
ZigBee Light Link
User Guide

JN-UG-3091

Revision 1.1

14 August 2013

ZigBee Light Link
User Guide

2 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Contents

About this Manual 9
Organisation 9

Conventions 10

Acronyms and Abbreviations 10

Related Documents 10

Support Resources 11

Trademarks 11

Chip Compatibility 11

Part I: Concept and Development Information

1. Introduction to ZigBee Light Link (ZLL) 15
1.1 ZLL Objectives 15

1.2 ZLL Functionality 16

1.3 Wireless Networking 18

1.4 Touchlink Installation 18

1.5 Energy Saving 19

1.6 Interoperability and Certification 19

1.7 Software Architecture 20

1.8 Network Addresses 20

1.9 Security 21

1.10 Internet Connectivity 21

2. ZLL Devices 23
2.1 Clusters 23

2.2 Lighting Devices 24
2.2.1 On/Off Light 25

2.2.2 On/Off Plug-in Unit 25

2.2.3 Dimmable Light 26

2.2.4 Dimmable Plug-in Unit 26

2.2.5 Colour Light 27

2.2.6 Extended Colour Light 27

2.2.7 Colour Temperature Light 28

2.3 Controller Devices 29
2.3.1 Colour Controller 29

2.3.2 Colour Scene Controller 30

2.3.3 Non-Colour Controller 30
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 3

Contents
2.3.4 Non-Colour Scene Controller 31

2.3.5 Control Bridge 31

2.3.6 On/Off Sensor 32

3. ZLL Application Development 33
3.1 Development Resources and Installation 33

3.2 ZLL Programming Resources 34
3.2.1 Core Resources 34

3.2.2 Cluster-specific Resources 34

3.3 Function Prefixes 35

3.4 Development Phases 35

3.5 Building an Application 36
3.5.1 Compile-Time Options 36

3.5.2 ZigBee Network Parameters 37

3.5.3 Building and Loading the Application Binary 37

4. ZLL Application Coding 39
4.1 ZLL Programming Concepts 39

4.1.1 Shared Device Structures 39

4.1.2 Addressing 41

4.1.3 OS Resources 41

4.2 Initialisation 42

4.3 Callback Functions 43

4.4 Network Formation/Joining 43

4.5 Reading Attributes 44

4.6 Writing Attributes 47

4.7 Handling Stack and Timer Events 50

4.8 Servicing Timing Requirements 51

Part II: ZLL Clusters

5. ZCL Clusters 55
5.1 Basic Cluster 56

5.1.1 Mandatory Attributes for ZLL 56

5.1.2 Compile-Time Options 56

5.2 Identify Cluster 57
5.2.1 Mandatory Attribute for ZLL 57

5.2.2 Enhanced Functionality for ZLL 57

5.2.3 Compile-Time Options 57

5.3 Groups Cluster 58
5.3.1 Mandatory Attribute for ZLL 58
4 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
5.3.2 Compile-Time Options 58

5.4 Scenes Cluster 59
5.4.1 Mandatory Attributes for ZLL 59

5.4.2 Enhanced Functionality for ZLL 59

5.4.3 Compile-Time Options 59

5.5 On/Off Cluster 61
5.5.1 Mandatory Attributes for ZLL 61

5.5.2 Enhanced Functionality for ZLL 61

5.5.3 Compile-Time Options 61

5.6 Level Control Cluster 63
5.6.1 Mandatory Attributes for ZLL 63

5.6.2 Compile-Time Options 63

5.7 Colour Control Cluster 64
5.7.1 Mandatory Attributes for ZLL 64

5.7.2 Enhanced Functionality for ZLL 65

5.7.3 Compile-Time Options 65

6. ZLL Commissioning Cluster 67
6.1 Overview 67

6.2 ZLL Commissioning Cluster Structure and Attributes 68

6.3 Commissioning Operations 68

6.4 Using Touchlink 69
6.4.1 Creating a ZLL Network 70

6.4.2 Adding to an Existing Network 72

6.4.3 Updating Network Settings 73

6.4.4 Stealing a Node 74

6.5 Using the Commissioning Utility 75

6.6 ZLL Commissioning Events (Touchlink) 77
6.6.1 Touchlink Command Events 79

6.6.2 Commissioning Utility Command Events 80

6.7 Functions 80
6.7.1 Touchlink Functions 81

eZLL_RegisterCommissionEndPoint 82

eCLD_ZllCommissionCreateCommission 83

eCLD_ZllCommissionCommandScanReqCommandSend 84

eCLD_ZllCommissionCommandScanRspCommandSend 85

eCLD_ZllCommissionCommandDeviceInfoReqCommandSend 86

eCLD_ZllCommissionCommandDeviceInfoRspCommandSend 87

eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend 88

eCLD_ZllCommissionCommandFactoryResetReqCommandSend 89

eCLD_ZllCommissionCommandNetworkStartReqCommandSend 90

eCLD_ZllCommissionCommandNetworkStartRspCommandSend 91

eCLD_ZllCommissionCommandNetworkJoinRouterReqCommandSend 92

eCLD_ZllCommissionCommandNetworkJoinRouterRspCommandSend 93
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 5

