[A&~(1Y+d)] | [~A & (1Y+d)]
XOR n 4 fr ** L0 A=[A&~n] | [~A &n]

XOR r 2 fr ** L0 A=[A&~r] | [-A &]

* SBC and CP instruction output inverted carry. Cis set if A<Bif the oper-
ation or virtual operation is (A-B). Carry is cleared if A>=B. SUB outputs
carry in opposite sense from SBC and CP.

19.11 8-bit Bit Set, Reset and Test

I nstruction clk A | SZVC Qperation

BI T b, (HL) 7 f s-*- - (H) &bit

BIT b, (1 X+d)) 10 f s-* - - (IX+d) & bit

BIT b, (1Y+d)) 10 f s-*- - (lY+d) & bit

BIT b, r 4 f - * - - r &bit

RES b, (HL) 10 d- - - - (H) = (H) & ~bit
RES b, (I X+d) 13 d- - - - (IX+d) = (IX+d) & ~bit
RES b, (1 Y+d) 13 d- - - - (IlY+d) = (1Y+d) & ~bit
RES b, r 4 r - - - - r1r =1 & ~bit

SET b, (HL) 10 b-- - - (H) = (H) | bit

SET b, (I X+d) 13 b - - - - (IX+d) = (IX+d) | bit
SET b, (1Y+d) 13 b - - - - (1Y+d) = (1Y+d) | bit
SET b, r 4 r - - - - 1 =1 | bit

19.12 8-bit Increment and Decrement

n
N

I nstruction clk A V C Operation

|

DEC (HL) 8 f b** V- (H) = (H) - 1
DEC (1 X+d) 12 f b** V- (IX+td) = (IX+d) -1
DEC (| Y+d) 12 f b** V- (1Y+d) = (1Y+d) -1
DEC r 2 fr ** V- o r=r -1

I NC (HL) 8 f b** V- (H) = (H) +1

I NC (I X+d) 12 f b** V- (IX+td) = (IX+d) + 1
I NC (I Y+d) 12 f b** V- (IY+d) = (IY+d) + 1
INC r 2 fr ** V- or=r +1

250 Rabbit 3000 Microprocessor

19.13 8-bit Fast A Register Operations

I nstruction clk A | SZVC Qperation
CPL 2 r - - - - A=-A
NEG 4 fr **xy* A=0- A
RLA 2 fr * {CY,A} = {A CY}
RLCA 2 fr * A={A6,0,AT7]}; CY=A7]
RRA 2 fr * {ACY} = {CY, A
RRCA 2 fr * A={AO0],A7,1]}; CY = A0]
19.14 8-bit Shifts and Rotates
RL, RLA LC < g SLA C |-— - O
I
RR,RRA L — ' C SRL | O |—» —»C
RRC, RRCA L. | J—»C
I nstruction clk A | SZVC Qperation
RL (HL) 10 f b**L* {CY,(H)} = {(H), CY}
RL (1 X+d) 13 f b**L* {CV,(IX+d)} = {(IX+d), CY}
RL (1Y+d) 13 f b** L* {CY,(IY+d)} = {(I1Y+d),CY}
RL r 4 fr **x L * {CY,r} ={r,CY}
RLC (HL) 10 f b**L* (H) = {(H)[6,0],(H)[T7]};
CY = (HL)[7]
RLC (1 X+d) 13 f b** L* (I1X+d) = {(IX+d)[6,0],
(I X+d)[7]}; CY = (IX+d)[7]
RLC (1 Y+d) 13 f b**L* (1Y+d) = {(lY+d)[6,0],
(1Y+d)[7]}; CY = (1Y+d)[7]
RLC r 4 fr *x L*x ¢ ={r[6,0],r[7]}; CY =r[T7]
RR (HL) 10 f b**L* {(H),CY} ={CVY,(H)}
RR (1 X+d) 13 f b**L* {(IX+d),CY} = {CY, (I X+d)}
RR (1 Y+d) 13 f b**L* {(lY+d),CY} = {CY, (IY+d)}
RR r 4 fr **x L* {r,C¥} ={CVY,r}
RRC (HL) 10 f b**L* (H) ={(H)[O],(H)[7,1]};
CY = (HL)[0]

RRC (I X+d) 13 f b * * L *
RRC (I Y+d) 13 f b * * L *

RRC r 4
SLA (HL) 10

SLA (1 X+d) 13 f b * * L *

SLA (1Y+d) 13 f b * * L *

(1 X+d) = {(1X+d)[0],
(IX+d)[7,1]}; CY = (IX+d)[0]
(1Y+d) = {(1Y+d)[0], (
IY+d)[7,1]}; CY = (1Y+d)[0]
r={r[0],r[7,1]1}; CY =r[0]
(H) = {(HL)[6,0],0}; CY =
(HL)[7]
(1 X+d) = {(IX+d)[6, 0], O};

CY = (IX+d)[7]
(1Y+d) = {(1Y+d)[6,0], O};

CY = (1Y+d)[7]

User’s Manual

251

SLA r 4 fr ** L* r ={r[6,0],0}; CY =r[7]

SRA (HL) 10 f b**L* (H) = {(H)[7],(H)[7,1]};
CY = (HL)[0]

SRA (| X+d) 13 f ob**L* (I1x+d) = {(IX+d)[7],
(IX+d)[7,1]}; CY = (1 X+d)[0]

SRA (1 Y+d) 13 f o b** L* (1Y+d) = {(1Y+d)[7],
(IY+d)[7,1]}; CY = (1Y+d)[0]

SRA r 4 fr *x Lx o ={r[7],r[7,1]}; CY =r[0]
SRL (HL) 10 f b**L* (H) ={0 (H)[7 1]};
Cy = (HL) [0]

SRL (| X+d) 13 f b**L* (IX+d) ={0,(IX+d)[7,1]};
CY = (I X+d)[0]

SRL (1 Y+d) 13 f b**L* (1Yy+d) ={0,(1Y+d)[7,1]};
CY = (1Y+d)[0]

SRL r 4 fr **x L* r ={0,r[7,1]};
CY = r[0]

19.15 Instruction Prefixes

I nstruction clk A | SZVC Qperation

ALTD 2 - - - - alternate register destinatln
for next Instruction

| OE 2 - - - - I/Oexternal prefix

1A 2 - - - - 1/Ointernal prefix

19.16 Block Move Instructions

I nstruction clk A | SZVC Qperation

LDD 10 d- - *- (DE) = (H),; BC = BC1,
DE = DE-1; HL = HL-1
LDDR 6+7i d- - *- if {BC!= 0} repeat:
LDI 10 d- - *- (DE = (H); BC = BC1;
DE = DE+1; HL = HL+1
LDI R 6+7i d- - *- if {BC!= 0} repeat:

If any of the block move instructions are prefixed by an /O prefix, the destination will be
in the specified 1/0 space. Add 1 clock for each iteration for the prefix if the prefix is 1Ol
(internal 1/0). If the prefix is1OE, add 2 clocks plus the number of 1/0 wait states enabled.
TheV flag is set when BC transitions from 1 to O. If the V flag is not set another stepis
performed for the repeating versions of the instructions. Interrupts can occur between dif-
ferent repeats, but not within an iteration equivalent to LDD or LDI. Return from the inter-
rupt isto the first byte of the instruction which isthe I/O prefix byteif thereis one.

A new LDI R/ LDDR bug was discovered in September, 2002. The problem has to do with
wait states and the block move operations. With this problem, the first iteration of

LDl R/ LDDR uses the correct number of wait states for both the read and the write. How-
ever, all subsequent iterations use the number of waits programmed for the memory
located at the write addressfor both the read and the write cycles. This becomes aproblem
when moving ablock of datafrom aslow memory device requiring wait states to afast
memory device requiring no wait states. With respect to external 1/0 operations, the LDl R
or LDDR performs reads with zero wait states independent of the waits programmed for the
[/Ofor al but thefirst iteration. Thefirst iteration is correct. This bug isautomatically cor-
rected by Dynamic C, and will be fixed in future generations of the chip.