Contents
eCLD_ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend 94

eCLD_ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend 95

eCLD_ZllCommissionCommandNetworkUpdateReqCommandSend 96

6.7.2 Commissioning Utility Functions 97

eCLD_ZllUtilityCreateUtility 98

eCLD_ZllUtilityCommandEndpointInformationCommandSend 99

eCLD_ZllUtilityCommandGetGroupIdReqCommandSend 100

eCLD_ZllUtilityCommandGetGroupIdRspCommandSend 101

eCLD_ZllUtilityCommandGetEndpointListReqCommandSend 102

eCLD_ZllUtilityCommandGetEndpointListRspCommandSend 103

eCLD_ZllUtilityCommandHandler 104

6.8 Structures 105
6.8.1 tsZLL_CommissionEndpoint 105

6.8.2 tsZLL_CommissionEndpointClusterInstances 106

6.8.3 tsCLD_ZllCommissionCustomDataStructure 106

6.8.4 tsCLD_ZllCommissionCallBackMessage 107

6.8.5 tsCLD_ZllCommission_ScanReqCommandPayload 108

6.8.6 tsCLD_ZllCommission_ScanRspCommandPayload 108

6.8.7 tsCLD_ZllCommission_DeviceInfoReqCommandPayload 110

6.8.8 tsCLD_ZllCommission_DeviceInfoRspCommandPayload 111

6.8.9 tsCLD_ZllCommission_IdentifyReqCommandPayload 111

6.8.10tsCLD_ZllCommission_FactoryResetReqCommandPayload 112

6.8.11tsCLD_ZllCommission_NetworkStartReqCommandPayload 112

6.8.12tsCLD_ZllCommission_NetworkStartRspCommandPayload 114

6.8.13tsCLD_ZllCommission_NetworkJoinRouterReqCommandPayload 115

6.8.14tsCLD_ZllCommission_NetworkJoinRouterRspCommandPayload 116

6.8.15tsCLD_ZllCommission_NetworkJoinEndDeviceReqCommandPayload 117

6.8.16tsCLD_ZllCommission_NetworkJoinEndDeviceRspCommandPayload 118

6.8.17tsCLD_ZllCommission_NetworkUpdateReqCommandPayload 119

6.8.18tsCLD_ZllUtilityCustomDataStructure 119

6.8.19tsCLD_ZllUtilityCallBackMessage 120

6.8.20tsCLD_ZllUtility_EndpointInformationCommandPayload 121

6.9 Enumerations 122
6.9.1 Touchlink Event Enumerations 122

6.9.2 Commissioning Utility Event Enumerations 122

6.10 Compile-Time Options 123
6 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Part III: General Reference Information

7. ZLL Core Functions 127
eZLL_Initialise 128

eZLL_Update100mS 129

eZLL_RegisterOnOffLightEndPoint 130

eZLL_RegisterOnOffPlugEndPoint 132

eZLL_RegisterDimmableLightEndPoint 134

eZLL_RegisterDimmablePlugEndPoint 136

eZLL_RegisterColourLightEndPoint 138

eZLL_RegisterExtendedColourLightEndPoint 140

eZLL_RegisterColourTemperatureLightEndPoint 142

eZLL_RegisterColourRemoteEndPoint 144

eZLL_RegisterColourSceneRemoteEndPoint 146

eZLL_RegisterNonColourRemoteEndPoint 148

eZLL_RegisterNonColourSceneRemoteEndPoint 150

eZLL_RegisterControlBridgeEndPoint 152

eZLL_RegisterOnOffSensorEndPoint 154

8. ZLL Structures 157
8.1 Device Structures 157

8.1.1 tsZLL_OnOffLightDevice 157

8.1.2 tsZLL_OnOffPlugDevice 158

8.1.3 tsZLL_DimmableLightDevice 160

8.1.4 tsZLL_DimmablePlugDevice 161

8.1.5 tsZLL_ColourLightDevice 162

8.1.6 tsZLL_ExtendedColourLightDevice 163

8.1.7 tsZLL_ColourTemperatureLightDevice 166

8.1.8 tsZLL_ColourRemoteDevice 167

8.1.9 tsZLL_ColourSceneRemoteDevice 169

8.1.10 tsZLL_NonColourRemoteDevice 170

8.1.11 tsZLL_NonColourSceneRemoteDevice 172

8.1.12 tsZLL_ControlBridgeDevice 173

8.1.13 tsZLL_OnOffSensorDevice 175

8.2 Other Structures 178
8.2.1 tsCLD_ZllDeviceRecord 178
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 7

Contents
8 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
About this Manual

This manual provides an introduction to the ZigBee Light Link (ZLL) application profile
and describes the use of the NXP ZigBee ZLL Application Programming Interface
(API) for the JN5168 and JN5164 wireless microcontrollers. The manual contains both
operational and reference information relating to the ZLL API, including descriptions
of the C functions and associated resources (e.g. structures and enumerations).

The API is designed for use with the NXP ZigBee PRO stack to develop wireless
network applications based on the ZigBee Light Link application profile. For
complementary information, refer to the following sources:

 Information on ZigBee PRO wireless networks is provided in the ZigBee PRO
Stack User Guide (JN-UG-3048), available from NXP.

 The ZLL profile is defined in the ZigBee Light Link Profile Specification
(11-0037-10), available from the ZigBee Alliance at www.zigbee.org.

Organisation

This manual is divided into three parts:

 Part I: Concept and Development Information comprises four chapters:

 Chapter 1 introduces the principles of ZigBee Light Link (ZLL)

 Chapter 2 describes the devices available in the ZLL application profile

 Chapter 3 provides an overview of ZLL application development

 Chapter 4 describes the essential aspects of coding a ZLL application
using NXP’s ZLL Application Programming Interface (API)

 Part II: ZLL Clusters comprises two chapters:

 Chapter 5 describes the ZLL-specific implementation of clusters from the
ZigBee Cluster Library (ZCL)

 Chapter 6 details the ZLL Commissioning cluster, including API resources

 Part III: General Reference Information comprises two chapters:

 Chapter 7 details the ZLL core functions, including initialisation and device
registration functions

 Chapter 8 details general structures of the ZLL API

Important: Clusters that are part of the ZigBee Cluster
Library (ZCL) but used by the ZLL profile are detailed in
the ZCL User Guide (JN-UG-3077) from NXP, which you
should use in conjunction with this manual.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 9

About this Manual
Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations

API Application Programming Interface

SDK Software Developer’s Kit

ZCL ZigBee Cluster Library

ZLL ZigBee Light Link

Related Documents

JN-UG-3048 ZigBee PRO Stack User Guide

JN-UG-3077 ZigBee Cluster Library User Guide

JN-UG-3075 JenOS User Guide

JN-UG-3064 SDK Installation and User Guide

JN-UG-3007 JN51xx Flash Programmer User Guide

JN-AN-1171 ZigBee Light Link Solution Application Note

JN-AN-1194 ZigBee Gateway Application Note

11-0037-10 ZigBee Light Link Profile Specification [from ZigBee Alliance]

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
10 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
075123 ZigBee Cluster Library Specification [from ZigBee Alliance]

Support Resources

To access online support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity

All NXP resources referred to in this manual can be found at the above address,
unless otherwise stated.

Trademarks

All trademarks are the property of their respective owners.

Chip Compatibility

The software described in this manual can be used on the following NXP JN516x
wireless microcontrollers:

 JN5168-001

 JN5164-001
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 11

About this Manual
12 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Part I:
Concept and Development

Information
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 13

14 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
1. Introduction to ZigBee Light Link (ZLL)

The ZigBee Alliance has developed the ZigBee Light Link (ZLL) application profile for
ZigBee PRO in order to meet the needs of lighting solutions in the consumer market.
This chapter introduces the purpose and concepts of ZigBee Light Link before the
NXP implementation is detailed in the rest of this manual.