252 Rabbit 3000 Microprocessor

19.17 Control Instructions - Jumps and Calls

I nstruction
CALL m

DINZ j
JP (HL)
JP (1X)
JP (1Y)
JP f, m
JP m
JR cc, e
JR e

LCALL xpc, m
LIJP xpc, m
LRET

RET

RET f

RETI

RST v

C
1

GO ~N~NOO O

[EEY
©

1
1

I k
2

0
3

8/2

1

1

2

0

A

S ZV C Qperation

- - - - (SP-1) = PCH (SP-2) =
PC=m; SP = SP-2

- - - - B=B1 if {B!=0} PC=PC+ j

- - - - PC=H
- - - - PC=1IX
- - - - PC=1Y

- - - - if {f} PC=m

- - - - PC=m

- - - - if {cc} PC=PC + e
- - - - PC=PC+ e (if e==0 next
seq inst is executed)

PCL;

- - - - (SP-1) = XPC, (SP-2) = PCH,
(SP-3) = PCL; XPC=xpc;
PC = m; SP = (SP-3)

- - - - XPC=xpc; PC =m

- - - - PCL = (SP); PCH= (SP+1);
XPC = (SP+2); SP = SP+3

- - - - PCL =(SP); PCH= (SP+1);
SP = SP+2

if {f} PCL = (SP); PCH =

(SP+1); SP = SP+2

- - - - IP=(SP); PCL = (SP+1);
PCH = (SP+2); SP = SP+3

- - - - (SP-1) = PCH (SP-2) = PCL;

SP =SP - 2; PC={RV)
v=10, 18, 20, 28, 38 only

19.18 Miscellaneous Instructions

I nstruction
CCF

| PSET 0O

| PSET 1

| PSET 2

| PSET 3

| PRES

LD A EIR
LD A IIR
LD A, XPC
LD EIR A
LDIIR A
LD XPC, A
NOP

POP | P
PUSH | P
SCF

NONNAAEAEAEDMDMMDMDMDMDMDAMNDO

=~

A
f

fr
fr

S ZV C Qperation
- - - % CF:._

- - - - 1P ={IP[5:0], 00}
- - - - IP={IP[5:0], 01}
- - - - IP={IP[5:0], 10}
- - - - IP={IP[5:0], 11}

*okooo = EIR

*okooo =1IR

- - - - = MW

- - - - EIR=A

- - - - 1lIR=A

- - - - XPC=A
ation

S

- - - - IP={IP1:0], IP[7:2]}

P = SP+1

e
1P = (

- - - - (SP-1) =IP, SP = SP-1
1

User’s Manual

253

19.19 Privileged Instructions

The privileged instructions are described in this section. Privilege means that an interrupt
cannot take place between the privileged instruction and the following instruction.

The three instructions below are privileged.

LD SP,HL ; load the stack pointer

LD SP, 1Y

LD SP, I X
The instructions to load the stack are privileged so that they can be followed by an instruc-
tion to load the stack segment (SSEG) register without the danger of an interrupt taking
place with and incorrect association between the stack pointer and the stack segment reg-
ister. For example,

LD SP, HL
1O LD (STACKSEQ), A

The following instructions are privileged.

| PSET 0O ; shift IPleft and set priority 00 in bits 1,0

| PSET 1

| PSET 2

| PSET 3

| PRES ; rotate P right 2 bits, restoring previous priority
POP | P ; pop | P register fromstack

The instructions to modify the IP register are privileged so that they can be followed by a
return instructions that is guaranteed to execute before another interrupt takes place. This
avoidsthe possibility of an ever-growing stack.

RETI ; pops I P fromstack and then pops return address

Theinstructionr et i can be used to set both the return address and the IP in asingle
instruction. If preceded by aLD XPC, acomplete jump or call to a computed address can
be done with no possible interrupt.

LD A XPC ; get and set the XPC
LD XPC, A

Theinstruction LD XPC, Ais privileged so that it can be followed by other code setting
interrupt priority or program counter without an intervening interrupt.

BIT B,(HL) ; test a bit in nmenory

Theinstruction bit B, (HL) is privileged to make it possible to implement a semaphore
without disabling interrupts. The following sequenceisused. A bit isasemaphore, and the
first task to set the bit owns the semaphore and has a right to manipulate the resources
associated with the semaphore.

BIT B, (HL)

SET B, (HL)

JP z,ihaveit

; here | don't have it

The SET instruction has no effect on the flags. Since no interrupt takes place after the BI T
instruction, if theflag is zero that means that the semaphore was not set when tested by the
bit instruction and that the set instruction has set the semaphore. If an interrupt was
allowed between the Bl T and set instructions, another routine could set the semaphore and
two routines could think that they both owned the semaphore.

254 Rabbit 3000 Microprocessor

20. DIFFERENCES RABBIT VS. Z80/Z180
INSTRUCTIONS

The Rabbit is highly code compatible with the Z80 and Z180, and it is easy to port non 1/0
dependent code. The main areas of incompatibility are instructions that are concerned with
I/O or particular hardware implementations. The more important instructions that were
dropped from the Z80/Z180 are automatically simulated by an instruction sequence in the
Dynamic C assembler. A few fairly useless instructions have been dropped and cannot be
eadsly simulated. Code using these instructions should be rewritten.

The following Z80/Z180 instructions have been dropped and there are no exact substi-
tutes.

DAA, HALT, D, EI, IMO, IM1, IM2, OQJI, IN, QUJTO, INO, SLP, OQUTI,
IND, QUJID, INR, OIlR, INDR, OIDR, TESTIO, MT SP, RRD, RLD, CPI,
CPIR, CPD, CPDR

Most of these op codes deal with 1/0 devices and thus do not represent transportabl e code.
The only opcodes that are not processor 1/0 related are MLT SP, DAA, RRD, RLD, CPI ,

CPI R, CPD, and CPDR. MLT SP isnot a practical op code. The codes that are concerned
with decimal arithmetic, DAA, RRD, and RLD, could be simulated, but the simulation isvery
inefficient. (The bit in the status register used for half carry isavailable and can be set and
cleared using the PUSH AF and POP AF instructionsto gain access.) Usually code that
uses these instructions should be rewritten. The instructions CPI , CPI R, CPD, and CPDR
are repeating compareinstructions. These instructions are not very useful because the scan
stops when equal compare is detected. Unequal compare would be more useful. They are
difficult to simulate efficiently, so it is suggested that code using these instructions be
rewritten, which in most cases should be quite easy.

The following op codes are dropped.

RST 0, RST 8, RST 30h

The remaining RST instructions are kept, but the interrupt vector isrelocated to avariable
location the base of which is established by the EIR register. RST can be simulated by a
call instruction, but thisis not done automatically by the assembler since most of these
instructions are used for debugging by Dynamic C.

The following instruction has had its op code changed.

EX (SP), HL - old opcode OE3h, new opcode - OEDh-054h

User’s Manual 255

The following instructions use different register names.

LD A EIR
LD EIR A ; was R register
LDIIR A
LD A IIR ; was | register

The following Z80/Z180 instructions have been dropped and are not supported. Alterna-

tive Rabbit instructions are provided.