The ZLL Application Profile ID is 0xC05E and the profile is defined in the ZigBee Light
Link Profile Specification (11-0037-10), available from the ZigBee Alliance. However,
this User Guide together with the ZigBee Cluster Library User Guide (JN-UG-3077)
should provide all the necessary information to use the NXP implementation of the
profile.

1.1 ZLL Objectives

ZigBee Light Link brings wireless technology to lighting solutions for the home,
opening up a new world of lighting to consumers in a user-friendly and accessible way.

The objectives of ZigBee Light Link can be summarised as follows:

 Target the DIY consumer market as well as small professional installations

 Provide an easy and intuitive installation experience

 Provide the consumer with new, rich lighting functionality, including remote
control, programmable timer control and mood lighting

 Allow energy saving (and power cost savings) through occupancy sensing and
energy monitoring

 Provide a framework for interoperability between products from different
manufacturers

The operational principles for attaining the above objectives are described in the
remainder of this chapter.

Note: ZigBee Light Link operates in conjunction with the
ZigBee PRO wireless network protocol. If you are not
already familiar with ZigBee PRO, you are advised to
read at least the first two chapters of the ZigBee PRO
Stack User Guide (JN-UG-3048).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 15

Chapter 1
Introduction to ZigBee Light Link (ZLL)

1.2 ZLL Functionality

A ZigBee Light Link system is a wireless network which contains two general
categories of nodes - those that are used to send control commands, and those that
receive and execute control commands:

 Controller nodes - these may include:

 Light switches (e.g. on walls)

 Occupancy sensors

 Remote control unit(s)

 Smart phones

 Computing devices (e.g. PC or tablet)

 Light (controlled) nodes - these may include:

 Monochrome lamps (in ceiling lights, wall lights, table lamps, etc)

 Colour lamps

Thus, one or more lamps may be controlled (switched on, switched off, dimmed,
colour adjusted) from a controlling node in the system - for example, the user may
choose to dim a table lamp next to the TV from a remote control unit while sitting on
the sofa. An example ZLL system is illustrated in Table 1 on page 17.

The functionality of a ZLL system goes way beyond remotely switching lamps on and
off, or dimming lamps:

 Colour lamps: Advances in LED technology have resulted in the proliferation
of LED-based lights, including colour lamps with configurable colour (as well as
overall brightness). ZLL can be used to remotely control this colour setting.

 Mood lighting: ZLL allows lights to be adjusted to create a certain ‘mood’ or
ambiance, as follows:

 Lamps can be grouped, where a particular group may be selected to
create a certain mood (e.g. watching TV from sofa, reading in favourite
armchair or eating at dining table). A system can support a number of a
groups and an individual lamp may belong to more than one group.

 In connection with groups, the brightness of the individual lamps may be
adjusted to create a ‘scene’ corresponding to a certain mood (e.g. table
lamp next to TV at low brightness, table lamp behind sofa at medium
brightness and spot lamp next to armchair at full brightness). A system can
support a number of scenes.

 Colour settings can be adjusted, as described for colour lamps above.

 Programmable timers: The system can be programmed to automatically
adjust lights at certain times (e.g. to switch an outside light on and off).

ZigBee Light Link allows a home lighting system (such as the one in Figure 1) to be
connected to and controlled from the Internet (see Section 1.10). This enables the
system to be controlled from a smart phone, tablet or PC located inside or outside the
house, via an IP router (gateway).
16 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Figure 1: Example ZLL Network

Bedroom 1 Bedroom 2

Lounge Kitchen

Attic Room

NXP
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 17

Chapter 1
Introduction to ZigBee Light Link (ZLL)

1.3 Wireless Networking

ZigBee Light Link is a public application profile that has been devised by the ZigBee
Alliance to support consumer lighting solutions based on the ZigBee PRO wireless
network protocol. However, unlike a conventional ZigBee PRO network, a ZLL system
does not have a ZigBee Co-ordinator. Instead, network formation/joining is performed
using a special commissoning application, which can be used on any node (usually a
remote control unit).

A Mesh network topology is employed. Therefore, for maximum routing flexibility, all
the network nodes of a ZLL system should be ZigBee Routers (although ZigBee End
Devices are permitted, they cannot perform Mesh routing).

The manufacturer application that runs on a ZLL node provides the interface between
the ZLL profile software and the hardware of the node (e.g. the physical switch
mechanism of a lamp).

The ZLL profile contains a number of ‘devices’, which are ZigBee software entities
used to implement particular functionality on a node - for example, the ‘On/Off Light’
device is used to switch a lamp on and off. The set of devices used in a node
determines the total functionality of the node.

Each ZLL device uses a number of clusters, where most clusters used in the ZLL
profile come from the ZigBee Cluster Library (ZCL). Complete lists of the devices and
associated clusters used by the ZLL profile are provided in Chapter 2.

1.4 Touchlink Installation

A ZLL system is a ZigBee PRO wireless network but benefits from a simplied
installation method in order to appeal to the consumer market. This method is known
as Touchlink and minimises user participation, allowing off-the-shelf products to be
quickly and easily installed by the householder.

Touchlink removes the need for a ZigBee Co-ordinator in the network formation and
join processes. The method uses a special commissioning application (based on the
ZLL Commissioning cluster) which is run on the nodes. The node that initiates the
network formation/join operation is known as the ‘initiator’ - this node will often be a
remote control unit but could be another node, such as a lamp. Touchlink simply
requires the initiator node to be brought close to the node to be included in the network
and the commissioning to be started (e.g. by pressing a button).

Note: The software architecture for ZLL, in terms of a
protocol stack, is described in more detail in Section 1.7.
18 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Commissioning involves three sets of command exchanges between the nodes:

1. Discovery: The initiator node performs a scan for ZLL nodes in its vicinity,
based on received signal strength. This results in a list of detected nodes
which, for each node, includes information on network capabilities, device
type and whether the node is using its factory settings. If more than one node
is found, the application on the initiator must decide which node(s) to
commission.

2. Transfer of network settings: The initiator then requests and receives the
network settings of the node(s) of interest.

3. Request network formation or join: The initiator then requests a node of
interest to either form a new network or join an existing network.

Touchlink employs inter-PAN communication for commissioning messages.

Security settings may also be established during commissioning - see Section 1.9.