Z80/2180 Instructions Dropped

Rabbit Instructions to Use

CALL CC, ADR

JR (JP)
CALL ADR
XXX

ncc, xxx ; reverse condition

TST R ((HL), n)

PUSH DE

PUSH AF

AND r ((HL), n)

POP DE get ainh
LD A d

POP DE

256

Rabbit 3000 Microprocessor

21. INSTRUCTIONS IN ALPHABETICAL ORDER
WITH BINARY ENCODING

Spreadsheet Conventions
ALTD (“A” Column) Symbol Key

Flag Description
f ALTD selects alternate flags

fr ALTD selects alternate flags and register
r ALTD selects alternate register
s ALTD operation isa special case

IOl and IOE (“I” Column) Symbol Key

Flag Description
b 10l and IOE affect source and destination
d 10l and |OE affect destination
] 10l and IOE &ffect source

Flag Register Key

S|z|iuv'|cC Description

* Sign flag affected

- Sign flag not affected

* Zero flag affected

- Zero flag not affected

L L/V flag contains logical check result
\% L/V flag contains arithmetic overflow result
0 L/V flag iscleared

* L/V flag is affected

* | Carry flag is affected

- | Carry flagis not affected

0 | Carry flagiscleared

1 | Carry flagisset

The L/V (logical/overflow) flag serves adua purpose—L/V

issetto 1 for logical operationsif any of the four most signif-
icant bits of theresult are 1, and L/V isreset to O if all four of

the most significant bits of the result are O.

User’s Manual 257

Symbols

Rabbit 7180 Meaning
Bit select:
000 = hit 0, 001 = bit 1,
b b 010 = hit 2, 011 = bit 3,

100 = hit 4, 101 = hit 5,
110 = bit 6, 111 =hit 7

Condition code select:

cc cc 00=NzZ,01=2,
10=NC,11=C

d d 7-bit (signed) displacement. Expressed in two’'s complement.

dd ww | Word register select destination: 00=BC, 01 =DE, 10=HL, 11 =SP

dd’ Word register select alternate;: 00 = BC', 01 =DE’, 10 = HL’

e j 8-hit (signed) displacement added to PC.
Condition code select:
000 = NZ (non zero), 001 = Z (zero),

f f 010 = NC (non carry), 011 = C (carry),
100=LZ" (logical zero), 101 = LO (logical one),
110 = P (sign plus), 111 =M (sign minus)

m m MSB of a16-bit constant.

m m 16-bit constant.

n n 8-hit constant or LSB of a 16-bit constant.
Byte register select:
000 =B, 001=C,

r, g |g, g |010=D, 011 =E,

100 =H, 101 =L,
111 =A

ss ww | Word register select (source): 00=BC, 01 =DE, 10=HL, 11=SP
Restart address select:

v v 010 = 0020h, 011 = 0030h,
100 = 0040h, 101 = 0050h,
111 = 0070h

XX xx | Word register select: 00=BC, 01 =DE, 10=1X, 11 =SP

yy yy Word register select: 00=BC, 01 =DE, 10=1Y,11=SP

zz zz |Wordregister select: 00=BC, 01 =DE, 10=HL, 11 = AF

Logical zero if all four of the most significant bits of the result are 0.

T Logical oneif any of the four most significant bits of the result are 1.

258 Rabbit 3000 Microprocessor

I nstruction Byte 1 Byte 2 Byte 3 Byte 4 clk A 1 SzvC
ADC A, (HL) 10001110 5 fr s * * VvV~
ADC A, (I X+d) 11011101 10001110 ----d--- 9 fr s * * V=*
ADC A, (IY+d) 11111101 10001110 ----d--- 9 fr s * * V=*
ADC A/ n 11001110 ----n--- 4 fr S VA
ADC A, r 10001-r - 2 fr S VA
ADC HL, ss 11101101 O01ss1010 4 fr S VA
ADD A, (HL) 10000110 5 fr s * * Vv~
ADD A, (I X+d) 11011101 10000110 ----d--- 9 fr s * * V=*
ADD A, (IY+d) 11111101 10000110 ----d--- 9 fr s * * V=*
ADD A n 11000110 ----n--- 4 fr S VA
ADD A, r 10000-r - 2 fr S VA
ADD HL, ss 00ss1001 2 fr - - - %
ADD | X, xX 11011101 00xx1001 4 f - - - *
ADD 1Y, yy 11111101 00yy1001 4 f - - - *
ADD SP, d 00100111 ----d--- 4 f - - - *
ALTD 01110110 2 - - - -
AND (HL) 10100110 5 fr s**LO
AND (| X+d) 11011101 10100110 ----d--- 9 fr s** LO
AND (| Y+d) 11111101 10100110 ----d--- 9 fr s** LO
AND HL, DE 11011100 2 fr ** L0
AND | X, DE 11011101 11011100 4 f ** L0
AND 1Y, DE 11111101 11011100 4 f ** L0
AND n 11100110 ----n--- 4 fr ** L0
AND r 10100-r - 2 fr ** L0
BIT b, (HL) 11001011 01-b-110 7 f s - * - -
BIT b, (I X+td)) 11011101 11001011 ----d--- 01-b-110 10 f s - * - -
BIT b, (IY+d)) 11111101 11001011 ----d--- 01-b-110 10 f s - * - -
BIT b, r 11001011 O01-b--r- 4 f - - -
BOOL HL 11001100 2 fr ** 00
BOOL | X 11011101 11001100 4 f ** 00
BOOL |Y 11111101 11001100 4 f ** 00
CALL mm 11001101 ----n--- ----Mm-- 12 - - - -
CCF 00111111 2 f - - - %
CP (HL) 10111110 5 f s**V*
CP (I X+d) 11011101 10111110 ----d--- 9 f s**V*
CP (1Y+d) 11111101 10111110 ----d--- 9 f s**V*
CP n 11111110 ----n--- 4 f R VA
CPr 10111-r- 2 f O VA
CPL 00101111 2 r - - - -
DEC (HL) 00110101 8 f b** V-
DEC (| X+d) 11011101 00110101 ----d--- 12 f b * * V-
DEC (1 Y+d) 11111101 00110101 ----d--- 12 f b * * V-
DEC I X 11011101 00101011 4 - - - -
DEC 1Y 11111101 00101011 4 - - - -
DEC r 00-r-101 2 fr R VA
DEC ss 00ss1011 2 r - - - -
ss= 00-BC, 01-DE, 10-HL, 11-SP
DINZ | 00010000 --(j-2)- 5 r - - - -
EX (SP), HL 11101101 01010100 15 r - - - -
EX (SP), 1 X 11011101 11100011 15 - - - -
EX (SP), 1Y 11111101 11100011 15 - - - -
User’s Manual 259

Byte 2

11100011
11100011

00110100
00110100
00100011
00100011

01000110
01010110
01001110
01011110
01011101

11101001
11101001
----n---
----n---
__(e_2)_

I nstruction Byte 1

EX AF, AF’ 00001000
EX DE, HL 11101011
EX DE' , HL 11100011
EX DE, HL’ 01110110
EX DE , HL’ 01110110
EXX 11011001
I NC (HL) 00110100
I NC (I X+d) 11011101
I NC (I Y+d) 11111101
INC I X 11011101
INC IY 11111101
INC r 00-r-100
I NC ss 00ss0011

ss= 00-BC, 01-DE, 10-HL, 11-SP

| CE 11011011
I 11010011
| PSET 0 11101101
| PSET 1 11101101
| PSET 2 11101101
| PSET 3 11101101
| PRES 11101101
JP (HL) 11101001
JP (1 X) 11011101
JP (1Y) 11111101
JP f,m 11-f-010
JP mm 11000011
JR cc, e 001cc000
JR e 00011000

--(e-2)-

Byte 3

Note: |If byte following op code is zero
If byte is -2 (11111110) jr is to itself.
--Xxpc--- 19 - - - -

is executed.