1.5 Energy Saving

A ZLL system can result in energy saving and associated cost savings for a
household. The following may be employed to achieve this:

 Scenes and timers: Energy savings can be achieved through the careful
configuration of ‘scenes’ and timers (see Section 1.2), to ensure that no more
energy is consumed than is actually needed.

 Occupancy sensors: Infra-red or movement sensors can be used to switch on
lights only when a person is detected (and switch off the lights when a person is
no longer detected). This method may be very useful for controlling lights in a
corridor or garage, or outside lights.

 Energy monitoring: When used in conjunction with the ZigBee Home
Automation (HA) profile, the power consumption of a ZLL system may be
monitored.

1.6 Interoperability and Certification

ZigBee Light Link provides a framework of interoperability between products from
different manufacturers. This is formalised through a ZLL certification and compliance
programme, in which completed products are tested for compliance to the ZLL profile
and, if successful, are ZLL certified.

Thus, a product developed and certified to the ZLL profile will be able operate with
other certified products in a ZLL system, irrespective of their manufacturers. This is
an important feature for the consumer market targeted by ZLL.

In addition, the ZLL profile is designed to be interoperable at the network layer with
other public ZigBee application profiles, particularly Home Automation (HA).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 19

Chapter 1
Introduction to ZigBee Light Link (ZLL)

1.7 Software Architecture

ZigBee Light Link operates in conjunction with the ZigBee PRO wireless network
protocol. The software stack which runs on each ZLL node is illustrated in Figure 2.

The main features of the above stack are as follows:

 The (manufacturer) application uses the ZLL profile, interfaces to the
underlying ZigBee PRO stack layers and controls the lighting hardware of the
node. The ZLL profile includes:

 ZLL commissioning (including Touchlink) - see Section 1.4

 ZLL security - see Section 1.9

 ZLL resources (ZCL clusters and extensions)

Manufacturer-specific extensions can also be used to supplement ZLL.

 The normal ZigBee PRO stack layers are supplemented by a stub to support
inter-PAN communications. The ZigBee PRO stack layers are described in the
ZigBee PRO Stack User Guide (JN-UG-3048).

1.8 Network Addresses

ZLL networks use 16-bit network (short) addresses to identify nodes. The assignment
of network addresses to nodes in a ZLL network is not performed in the same way as
in a classic ZigBee PRO network, in that this assignment is not random. Only a ZLL
controller device (see Section 1.8) is able to assign network addresses, from an
allocated range of possible addresses. If another controller device is added to the

Figure 2: ZLL Software Stack

Application

ZLL
Commissioning

(Inter-PAN)
ZLL Security

ZCL and
extensions

ZLL Profile

Manufacturer-specific
extensions

IEEE 802.15.4 MAC and PHY layers

Stub for inter-PAN
communication ZigBee PRO stack layers
20 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
network, it will inherit a portion of this address range for its own allocation, where this
portion is specified in the join request for the new node. For more information on
network address assignment in ZLL networks, refer to the section “Network address
assignment” in the ZLL Specification.

1.9 Security

ZigBee Light Link cannot use ZigBee security in its standard form, since there is no
Co-ordinator or Trust Centre in a ZLL system. ZLL uses a network-level security in
which the same network key is used by all nodes in the network to encrypt/decrypt
communications between them.

The network key is generated randomly by the initiator node when the network is
formed (see Section 1.4) and is unique to the network. The distribution of this network
key to nodes subsequently joining the network is secured using the ZLL master key
which is pre-installed in all ZLL-certified nodes during manufacture.

The security set-up process during the commissioning of a node (after the node has
been detected and its network settings obtained) is as follows:

1. If the target node is to be the first node of the network (network formation), the
initiator node generates a random network key and encrypts it using the ZLL
master key (and stores the encrypted network key locally).

2. The initiator node sends the encypted network key to the target node as part
of the request to form or join the network.

3. The target node decrypts the received network key using the ZLL master key
(and stores the network key locally).

4. All future communications from/to this node will be encrypted with the network
key.

1.10 Internet Connectivity

ZigBee Light Link offers the possibility of controlling the lights in a ZLL system via the
Internet. Thus, this control can be performed from any Internet-connected device (PC,
tablet, smart phone) located anywhere in the World (e.g. while on holiday in another
country).

Access from the Internet requires the ZLL system to include an IP router or gateway
(connected to the Internet) as one of the network nodes. A gateway solution is
described in the Application Note ZigBee Gateway (JN-AN-1194), available from NXP.

In addition to the real-time control of a ZLL system over the Internet, the system could
also be configured from a device on the Internet (e.g. groups, scenes and timers).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 21

Chapter 1
Introduction to ZigBee Light Link (ZLL)

22 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
2. ZLL Devices

This chapter details the ZigBee devices available in the ZigBee Light Link profile and
the clusters that they use. The ZLL devices are divided into two categories:

 Lighting devices: These are used in ZLL light nodes, such as a lamp, and are
described in Section 2.2.

 Controller devices: These are used in ZLL controller nodes, such as a remote
control unit, and are described in Section 2.3.

In the sections referenced above, the server clusters and client clusters used on each
ZLL device are listed. First, all the clusters used in the ZLL devices are introduced in
Section 2.1.

2.1 Clusters

The ZLL profile uses certain clusters from the ZigBee Cluster Library (ZCL) and also
defines a cluster of its own. All the clusters used by the ZLL profile are listed in Table 1
and outlined below. In the table, the clusters from the ZCL and the one defined by the
ZLL profile are listed separately.

Note: All ZLL devices use the Basic cluster (from the
ZCL) as a server cluster. This cluster is detailed in the
ZCL User Guide (JN-UG-3077).

Category Cluster Cluster ID

ZCL Basic 0x0000

Identify 0x0003

Groups 0x0004

Scenes 0x0005

On/Off 0x0006

Level Control 0x0008

Colour Control 0x0300

ZLL ZLL Commissioning 0x1000

Table 1: Clusters used by ZLL

Note : The ZLL Commissioning cluster is detailed in this
manual (Chapter 6). Only essential information on the
ZCL clusters is given in this manual (Chapter 5) - they
are fully detailed in the ZCL User Guide (JN-UG-3077).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 23

Chapter 2
ZLL Devices

2.2 Lighting Devices

This section details the clusters used by the ZLL lighting devices. These software
devices are included in the physical ZLL nodes that are controlled, e.g. lamps.

The ZLL lighting devices and their Device IDs are summarised in Table 2 below. The
table also indicates whether each device can support either one or both of the ZLL
Commissioning cluster server and ZLL Comissioning cluster client.