LCALL xpc, m
LD (BO), A
LD (DE), A
LD (HL), n

LD (HL),r

LD (HL+d), HL
LD (1 X+d), HL
LD (I X+d), n
LD (I X+d),r
LD (1Y+d), HL
LD (IY+d),n
LD (1Y+d),r
LD (m), A
LD (m), HL
LD (m), I X
LD (m), 1Y
LD (m), ss
LD (SP+n), HL
LD (SP+n), I X
LD (SP+n), 1Y

11001111
00000010
00010010
00110110
01110-r-
11011101
11110100
11011101
11011101
11111101
11111101
11111101
00110010
00100010
11011101
11111101
11101101
11010100
11011101
11111101

____n___

____n___

11110100
oo d---
00110110
01110-r-
11110100
00110110
01110-r-

00100010
00100010
01ss0011
____n___
11010100
11010100

____m__

Byte 4

clk A I SzvVvC

2

2 S - - - -
2 S - - - -
4 s - - - -
4 s - - - -
2 - - - -
8 f Db**V-
12 f b* * V-
12 f b* * V-
4 - - - -
4 - - - -
2 fr A
2

g ~N~NOoOOR_B_MBMMDMDMDIDDNODN
1
1
1
1

next sequential instruction

;
;

;

6

13
11
11
10
13
11
10
10
13
15
15
15
11 -
13 - -
13 - -

00 0000000000000

260

Rabbit 3000 Microprocessor

I nstruction Byte 1 Byte 2 Byte 3 Byte 4 clk A 1 SzvC
LD A (BQ) 00001010 6 ros-- - -
LD A, (DE) 00011010 6 ros-- - -
LD A (m) 00111010 ----n--- ----M-- 9 ros-- - -
LD A EIR 11101101 01010111 4 fr *oE o
LD A 1IR 11101101 01011111 4 fr *oE o
LD A XPC 11101101 01110111 4 r - - - -
LD dd, (m) 11101101 01dd1011 ----p--- ----M-- 13 r s - - - -
LD dd’', BC 11101101 01ddio01 4 - - - -
LD dd', DE 11101101 01ddooo01 4 - - - -
LD dd, m 00dd0o001 ----n--- ----mM-- 6 r - - - -
LD bc, m 00000001

LD de, m 00010001

LD hl, m 00100001

LD sp, m 00110001 ...

LD EIR A 11101101 01000111 4 - - - -
LD HL, (HL+d) 11011101 11100100 ----d--- 11 r s - - - -
LD HL, (I X+d) 11100100 ----d--- 9 ros-- - -
LD HL, (I Y+d) 11111101 11100100 ----d--- 11 r s - - - -
LD HL, (m) 00101010 ----n--- ----mMm-- 11 r s - - - -
LD HL, (SP+n) 11000100 ----n--- 9 r - - - -
LD HL, I X 11011101 01111100 4 r - - - -
LD HL, 'Y 11111101 01111100 4 r - - - -
LDIIR A 11101101 01001111 4 - - - -
LD I X, () 11011101 00101010 ----n--- ----M-- 13 S - - - -
LD I X, (SP+n) 11011101 11000100 ----n--- 11 - - - -
LD I X, HL 11011101 01111101 4 - - - -
LD I X, m 11011101 00100001 ----n--- ----M-- 8 - - - -
LD 1Y, (m) 11111101 00101010 ----n--- ----M-- 13 s - - - -
LD 1Y, (SP+n) 11111101 11000100 ----n--- 11 - - - -
LD 1Y, HL 11111101 01111101 4 - - - -
LD 1Y, m 11111101 00100001 ----n--- ----M-- 8 - - - -
LD r, (HL) 01-r-110 5 ros- - - -
LD r, (I X+d) 11011101 O021-r-110 ----d--- 9 ros-- - -
LD r, (1Y+d) 11111101 O021-r-110 ----d--- 9 ros-- - -
LDr,g 01l-r---g 2 r - - - -
LD r,n 00-r-110 ----n--- 4 r - - - -
LD SP, HL 11111001 2 - - - -
LD SP, I X 11011101 11111001 4 - - - -
LD SP, 1Y 11111101 11111001 4 - - - -
LD XPC, A 11101101 01100111 4 - - - -
LDD 11101101 10101000 10 d- - * -
LDDR 11101101 10111000 6+7i d- - * -
LDl 11101101 10100000 10 d - - * -
LD R 11101101 10110000 6+7i d - - * -
LDP (HL), HL 11101101 01100100 12 - - - -
LDP (1 X), HL 11011101 01100100 12 - - - -
LDP (1Y), HL 11111101 01100100 12 - - - -
LDP (mm), HL 11101101 01100101 ----p--- ----Mt-- 15 - - - -
LDP (m), !X 11011101 01100101 ----n--- ----Mm-- 15 - - - -
LDP (m),lY 11111101 01100101 ----n--- ----Mm-- 15 - - - -
User’s Manual 261

I nstruction Byte 1 Byte 2 Byte 3 Byte 4 clk A 1 SzvC
LDP HL, (HL) 11101101 01101100 10 - - - -
LDP HL, (I X) 11011101 01101100 10 - - - -
LDP HL, (1Y) 11111101 01101100 10 - - - -
LDP HL, (mm) 11101101 01101101 ----n--- ----Mm-- 13 - - - -
LDP | X, (mm) 11011101 01101101 ----n--- ----Mm-- 13 - - - -
LDP 1Y, (m) 11111101 01101101 ----n--- ----Mm-- 13 - - - -
LJP nbr, m 11000111 ----n--- ----m-- --nbr--- 10 - - - -
LRET 11101101 01000101 13 - - - -
MJL 11110111 12 - - - -
NEG 11101101 01000100 4 fr S VA
NOP 00000000 2 - - - -
OR (HL) 10110110 5 fr s**LO
OR (I X+d) 11011101 10110110 ----d--- 9 fr s**LO
OR (1Y+d) 11111101 10110110 ----d--- 9 fr s**LO
OR HL, DE 11101100 2 fr ** L0
OR | X, DE 11011101 11101100 4 f ** L0
OR 1Y, DE 11111101 11101100 4 f ** L0
OR n 11110110 ----n--- 4 fr ** L0
R 10110-r- 2 fr ** L0
POP I P 11101101 01111110 7 - - - -
POP | X 11011101 11100001 9 - - - -
POP IY 11111101 11100001 9 - - - -
POP zz 11zz0001 7 r - - - -
PUSH | P 11101101 01110110 9 - - - -
PUSH | X 11011101 11100101 12 - - - -
PUSH 1Y 11111101 11100101 12 - - - -
PUSH zz 11zz0101 10 - - - -
RES b, (HL) 11001011 10-b-110 10 d- - - -
RES b, (I X+d) 11011101 11001011 ----d--- 10-b-110 13 d- - - -
RES b, (I Y+d) 11111101 11001011 ----d--- 10-b-110 13 d- - - -
RES b, r 11001011 10-b--r- 4 r - - - -
RET 11001001 8 - - - -
RET f 11-f-000 8/2 - - - -
RETI 11101101 01001101 12 - - - -
RL (HL) 11001011 00010110 10 f b * * L *
RL (I X+d) 11011101 11001011 ----d--- 00010110 13 f b * * L *
RL (1Y+d) 11111101 11001011 ----d--- 00010110 13 f b * * L *
RL DE 11110011 2 fr [
RL r 11001011 00010-r- 4 fr O
RLA 00010111 2 fr - - - %
RLC (HL) 11001011 00000110 10 f b * * L *
RLC (| X+d) 11011101 11001011 ----d--- 00000110 13 f b * * L *
RLC (1 Y+d) 11111101 11001011 ----d--- 00000110 13 f b * * L *
RLC r 11001011 00000-r- 4 fr O
RLCA 00000111 2 fr - - - %
RR (HL) 11001011 00011110 10 f b * * L *
RR (| X+d) 11011101 11001011 ----d--- 00011110 13 f b * * L *
RR (I Y+d) 11111101 11001011 ----d--- 00011110 13 f b * * L *
RR DE 11111011 2 fr [
RR HL 11111100 2 fr [T
RR I X 11011101 11111100 4 f O
RRI1Y 11111101 11111100 4 f O
262 Rabbit 3000 Microprocessor