ZLL Device Device ID
ZLL Commissioning Cluster

Reference
Server Server/Client Client

On/Off Light 0x0000 Section 2.2.1

On/Off Plug-in Unit 0x0010 Section 2.2.2

Dimmable Light 0x0100 Section 2.2.3

Dimmable Plug-in Unit 0x0110 Section 2.2.4

Colour Light 0x0200 Section 2.2.5

Extended Colour Light 0x0210 Section 2.2.6

Colour Temperature Light 0x0220 Section 2.2.7

Table 2: ZLL Lighting Devices

Note 1: All clusters used by the ZLL lighting devices are
server-side clusters.

Note 2: None of the ZLL lighting devices needs to
support the ‘utility’ functionality of the ZLL
Commissioning cluster.
24 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
2.2.1 On/Off Light

The On/Off Light device is typically used in nodes that contain a lamp which can simply
be switched on and off.

Its Device ID is 0x0000.

The clusters supported by this device are as follows:

2.2.2 On/Off Plug-in Unit

The On/Off Plug-in Unit device is typically used in nodes that contain a controllable
mains plug or adaptor which includes an On/Off switch.

Its Device ID is 0x0010.

The clusters supported by this device are as follows:

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

Scenes

On/Off

Table 3: Clusters for On/Off Light Device

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

Scenes

On/Off

Table 4: Clusters for On/Off Plug-in Unit Device
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 25

Chapter 2
ZLL Devices

2.2.3 Dimmable Light

The Dimmable Light device is typically used in nodes that contain a lamp with
adjustable brightness.

Its Device ID is 0x0100.

The clusters supported by this device are as follows:

2.2.4 Dimmable Plug-in Unit

The Dimmable Plug-in Unit device is typically used in nodes that contain a controllable
mains plug or adaptor which includes an adjustable output (to a lamp).

Its Device ID is 0x0110.

The clusters supported by this device are as follows:

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

Scenes

On/Off

Level Control

Table 5: Clusters for Dimmable Light Device

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

Scenes

On/Off

Level Control

Table 6: Clusters for Dimmable Plug-in Unit Device
26 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
2.2.5 Colour Light

The Colour Light device is typically used in nodes that contain a colour lamp with
adjustable colour and brightness. This device supports a range of colour parameters,
including hue/saturation, enhanced hue, colour loop and XY.

Its Device ID is 0x0200.

The clusters supported by this device are as follows:

2.2.6 Extended Colour Light

The Extended Colour Light device is typically used in nodes that contain a colour lamp
with adjustable colour and brightness. This device supports colour temperature, in
addition to the colour parameters supported by the Colour Light device (see Section
2.2.5).

Its Device ID is 0x0210.

The clusters supported by this device are as follows:

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

Scenes

On/Off

Level Control

Colour Control

Table 7: Clusters for Colour Light Device

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

Scenes

On/Off

Level Control

Colour Control

Table 8: Clusters for Extended Colour Light Device
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 27

Chapter 2
ZLL Devices

2.2.7 Colour Temperature Light

The Colour Temperature Light device is typically used in nodes that contain a colour
lamp with adjustable colour (and brightness) which operates using colour
temperature.

Its Device ID is 0x0220.

The clusters supported by this device are as follows:

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

Scenes

On/Off

Level Control

Colour Control

Table 9: Clusters for Colour Temperature Light Device
28 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
2.3 Controller Devices

This section details the clusters used by the ZLL controller devices. These software
devices are included in the physical ZLL nodes that issue control commands, e.g. a
remote control unit.

The ZLL controller devices and their Device IDs are summarised in Table 10 below.
The table also indicates whether each device can support either one or both of the ZLL
Commissioning cluster server and ZLL Comissioning cluster client.

2.3.1 Colour Controller

The Colour Controller device is typically used in nodes that issue ZLL colour-control
commands, e.g. a remote control unit for colour lamps.

Its Device ID is 0x0800.

The clusters supported by this device are as follows:

ZLL Device Device ID
ZLL Commissioning Cluster

Reference
Server Server/Client Client

Colour Controller 0x0800 Section 2.3.1

Colour Scene Controller 0x0810 Section 2.3.2

Non-Colour Controller 0x0820 Section 2.3.3

Non-Colour Scene Controller 0x0830 Section 2.3.4

Control Bridge 0x0840 Section 2.3.5

On/Off Sensor 0x0850 Section 2.3.6

Table 10: ZLL Controller Devices

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

On/Off

Level Control

Colour Control

ZLL Commissioning ZLL Commissioning

Table 11: Clusters for Colour Controller Device
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 29

Chapter 2
ZLL Devices

2.3.2 Colour Scene Controller

The Colour Scene Controller device is typically used in nodes that issue ZLL colour-
control commands and that support ‘scenes’, e.g. a remote control unit for colour
lamps.

Its Device ID is 0x0810.

The clusters supported by this device are as follows:

2.3.3 Non-Colour Controller

The Non-Colour Controller device is typically used in nodes that issue ZLL control
commands that are not related to colour, e.g. a remote control unit for monochome
lamps.

Its Device ID is 0x0820.

The clusters supported by this device are as follows:

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

Scenes

On/Off

Level Control

Colour Control

ZLL Commissioning ZLL Commissioning

Table 12: Clusters for Colour Scene Controller Device

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

On/Off

Level Control

ZLL Commissioning ZLL Commissioning

Table 13: Clusters for Non-Colour Controller Device
30 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
2.3.4 Non-Colour Scene Controller

The Non-Colour Scene Controller device is typically used in nodes that issue ZLL
control commands that are not related to colour and that support ‘scenes’, e.g. a
remote control unit for monochome lamps.

Its Device ID is 0x0830.

The clusters supported by this device are as follows:

2.3.5 Control Bridge

The Control Bridge device is typically used in nodes that relay ZLL control commands
issued from another network, e.g. an Internet router with a ZLL interface.

Its Device ID is 0x0840.

The clusters supported by this device are as follows:

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

Scenes

On/Off

Level Control

ZLL Commissioning ZLL Commissioning

Table 14: Clusters for Non-Colour Scene Controller Device

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

Scenes

On/Off

Level Control

Colour Control

ZLL Commissioning ZLL Commissioning

Table 15: Clusters for Control Bridge Device
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 31

Chapter 2
ZLL Devices

2.3.6 On/Off Sensor

The On/Off Sensor device is typically used in sensor nodes that issue ZLL control
commands, e.g. an infra-red occupancy sensor.

Its Device ID is 0x0850.

The clusters supported by this device are as follows:

Server (Input) Side Clusters Client (Output) Side Clusters

Basic

Identify

Groups

Scenes

On/Off

Level Control

Colour Control

ZLL Commissioning ZLL Commissioning

Table 16: Clusters for On/Off Sensor Device
32 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
3. ZLL Application Development

This chapter provides basic guidance on developing a ZigBee Light Link application.
The topics covered in this chapter include:

 Development resources and their installation (Section 3.1)

 ZLL programming resources (Section 3.2)

 API functions (Section 3.3)

 Development phases (Section 3.4)

 Building an application (Section 3.5)

Application coding is described separately in Chapter 4.

3.1 Development Resources and Installation

NXP provide a wide range of resources to aid in the development of ZigBee Light Link
applications for the JN5168 and JN5164 wireless microcontrollers. A ZLL application
is developed as a ZigBee PRO application that uses the NXP ZigBee PRO APIs in
conjunction with JenOS (Jennic Operating System), together with ZLL-specific and
ZCL resources. All resources are available from the NXP Wireless Connectivity
TechZone (see “Support Resources” on page 11) and are outlined below.

The resources for developing a ZigBee Light Link application are supplied free-of-
charge in a Software Developer’s Kit (SDK), which is provided as two installers:

 ZLL SDK (JN-SW-4062): This installer contains the ZigBee PRO stack and
ZLL profile software, including a number of C APIs:

 ZLL and ZCL APIs

 ZigBee PRO APIs

 JenOS APIs

 JN516x Integrated Peripherals API

In addition, the ZPS and JenOS Configuration Editors are provided in this
installer.

 SDK Toolchain (JN-SW-4041): This installer contains the tools that you will
use in creating an application, including:

 Eclipse IDE (Integrated Development Environment)

 JN51xx compiler

 JN51xx Flash Programmer

 Cygwin Command Line Interface (CLI)

For full details of the SDK and installation instructions, refer to the SDK Installation and
User Guide (JN-UG-3064). The SDK is normally installed into the directory C:/Jennic.

A ZLL demonstration application is provided in the Application Note ZigBee Light Link
Solution (JN-AN-1171), available from the Wireless Connectivity TechZone.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 33

Chapter 3
ZLL Application Development

3.2 ZLL Programming Resources

The NXP ZLL API contains a range of resources (functions, structures, etc), including:

 Core resources (e.g. for initialising the API and registering device endpoints)

 Cluster-specific resources

These resources are introduced in the sub-sections below.

3.2.1 Core Resources

The core resources of the ZLL profile handle the basic operations required in a ZLL
network, irrespective of the clusters used. Some of these resources are provided in
the ZLL API, and some are provided in the ZCL and ZigBee PRO APIs.

 Functions for the following operations are provided in the ZLL API and are
detailed in Chapter 7:

 Initialising the ZLL API (one function)

 Registering a device endpoint on a ZLL node (one function per device)

 Functions for the following operations are provided in the ZCL and are detailed
in the ZCL User Guide (JN-UG-3077):

 Requesting a read access to cluster attributes on a remote device

 Requesting a write access to cluster attributes on a remote device

 Handling events on a ZLL device

Use of the above functions is described in Chapter 4.

3.2.2 Cluster-specific Resources

A ZLL device uses certain mandatory and optional ZigBee clusters (for details, refer
to Chapter 2). The clusters supported by the NXP ZLL software are listed below.

 Clusters from the ZCL are as follows (also refer to Chapter 5):

 Basic

 Identify

 Groups

 Scenes

 On/Off

 Level Control

 Colour Control

 Clusters from the ZLL profile are:

 ZLL Commissioning (see Chapter 6)
34 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
3.3 Function Prefixes

The API functions used in ZLL are categorised and prefixed in the following ways:

 ZLL functions: Used to interact with the ZLL profile and prefixed with xZLL_

 ZCL functions: Used to interact with the ZCL and prefixed with xZCL_

 Cluster functions: Used to interact with clusters and prefixed as follows:

 For clusters defined in the ZLL specification, they are prefixed with xZLL_

 For clusters defined in the ZCL specification, they are prefixed with xCLD_

In the above prefixes, x represents one or more characters that indicate the return
type, e.g. “v” for void.

Only functions that are ZLL-specific are detailed in this manual. Functions which relate
to clusters of the ZCL are detailed in the ZCL User Guide (JN-UG-3077).

3.4 Development Phases

The main phases of development for a ZLL application are the same as for any ZigBee
PRO application, and are outlined below.

1. Network Configuration: Configure the ZigBee network parameters for the
nodes using the ZPS Configuration Editor - refer to the ZigBee PRO Stack
User Guide (JN-UG-3048).

2. OS Configuration: Configure the JenOS resources to be used by your
application using the JenOS Configuration Editor - refer to the JenOS User
Guide (JN-UG-3075).

3. Application Code Development: Develop the application code for your
nodes using the ZigBee PRO APIs, JenOS APIs, ZLL API and ZCL - refer to
the ZigBee PRO Stack User Guide (JN-UG-3048), JenOS User Guide
(JN-UG-3075) and ZCL User Guide (JN-UG-3077), as well as this manual.

4. Application Build: Build the application binaries for your nodes using the
JN51xx compiler and linker built into the Eclipse platform - refer to Section 3.5
and to the SDK Installation and User Guide (JN-UG-3064).

5. Node Programming: Load the application binaries into Flash memory on
your nodes using the JN51xx Flash programmer, which can be launched
either from within Eclipse or directly, and is described in the JN51xx Flash
Programmer User Guide (JN-UG-3007).

Note: Before starting your ZLL application development,
you should familiarise yourself with the general aspects
of ZigBee PRO application development, described in
the ZigBee PRO Stack User Guide (JN-UG-3048).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 35

Chapter 3
ZLL Application Development

3.5 Building an Application

This section outlines how to build a ZLL application developed for the JN5168/JN5164
device. First of all, the configuration of compile-time options and ZigBee network
parameters is described, and then directions are given for building and loading the
application.

3.5.1 Compile-Time Options

Before the application can be built, the ZLL compile-time options must be configured
in the header file zcl_options.h for the application. This header file is supplied in the
Application Note ZigBee Light Link Solution (JN-AN-1171), which can be used as a
template.