I nstruction Byte 1

RR r 11001011
RRA 00011111
RRC (HL) 11001011
RRC (| X+d) 11011101
RRC (| Y+d) 11111101
RRC r 11001011
RRCA 00001111
RST v 11-v-111
SBC (| X+d) 11011101
SBC (| Y+d) 11111101
SBC A, (HL) 10011110
SBC A, n 11011110
SBC A r 10011-r-
SBC HL, ss 11101101
SCF 00110111
SET b, (HL) 11001011
SET b, (1 X+d) 11011101
SET b, (1Y+d) 11111101
SET b, r 11001011
SLA (HL) 11001011
SLA (| X+d) 11011101
SLA (1Y+d) 11111101
SLA r 11001011
SRA (HL) 11001011
SRA (| X+d) 11011101
SRA (| Y+d) 11111101
SRA r 11001011
SRL (HL) 11001011
SRL (| X+d) 11011101
SRL (1 Y+d) 11111101
SRL r 11001011
SUB (HL) 10010110
SUB (| X+d) 11011101
SUB (1 Y+d) 11111101
SUB n 11010110
SUB r 10010-r -
XOR (HL) 10101110
XOR (1 X+d) 11011101
XOR (1 Y+d) 11111101
XOR n 11101110
XOR r 10101-r-
ZI NTACK (interrupt)

Byte 4

00001110
00001110

11-b-110
11-b-110

00100110
00100110

00101110
00101110

00111110
00111110

Byte 2 Byte 3
00011-r-

00001110
11001011 ----d---
11001011 ----d---
00001-r -

[v=2,3,4,5,7 only]

10011110 ----d---
10011110 ----d---
____n___
01ss0010
11-b-110
11001011 ----d---
11001011 ----d---
11-b--r-

00100110
11001011 ----d---
11001011 ----d---
00100-r -

00101110
11001011 ----d---
11001011 ----d---
00101-r-

00111110
11001011 ----d---
11001011 ----d---
00111-r-

10010110 ----d---
10010110 ----d---
____n___
10101110 ----d---
10101110 ----d---

____n___

clk A

4
2

10
13
13

NDANPPOOOOOOOND

P NRAOOOONDOOOI

o

fr
fr
f
f
f
fr
fr

fr
fr
fr
fr
fr
fr

f

—h

—h
— =k = —h —h —h — —h —h —h —

—

fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr

O T T

* % X 3k 1

(7]

* 0% F 3k % X 1

(%) O T T O T T O T T O T T

(7]

L R I R N . S N TN N SN T N N S N I

S

*

*

* % X 3k 1

N R
LK< !
I N

L R S T I B I S N I R TN R I '

rrrrrr'r <

L T I T

rrrrrr << < << <Kr-rrr0rrrrrrrrr-r— !

@)

I OO O OO * % % % % * ok ok F Kk ok ok k K K ok ok 1

User’s Manual

263

264 Rabbit 3000 Microprocessor

APPENDIX A.

A.1 The Rabbit Programming Port

The programming port provides a standard physical and electrical interface between a
Rabbit-based system and the Dynamic C programming platform. A special interface cable
and converter connects a PC serial port to the programming port. The programming port is
implemented by means of a 10-pin standard 2 mm connector. (Of course the user can
change the physical implementation of the connector if he so desires.) With this setup the
PC can communicate with the target, reset it and reboot it. The DTR line on the PC serial
interface is used to drive the target reset line, which should be drivable by an external
CMOS driver. The STATUS pinis used to by the Rabbit-based target to request attention
when a breakpoint is encountered in the target under test. The SMODE pins are pulled up
by a+5V/+3V level from the interface. They should be pulled down on the board when
theinterface isnot in use by approximately 5 kQ resistorsto ground. The target under test
providesthe +5 V or +3 V to the interface cable which is used to power the RS-232 driver
and receiver.

PROGRAMMING PORT PIN ASSIGNMENTS
(Rabbit LQFP pins are shown in parenthesis)
i|m el 1. RXA (66) — — — — — AAA-+
3@ @ |4 2. GND ~50 kQ
e ®ls 3. CKLKA (117)— — — — —AAA- +
4. +5V/+3V 0ko eS53
10 @38 3, RESEI=====— AN+
9@ @ (10 6. TXA (67)
7. n.c.
Programming Port 8. STATUS (output) (4) /.,
Pin Numbers 9. SMODEO (45) — == 4\/\/\/- GND
10. SMODE1 (44) — — — J\N\r GND

Figure A-1. Rabbit Programming Port

User’s Manual 265

A.2 Use of the Programming Port as a Diagnostic/Setup Port

The programming port, which is already in place, can serve as a convenient communica
tions port for field setup, diagnosis or other occasional communication need (for example,
asadiagnostic port). There are several ways that the port can be automatically integrated
into the user’s software scheme. If the purpose of the port is simply to perform a setup
function, that is, write setup information to flash memory, then the controller can be reset
through the programming port, followed by a cold boot to start execution of a special pro-
gram dedicated to this functionality.

The standard programming cable connects the programming interface to a PC program-
ming port. The /RESET line can be asserted by manipulating DTR on the PC seria port
and the STATUS line can be read by the PC as DSR on the serial port. The PC can restart
thetarget by pulsing reset and then, after a short delay, sending aspecial character string at
2400 bps. To simply restart the BIOS, the string 80h, 24h, 80h can be sent. When the
BIOSis started, it can tell whether the PROG connector on the programming cable is con-
nected because the SMODE1, SMODEQ pins are sensed as high. Thiswill cause the
BIOSto think that it should enter programming mode. The Dynamic C programming
mode then can have an escape message that will enable the diagnostic serial port function.

Another approach to enabling the diagnostic port is to poll the serial port periodically to
see if communication needs to begin or to enable the port and wait for interrupts. The
SMODE pins can be used for signaling and can be detected by a poll. However, recall that
the SMODE pins have a special function after reset and will inhibit normal reset behavior
if not held low. The pull-up resistors on RXA and CLKA prevent spurious data reception
that might take place if the pins floated.

If the clocked serial mode is used, the serial port can be driven by having two toggling
lines that can be driven and one line that can be sensed. This alows a conversation with a
device that does not have an asynchronous serial port but that has two output signal lines
and one input signal line.

Theline TXA (also called PC6) is zero after reset if cold boot modeis not enabled. A pos-
sible way to detect the presence of acable on the programming port isfor the cable to con-
nect TXA to one of the SMODE pins and then test for the connection by raising PC6 and
reading the SMODE pin after the cold boot mode has been disabled.

A.3 Alternate Programming Port

The programming port uses Serial Port A. If the user needs to use Seria Port A inan
application, an alternate method of programming is possible using the same 10-pin pro-
gramming port. For his own application the user should use the alternate I/O pinsfor port
A that share pinswith Parallel Port D. The TXA and RXA pins on the 10-pin program-
ming port are then a parallel port output and parallel port input using pins 6 and 7 on Par-
alel Port C. Using these two ports plus the STATUS pin as an output clock, the user can
create a synchronous clocked communication port using instructions to toggle the clock
and data. Another Rabbit-based board can be used to trand ate the clocked serial signal to

266 Rabbit 3000 Microprocessor

an asynchronous signal suitable for the PC. Since the target controls the clock for both
send and receive, the data transmission proceeds at a rate controlled by the target board
under development.

This scheme does not allow for an interrupt, and it is not desirable to use up an external
interrupt for this purpose. The serial port may be used, if desired, During program load
because there is no conflict with the user’s program at compile load time. However, the
user’s program will conflict during debugging. The nature of the transmissions during
debugging is such that the user program starts at a break point or otherwise wants to get
the attention of the PC. The other type of message is when the PC wantsto read or write
target memory while the target is running.

The target toggling the clock can simply send a clocked serial message to get the attention
of the PC. Theintermediate communications board can accept these unsolicited messages
using its clocked serial port. To prevent overrunning the receiver, the target can wait for a
handshake signal on one of the SMODE lines or there can be suitable pre-arranged delays.

If the PC wants attention from the target it can set aline to request attention (SMODE).
The target will detect thisline in the periodic interrupt routine and handle the complete
message in the periodic interrupt routine. This may slow down target execution, but the
interrupts will be enabled on the target while the message is read. The intermediate board
could split long messages into a series of shorter messages if thisis a problem.