Number of Endpoints

The highest numbered endpoint used by the ZLL application must be specified - for
example:

#define ZLL_NUMBER_OF_ENDPOINTS 3

Normally, the endpoints starting at endpoint 1 will be used for ZLL, so in the above
case endpoints 1 to 3 will be used for ZLL. It is possible, however, to use the lower
numbered endpoints for non-ZLL purposes, e.g. to run other protocols on endpoints 1
and 2, and ZLL on endpoint 3. In this case, with ZLL_NUMBER_OF_ENDPOINTS set
to 3, some storage will be statically allocated by ZLL for endpoints 1 and 2 but never
used. Note that this define applies only to local endpoints - the application can refer to
remote endpoints with numbers beyond the locally defined value of
ZLL_NUMBER_OF_ENDPOINTS.

Enabled Clusters

All required clusters must be enabled in the options header file. For example, an
application for an On/Off Light device that uses all the possible clusters will require the
following definitions:

#define CLD_BASIC

#define CLD_IDENTIFY

#define CLD_GROUPS

#define CLD_SCENES

#define CLD_ONOFF

#define CLD_ZLL_COMMISSION

Server and Client Options

Many clusters used in ZLL have options that indicate whether the cluster will act as a
server or a client on the local device. If the cluster has been enabled using one of the
above definitions, the server/client status of the cluster must be defined. For example,
to employ the Groups cluster as a server, include the following definition in the header
file:

#define GROUPS_SERVER
36 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Support for Attribute Read/Write

Read/write access to cluster attributes must be explicitly compiled into the application,
and must be enabled separately for the server and client sides of a cluster using the
following macros in the options header file:

#define ZCL_ATTRIBUTE_READ_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_READ_CLIENT_SUPPORTED

#define ZCL_ATTRIBUTE_WRITE_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_WRITE_CLIENT_SUPPORTED

Note that each of the above definitions will apply to all clusters used in the application.

Optional Attributes

Many clusters have optional attributes that may be enabled at compile-time via the
options header file - for example, the Basic cluster ‘application version’ attribute is
enabled as follows:

#define CLD_BAS_ATTR_APPLICATION_VERSION

3.5.2 ZigBee Network Parameters

ZLL applications may require specific settings of certain ZigBee network parameters.
These parameters are set using the ZPS Configuration Editor. The full set of ZigBee
network parameters are detailed in the ZigBee PRO Stack User Guide (JN-UG-3048).

3.5.3 Building and Loading the Application Binary

A ZLL application for the JN5168/JN5164 device is built like any other ZigBee PRO
application. The build is normally carried out using the Eclipse IDE. This is the method
that we recommend, although it is also possible to use makefiles directly from the
command line (Cygwin).

For instructions on building an application in the Eclipse IDE, refer to the SDK
Installation and User Guide (JN-UG-3064). This guide also indicates how to load the
built application binary file into a node using the JN51xx Flash Programmer launched
from within Eclipse. Alternatively, you can use the JN51xx Flash Programmer directly.
In either case, you will need to refer to the JN51xx Flash Programmer User Guide
(JN-UG-3007) as part of this procedure.

Note: Cluster-specific compile-time options are detailed
in the chapters for the individual clusters in Part II: ZLL
Clusters. For clusters from the ZCL, refer to the ZCL
User Guide (JN-UG-3077).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 37

Chapter 3
ZLL Application Development

38 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
4. ZLL Application Coding

This chapter covers general aspects of ZLL application coding, including essential ZLL
programming concepts, code initialisation, callback functions, reading and writing
attributes, and event handling. Application coding that is particular to individual
clusters is described later, in the relevant cluster-specific chapter.

4.1 ZLL Programming Concepts

This section describes the essential programming concepts that are needed in ZLL
application development. The basic operations in a ZLL network are concerned with
reading and setting the attribute values of the clusters of a device.

4.1.1 Shared Device Structures

In each ZLL device, attribute values are exchanged between the application and the
ZLL library by means of a shared structure. This structure is protected by a mutex
(described in the ZCL User Guide (JN-UG-3077)). The structure for a particular ZLL
device contains structures for the clusters supported by that device (see Chapter 2).
The available device structures are detailed in Section 8.1.

A shared device structure may be used in either of the following ways:

 The local application writes attribute values to the structure, allowing the
ZigBee Cluster Library (ZCL) to respond to commands relating to these
attributes.

 The ZCL parses incoming commands that write attribute values to the
structure. The written values can then be read by the local application.

Remote read and write operations involving a shared device structure are illustrated
in Figure 3 below. For more detailed descriptions of these operations, refer to Section
4.5 and Section 4.6.

Note: ZCL API functions referenced in this chapter are
fully described in the ZCL User Guide (JN-UG-3077).

Note: In order to use a cluster which is supported by a
device, the relevant option for the cluster must be
specified at build-time - see Section 3.5.1.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 39

Chapter 4
ZLL Application Coding

Figure 3: Operations using Shared Device Structure

Note: If there are no remote writes to the attributes of a
cluster server, these attributes are maintained only by
the local application(s). The equivalent attributes of a
cluster client on another device are copies of these
cluster server attributes (remotely read from the server).

Read
Command

Response

Server Device

Device
Structure

Application

WriteRead

Client Device

Device
Structure
(Copy)

Application

Read Write

Read Request

ZCLZCL

Reading Remote Attributes

Write
Command

Server Device

Device
Structure

Application

Read
Write

Client Device

Device
Structure
(Copy)

Application

Write Read

Write Request

ZCLZCL

Writing Remote Attributes

Response

Application requests read of attribute values from device
structure on remote server and ZCL sends request .
ZCL receives response, writes received attribute values to
local copy of device structure and generates events (which
can prompt application to read attributes from structure).

1.

4.

If necessary, application first updates attribute values in
device structure.
ZCL reads requested attribute values from device structure
and then returns them to requesting client .

2.

3.

Application writes new attribute values to local copy of device
structure for remote server.
ZCL sends 'write attributes' request to remote server.
ZCL can receive optional response and generate events
for the application (that indicate any unsuccessful writes).

1.

2.
5.

ZCL writes received attribute values to device structure and
optionally sends response to client.
If required, application can then read new attribute values
from device structure.

3.

4.

Event (s)

Event (s)
40 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
4.1.2 Addressing

Communications between devices in a ZLL network are performed using standard
ZigBee PRO mechanisms. A brief summary is provided below.

In order to perform an operation (e.g. a read) on a remote node in a ZigBee PRO
network, a command must be sent from the relevant output (or client) cluster on the
local node to the relevant input (or server) cluster on the remote node.