A.4 Suggested Rabbit Crystal Frequencies

Table A-1 provides alist of suggested Rabbit operating frequencies. The numbersin
Table A-1 are based on the following assumptions:

* gpectrum spreader set to normal,
e doubler in use (52/48 duty cycle), and
e acombined 6 nsfor clock to address and data setup times.

The crystal can be half the operating frequency if the clock doubler isused up to 27 MHz.

Beyond this operating clock speed, it is necessary to use an X1 crystal or an external oscil-
lator because asymmetry in the waveform generated by the oscillator becomes a variation

in the clock speed if the clock speed is doubled.

User’s Manual 267

Table A-1. Preliminary Crystal Frequencies,
Memory Access Times, and Baud Rates

Crystal Doubled Doubled) o
Frequency Frequency Period Acce(iz)Tlme 11D5IV2I?)8rbf:L:d
(MHz) (MHz) (ns) '
1.8432 3.6864 271 522 4
3.6864 7.3728 136 257 8
7.3728 14.7456 68 124 16
9.216 18.432 54 97 20
11.0592 22.1184 45 79 24
12.9024 25.8048 39 67 28
14.7456 29.4912 34 57 32
18.432 36.864 27 44 40
221184 44.2368 23 35 48
25.8048 51.6096 19 29 56
Non-Stock Crystals
20.2752 40.5504 25 39 44
21.1968 42.3936 24 37 46
23.04 46.08 22 33 50
23.9616 47.9232 21 32 52
24.8832 49.7664 20 30 54
26.7264 53.4528 19 27 58

268 Rabbit 3000 Microprocessor

NOTICE TO USERS

RABBIT SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COM-
PONENTSIN LIFE-SUPPORT DEVICES OR SYSTEMS UNLESS A SPECIFIC WRITTEN AGREE-
MENT REGARDING SUCH INTENDED USE ISENTERED INTO BETWEEN THE CUSTOMER AND
RABBIT SEMICONDUCTOR PRIOR TO USE. Life-support devices or systems are devices or systems
intended for surgical implantation into the body or to sustain life, and whose failure to perform, when prop-
erly used in accordance with instructions for use provided in the labeling and user’s manual, can be reason-
ably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system of any size. In
order to prevent danger to life or property, it is the responsibility of the system designer to incorporate
redundant protective mechanisms appropriate to the risk involved.

All Rabbit Semiconductor products are 100 percent functionally tested. Additional testing may include
visual quality control inspections or mechanical defects analyzer inspections. Specifications are based on
characterization of tested sample units rather than testing over temperature and voltage of each unit. Rabbit
Semiconductor products may qualify components to operate within arange of parametersthat is different
from the manufacturer’s recommended range. This strategy is believed to be more economical and effective.
Additional testing or burn-in of an individual unit is available by special arrangement.

User’s Manual 269

INDEX

5V tolerant inputs 11 D G
A design featuresccceeeeenee. 9 generating pulses 50
5V tolerant inputs.............. 11
as‘?emb'y!anguagem i 42 43 BIOS weovvveeeereeseseessessen 19 |
instructions , 41, 42,
reading/writing to 1/O regis- g'o?gkbz%?ctr”m spreader ... ég iNPUL CAPLUTE .ovvvvvevvvvrreeeee 105
(1= £ 238 R INSITUCHONSoovvvvvvvee 32,243
asynchronous 1/0O 50 INpLIt capture channels 16 alphabetic order 257
!nstructlon set TR 9 arithmetic and logical ops . 36
B Interrupt priofitles 9 I/O instructions 39
Memory SUPPOItccceeeen. 9 load to constant address ... 33
BGA packgge _ . paralel 1/Occcvevveviiiene 13 load O register ..., 33
mec_hanlcal dimensions 60 PWM outputs s 17 load using index register ... 34
OUthing ..ccoveiveeee 61 quadrature encoder inputs . 17 pUSh anNd POP oo 36
soldering guidelines 62 separate core and 1/0O power register exchanges 35
bootstrap operation 101 pi NS woveeeeeeeeeeee et 18 register-to-register move ... 35
C serial portsccoeeeeeeeeenenn 11 interrupts .o.......... 44, 48, 72, 97
daveportcccceeneee 14, 53 DYNAMIC C oo 234
ClOCKS oo, 80, 205 SYSIEM ClOCK oo 12 external interrupts 99
32.768 kHz oscillator time/date clock 12 interrupt latency 49
......................... 80, 81, 205 timed output pulses 49 interrupt service vector ad-
clock doubler 83, 84, 221 i 15 dFESSES ..ovvrreeroenn 72
clock speeds 223 designstandards interrupt Vectors 100
disStributionoooeevveeeenne. 81 programming port 18 multipleinterrupts 46
low-power design 206 DynamicC ... 119 PriONities 44, 45, 97
main clock 80, 91, 205 B' OS oo e 233 priviligeged instructions and
oscillator circuits 205 library functions 238 Semaphoresco........ 46
power consumption periodic '”te”“p_ts """""" 234 semaphoresccceeeeee a7
....................... 85, 231, 232 power consumption 237 serial Port woovvvvvvesessrrrrnn. 175
spectrum spreader virtual drivers 234 updating registers 239
80, 86, 208, 221 watchdogccccveeveenienene 234
timer and clock use 240 E L
UMing ISSUES ... 221,222 N low-power design 206
cold bOOtccvvveiieiricne 52 EMI mitigation 207 |OW-pOWEr OptiONS ... 87
comparison Rabhit 3000 vs. Rab- PCB layoutccccveunee. 208 L QFP package
bit 2000cccceevrvenrne 255 spectrum spreader 208 LAND pattern 58
Compiler s 127 extended memory mechanical dimensions 57
crystal frequencies 267 | and D space 27,28 PINOUL eeeovveeees e 56
practical considerations..... 30
stack segmentccceeeee. 29
external bus
read and writetiming 66
User’s Manual 271

M Parallel Port C 132 default values 73
Parald Port D 133 GCDR ...ovveeveeeeeviecies 83
memory Parald PortE 137 GCMXR ..oocvveveiiiiecien 209
A16, Al9inversions(/CSl en- Parallel POrtFcoooee.eee.. 140 (cTo: = U I 80
abl€) oo 121 Parallel POrt G 143 (€11 = S 82
aCCESStIME ..o 211 pin descriptions 64 (€102 2 S 20
accesstime delays 216 alternate functions 67 (€170 - S 88
access times with clock dou- pinout GRAM configuration 79
DIEr oo 217 BGA package 59 GREV oo, 80
allocation of extended code LQFP package 56 GROM configuration 79
and dataspace 123 ports /0 bank contral 145
breakpoint/debug controller Rabbit save port 195 1=31C0 = S 145
----- e 123 daveport lines.................. 199 ICCR ..ooovvvvvrrrrrrenennn 105, 108
compiler operation........... 127 slave port registers........... 200 ICCSR ..oooovvverrrrnnn: 105, 107
dataand clock delays212 power consumption85, 225 ICLXR oo 105, 109
I and D SPace 125 1eTe 231, 232 ICMXR e 105, 110
/0 accesstime 219 DYNamic Ccoovvverrereeeees 237 102 S 105, 109
/0 read time delays 220 MEChaNiSMSc..orrrrreeee, 228 ICTXR v 105, 108
/O write time del&ys220 MEMOTY oovvvvvvvvveveeveeeeeenee 230 index registers 22
instruction and data space sup- deepy mode.............. 227, 229 interrupt priority register ...22
PO oo 124 power management 237 INEEXTUPLS ovvvvooeeveeeeeeeveennae a4
power consumption 230 power usage, standby mode 206 MBXCR ..ooorvvrrrrerrinnns 120
read and write cycles(nowait programming port 265 V1 =0 S 122
SE (S R 213, 215 alternate programming port memory bank control120

read time delays 214 e, 266 memory mapping segments
writetime delays 214 Use asdiagnoStic POt266 ceccoecveeeeeeeeeeeeeenienenes 118
memory interface 25119 pwM modulator 103 MMIDRcooor. 121, 124
battery backup 115 PWM outputs 17,50 MTCR oo 122
SRAM .o 115 PADR .o 130
typical connections ne Q PBDDR ocooreeroerse 131
memory Mapping 117 PBDR ..oooervvvrrnrieisenninns 131
memory mapping unit quﬁrature decoger S 1 PCDR ...covveveceeee 122
-------------------------- 23,24, 117 Quadrature encoder Inputs17 PCFR ..o 132
memory timing 122 R PDBXR ...ocvvvorrrririenninns 133
ModbUSceoeeveeeeeereeeeee 192 PDCR oo 133, 135
Rabbit 3000 PDDCR ..o, 133
O block diagram S PDDDRoooovereereerverrr 133
Open_drain Outputs _________________ 51 comparison with Rabbit 2000 PDDR ...coooeevvveeeenn. 133, 135
OSCIIBLON ..o, 205 255 _ PDFR .o 133
mainoscillator 205 Cry_StaI frequenCIeS """""" 267 PEBXR coovveieeeeeeieen 138
oscillators design features 9 PECR ..o 138, 139
32768 kHZ 80, 81, 205 f_eatures 1 PEDDR ..o 138
mainclock oo 80, 205 list of advantages 6 PEDRccoovvvrrinen. 138,139
Output p| ns on-chi p _perl pherals """""" 11 PEFR oo, 138
alternate assignment %0 programing port 265 = =i = S 140, 141
SPECIfiCationsc..c....... 2,4 PFDCR ..oooovrereeeeeeveeveennns 140
P Rar?bit Semiconductor . =] 0] - I 140

1 o VAR
Parelld Port D L —— : EEEFF; 138
open-drain Outputs Sl registersooomrrvvveiisnnniiiinnns 21 PGCR oo 143, 144
parallel ports ..o 129 accumul ators e, 22 PGDCR ... 143
conflict between Port A and alternate registers 22 PGDDR .. 143
UL S 129, 141 1010 = S 123 PGDR . 143
Perallel Port A o 120 S ——— PODR 3
Parallel POrt B 131 0= (RO 7 T

272 Rabbit 3000 Microprocessor

PWLXR ..o 103 SFDR ..o, 163 interrupt service routines 188
PWMXR ..o, 103 SFER ..o 163 INEEITUPLS .o 175
QDCR ..o 111, 114 SFLR o 163 long stop registers 165
QDCSR ..o 111, 113 SFSR e 163 master/slave protocal 192
QDCXR ..o 111, 114 shadow registers 239 Modbuscccooeieeneieene 192
reading/writing to 1/O regis- SPCRccoeee 130, 200, 201 periodic interrupts 190
TErS (e, 238 SPDXR i 200 Ports E-F synchronous com-
RTCXR oo 92 SPSR . 200, 202 MUNICationccccenene. 183
SAAR e 162 stack pointerccoceeeeene 22 receive serial datatiming 177
SACR ..o 162 status registerccoceeeeene. 22 FEQIStErs .o 160
SADR ..o 162 TACR .o 149, 151 status registers ... 166
SAER ..o 162 TACSR ..o, 149, 150 status registers clock seria
SALR . 162 TAPR . 149, 151 ports (A-D)cccveuenene. 167
SASR e 162 TATXR i 149 transmit serial datatiming 176
SBAR .o 162 TBCLR ..cocoviirrrnen, 153, 155 save portccceeeerienne 53,195
SBCR ..o 162 TBCMR ..o 153 applicationsccoeueneee 202
SBDR ..o 162 TBCR ..o, 153,154 hardware design 200
SBER ..o 162, 163 TBCSRcovvverrne 153,154 messaging protocol 203
SBLR o 162 TBLXR .o, 153,154 Protocolsc.coovevvvnereeenn 202
SBSR . 162 TBMXR ..o, 153,154 R/W cycles ... 196
SCAR oo 162 WDTCR ..o 93 (1= 0[S 1= £ 200
SCCR ..o 162 WDTTR .coiiiiiiivieienieins 94 typical connections 199
SCDR ..ooveereeeieneeieias 162 XPC register 26,27 deepy mode 227,229
SCER .o 162 FESEL ..o 95, 96 soldering guidelines 62
SCLR i 162 specifications
SCSR oo 162 S DC characteristics ... 69
SDAR oo 163 Serial POrtS .ovvvvvrrrereee 11, 157 I/Q buffer_ sinking and sourc-
SDCR ..o 163 9th bit protocols 192 ing limitscccooeerieennn 70
SDDR ...coviereereeenes 163 address registers 164 power consumption 225
SDLR .o 163 baud rates oo 159 spectrum spreader 80, 86
SDSR .o 163 breaks oo 190 EMI mitigation 208
SEAR oo 163 clocked serial ports FEQISErS ... 209
SECR .o 163 (POMSA-D) ..ooovvverr 178 system clockccceveeriennnne, 12
SEDR 163 C|0Ckaj %rlal tlmlng 181 _I_
SE!_R s 163 control registers
serial port address registers (POrtS A=B) ..ooovvvee.. 169 HIMErS coooeeoeseeeeeeeeesen 147
s e 164 control registers Timer A .o 148, 149
serial port control registers (POrts C=D) ..ooovvvee.. 170 TMEr B vovveeeeeeverernn 153
s 169, 170,171 control registers
serial port dataregisters .. 164 (Ports E-F) 171 W
serial port extended asynchro- controlling RS-485 driver and :
NOUS rEgiSters 172 recai ve? 189 watchdog timerccoceeeeeee. 93
serial port extended registers dataand parity bits 159 X
clocked serial mode ... 173 dataregisterso.......... 164
serial port HDLC mode ex- dummy characters 189 XPCregistercoooevinnnnes 26
t.ended registers 174 extended asynchronous mode
serial port HDLC mode status FEQISIENS ..ovverveeerrenns 172
reglsters 168 extended registers clocked se-
serial port long siop regis- rial mode (Ports A-D) 173
t.ers S 165 extra stop bits, parity 190
serial port status registers 166 HDL C mode extended regis-
SESR 163 ters (Ports E_F) 174
SFAR o 163 HDL C mode status registers
SFCR 163 (Pons E_F) 168
User’s Manual 273

274 Rabbit 3000 Microprocessor

	Rabbit 3000® Microprocessor User's Manual
	Table of Contents
	1. Introduction
	1.1 Features and Specifications Rabbit 3000
	1.2 Summary of Rabbit 3000 Advantages
	1.3 Differences Rabbit 3000 vs. Rabbit 2000

	2. Rabbit 3000 Design Features
	2.1 The Rabbit 8-bit Processor vs. Other Processors
	2.2 Overview of On-Chip Peripherals and Features
	2.2.1 5 V Tolerant Inputs
	2.2.2 Serial Ports
	2.2.3 System Clock
	2.2.4 32.768 kHz Oscillator Input
	2.2.5 Parallel I/O
	2.2.6 Slave Port
	2.2.7 Auxiliary I/O Bus
	2.2.8 Timers
	2.2.9 Input Capture Channels
	2.2.10 Quadrature Encoder Inputs
	2.2.11 Pulse Width Modulation Outputs
	2.2.12 Spread Spectrum Clock
	2.2.13 Separate Core and I/O Power Pins

	2.3 Design Standards
	2.3.1 Programming Port
	2.3.2 Standard BIOS

	2.4 Dynamic C Support for the Rabbit

	3. Details on Rabbit Microprocessor Features
	3.1 Processor Registers
	3.2 Memory Mapping
	3.2.1 Extended Code Space
	3.2.2 Separate I and D Space - Extending Data Memory
	3.2.3 Using the Stack Segment for Data Storage
	3.2.4 Practical Memory Considerations

	3.3 Instruction Set Outline
	3.3.1 Load Immediate Data to a Register
	3.3.2 Load or Store Data from or to a Constant Address
	3.3.3 Load or Store Data Using an Index Register
	3.3.4 Register-to-Register Move
	3.3.5 Register Exchanges
	3.3.6 Push and Pop Instructions
	3.3.7 16-bit Arithmetic and Logical Ops
	3.3.8 Input/Output Instructions

	3.4 How to Do It in Assembly Language—Tips and Tricks
	3.4.1 Zero HL in 4 Clocks
	3.4.2 Exchanges Not Directly Implemented
	3.4.3 Manipulation of Boolean Variables
	3.4.4 Comparisons of Integers
	3.4.5 Atomic Moves from Memory to I/O Space

	3.5 Interrupt Structure
	3.5.1 Interrupt Priority
	3.5.2 Multiple External Interrupting Devices
	3.5.3 Privileged Instructions, Critical Sections and Semaphores
	3.5.4 Critical Sections
	3.5.5 Semaphores Using Bit B,(HL)
	3.5.6 Computed Long Calls and Jumps

	4. Rabbit Capabilities
	4.1 Precisely Timed Output Pulses
	4.1.1 Pulse Width Modulation to Reduce Relay Power

	4.2 Open-Drain Outputs Used for Key Scan
	4.3 Cold Boot
	4.4 The Slave Port
	4.4.1 Slave Rabbit As A Protocol UART

	5. Pin Assignments and Functions
	5.1 LQFP Package
	5.1.1 Pinout
	5.1.2 Mechanical Dimensions and Land Pattern

	5.2 Ball Grid Array Package
	5.2.1 Pinout
	5.2.2 Mechanical Dimensions and Land Pattern
	5.2.3 Soldering Guidelines

	5.3 Rabbit Pin Descriptions
	5.4 Bus Timing
	5.5 Description of Pins with Alternate Functions
	5.6 DC Characteristics
	5.7 I/O Buffer Sourcing and Sinking Limit

	6. Rabbit Internal I/O Registers
	6.1 Default Values for all the Peripheral Control Registers

	7. Miscellaneous Functions
	7.1 Processor Identification
	7.2 Rabbit Oscillators and Clocks
	7.3 Clock Doubler
	7.4 Clock Spectrum Spreader
	7.5 Chip Select Options for Low Power
	7.6 Output Pins CLK, STATUS, /WDTOUT, /BUFEN
	7.7 Time/Date Clock (Real-Time Clock)
	7.8 Watchdog Timer
	7.9 System Reset
	7.10 Rabbit Interrupt Structure
	7.10.1 External Interrupts
	7.10.2 Interrupt Vectors: INT0 - EIR,00h/INT1 - EIR,08h

	7.11 Bootstrap Operation
	7.12 Pulse Width Modulator
	7.13 Input Capture
	7.14 Quadrature Decoder

	8. Memory Interface and Mapping
	8.1 Interface for Static Memory Chips
	8.2 Memory Mapping Overview
	8.3 Memory-Mapping Unit
	8.4 Memory Interface Unit
	8.5 Memory Bank Control Registers
	8.5.1 Optional A16, A19 Inversions by Segment (/CS1 Enable)

	8.6 Allocation of Extended Code and Data
	8.7 Instruction and Data Space Support
	8.8 How the Compiler Compiles to Memory

	9. Parallel Ports
	9.1 Parallel Port A
	9.2 Parallel Port B
	9.3 Parallel Port C
	9.4 Parallel Port D
	9.5 Parallel Port E
	9.6 Parallel Port F
	9.6.1 Using Parallel Port A and Parallel Port F

	9.7 Parallel Port G

	10. I/O Bank Control Registers
	11. Timers
	11.1 Timer A
	11.1.1 Timer A I/O Registers
	11.1.2 Practical Use of Timer A

	11.2 Timer B
	11.2.1 Using Timer B

	12. Rabbit Serial Ports
	12.1 Serial Port Register Layout
	12.2 Serial Port Registers
	12.3 Serial Port Interrupt
	12.4 Transmit Serial Data Timing
	12.5 Receive Serial Data Timing
	12.6 Clocked Serial Ports
	12.7 Clocked Serial Timing
	12.7.1 Clocked Serial Timing With Internal Clock
	12.7.2 Clocked Serial Timing with External Clock

	12.8 Synchronous Communications on Ports E and F
	12.9 Serial Port Software Suggestions
	12.9.1 Controlling an RS-485 Driver and Receiver
	12.9.2 Transmitting Dummy Characters
	12.9.3 Transmitting and Detecting a Break
	12.9.4 Using A Serial Port to Generate a Periodic Interrupt
	12.9.5 Extra Stop Bits, Sending Parity, 9th Bit Communication Schemes
	12.9.6 Parity, Extra Stop Bits with 7-Data-Bit Characters
	12.9.7 Parity, Extra Stop Bits with 8-Data-Bit Characters
	12.9.8 Supporting 9th Bit Communication Protocols
	12.9.9 Rabbit-Only Master/Slave Protocol
	12.9.10 Data Framing/Modbus

	13. Rabbit Slave Port
	13.1 Hardware Design of Slave Port Interconnection
	13.2 Slave Port Registers
	13.3 Applications and Communications Protocols for Slaves
	13.3.1 Slave Applications
	13.3.2 Master-Slave Messaging Protocol

	14. Rabbit 3000 Clocks
	14.1 Low-Power Design

	15. EMI Control
	15.1 Power Supply Connections and Board Layout
	15.2 Using the Clock Spectrum Spreader

	16. AC Timing Specifications
	16.1 Memory Access Time
	16.2 I/O Access Time
	16.3 Further Discussion of Bus and Clock Timing
	16.4 Maximum Clock Speeds
	16.5 Power and Current Consumption
	16.6 Current Consumption Mechanisms
	16.7 Sleepy Mode Current Consumption
	16.8 Memory Current Consumption
	16.9 Battery-Backed Clock Current Consumption
	16.10 Reduced-Power External Main Oscillator

	17. Rabbit BIOS and Virtual Driver
	17.1 The BIOS
	17.1.1 BIOS Services
	17.1.2 BIOS Assumptions

	17.2 Virtual Driver
	17.2.1 Periodic Interrupt
	17.2.2 Watchdog Timer Support

	18. Other Rabbit Software
	18.1 Power Management Support
	18.2 Reading and Writing I/O Registers
	18.2.1 Using Assembly Language
	18.2.2 Using Library Functions

	18.3 Shadow Registers
	18.3.1 Updating Shadow Registers
	18.3.2 Interrupt While Updating Registers
	18.3.3 Write-only Registers Without Shadow Registers

	18.4 Timer and Clock Usage

	19. Rabbit Instructions
	19.1 Load Immediate Data
	19.2 Load & Store to Immediate Address
	19.3 8-bit Indexed Load and Store
	19.4 16-bit Indexed Loads and Stores
	19.5 16-bit Load and Store 20-bit Address
	19.6 Register to Register Moves
	19.7 Exchange Instructions
	19.8 Stack Manipulation Instructions
	19.9 16-bit Arithmetic and Logical Ops
	19.10 8-bit Arithmetic and Logical Ops
	19.11 8-bit Bit Set, Reset and Test
	19.12 8-bit Increment and Decrement
	19.13 8-bit Fast A Register Operations
	19.14 8-bit Shifts and Rotates
	19.15 Instruction Prefixes
	19.16 Block Move Instructions
	19.17 Control Instructions - Jumps and Calls
	19.18 Miscellaneous Instructions
	19.19 Privileged Instructions

	20. Differences Rabbit vs. Z80/Z180 Instructions
	21. Instructions in Alphabetical Order With Binary Encoding
	Appendix A.
	A.1 The Rabbit Programming Port
	A.2 Use of the Programming Port as a Diagnostic/Setup Port
	A.3 Alternate Programming Port
	A.4 Suggested Rabbit Crystal Frequencies

	Notice to Users
	Index