At a higher level, an application (and therefore the ZLL device and supported clusters)
is associated with a unique endpoint, which acts as the I/O port for the application on
the node. Therefore, a command is sent from an endpoint on the local node to the
relevant endpoint(s) on the remote node.

The destination node(s) and endpoint(s) must be identified by the sending application.
The endpoints on each node are numbered from 1 to 240. The target node(s) can be
addressed in a number of different ways, listed below.

 64-bit IEEE/MAC address

 16-bit ZigBee network (short) address

 16-bit group address, relating to a pre-specified group of nodes and endpoints

 A binding, where the source endpoint has been pre-bound to the remote
node(s) and endpoint(s)

 A broadcast, in which the message is sent to all nodes of a certain type, one of:

 all Routers

 all End Devices

 only End Devices for which the radio receiver stays on when they are idle

A destination address structure, tsZCL_Address, is defined in the ZCL and is
detailed in the ZCL User Guide (JN-UG-3077). Enumerations are provided for the
addressing mode and broadcast mode in this structure, and are also detailed in the
above manual.

4.1.3 OS Resources

The ZLL library and ZCL require OS resources, such as tasks and mutexes. These
resources are provided by JenOS (Jennic Operating System), supplied in the ZLL
SDK.

The JenOS resources for an application are allocated using the JenOS Configuration
Editor, which is provided as an NXP-specific plug-in for the Eclipse IDE. Use of the
JenOS Configuration Editor for a ZLL application should be based on the ZLL
demonstration application (rather than on the standard ZigBee PRO stack template)
to ensure that the extra JenOS resources required by the ZLL profile and the ZCL are
available.

A JenOS mutex protects the shared structure that holds the cluster attribute values for
a device (see Section 4.1.1 above). The ZCL invokes an application callback function
to lock and unlock this mutex. The mutex should be used in conjunction with the
counting mutex code provided in the appendix of the ZCL User Guide (JN-UG-3077).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 41

Chapter 4
ZLL Application Coding

The software for this mutex operation is contained in the ZLL demonstration
application.

The task that the ZLL library and ZCL use to process incoming messages is defined
in the ZLL demonstration application. Callbacks from the ZLL library and ZCL to the
application will be in the context of this task. The ZLL demonstration application has a
separate task for the user application code. This task also links to the shared-structure
mutex in the JenOS configuration so that it can use critical sections to protect access
to the shared structures.

Only data events addressed to the correct ZigBee profile, endpoint and cluster are
processed by the ZCL, possibly with the aid of a callback function. Stack and data
events that are not addressed to a ZLL endpoint are handled by the application
through a callback function. All events are first passed into the ZCL using the function
vZCL_EventHandler(). The ZCL either processes the event or passes it to the
application, invoking the relevant callback function (refer to Section 4.3 for information
on callback functions and to Section 4.7 for more details on event handling).

If the ZCL consumes a data event, it will free the corresponding Protocol Data Unit
(PDU), otherwise it is the responsibility of the application to free the PDU.

4.2 Initialisation

A ZLL application is initialised like a normal ZigBee PRO application, as described in
the section “Forming a Network” of the ZigBee PRO Stack User Guide (JN-UG-3048),
except there is no need to explicitly start the ZigBee PRO stack using the function
ZPS_eAplZdoStartStack(). In addition, some ZLL initialisation must be performed in
the application code.

The ZLL initialisation functions mentioned below must be called after calling
ZPS_eAplAfInit():

1. First initialise the ZLL library and ZCL using the function eZLL_Initialise().
This function requires you to specify a user-defined callback function for
handling stack events (see Section 4.3), as well as a pool of APDUs
(Application Protocol Data Units) for sending and receiving data.

2. Now set up the ZLL device(s) handled by your code. Each ZLL device on the
node must be allocated a unique endpoint (in the range 1-240). In addition, its
device structure must be registered, as well as a user-defined callback
function that will be invoked by the ZLL library when an event occurs relating
to the endpoint (see Section 4.3). All of this is done using a registration
function for the ZLL device type - for example, in the case of a Dimmable Light
device, the required function is eZLL_RegisterDimmableLightEndPoint().

Note: The set of endpoint registration functions for the
different ZLL device types are detailed in Chapter 7.
42 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
4.3 Callback Functions

Two types of user-defined callback function must be provided (and registered as
described in Section 4.2):

 Endpoint Callback Function: A callback function must be provided for each
endpoint used, where this callback function will be invoked when an event
occurs (such as an incoming message) relating to the endpoint. The callback
function is registered with the ZLL library when the endpoint is registered using
the registration function for the ZLL device type that the endpoint supports - for
example, using eZLL_RegisterOnOffLightEndPoint() for an On/Off Light
device (see Chapter 7).

 General Callback Function: Events that do not have an associated endpoint
are delivered via a callback function that is registered with the ZLL library
through the function eZLL_Initialise(). For example, stack leave and join
events can be received by the application through this callback function.

The endpoint callback function and general callback function both have the type
definition given below:

typedef void (* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

The callback events are detailed in the ZCL User Guide (JN-UG-3077) and event
handling is further described in Section 4.7.

4.4 Network Formation/Joining

The formation of a ZLL network is handled by the Touchlink feature (see Section 1.4).
A node is added to the network using a special node called an ‘initiator’, which is
usually a remote control unit. Touchlink uses the ZLL Commissioning cluster, which is
fully detailed in Chapter 6 (Touchlink installation is described in Section 6.4).

As part of the Touchlink installation of a node, the initiator obtains the following
information from the joining node:

 endpoint number of ZLL application

 device type

 network address

 IEEE/MAC address

The initiator stores this information in an endpoint table for the application.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 43

Chapter 4
ZLL Application Coding

4.5 Reading Attributes

Attributes can be read using a general ZCL function, or using a ZLL or ZCL function
which is specific to the target cluster. The cluster-specific functions for reading
attributes are covered in the chapters of this manual that describe the supported
clusters or in the ZCL User Guide (JN-UG-3077). Note that read access to cluster
attributes must be explicitly enabled at compile-time as described in Section 3.5.1.

The remainder of this section describes the use of the ZCL function
eZCL_SendReadAttributesRequest() to send a ‘read attributes’ request, although
the sequence is similar when using the cluster-specific ‘read attributes’ functions. The
resulting activities on the source and destination nodes are outlined below and
illustrated in Figure 4. Note that instances of the shared device structure (which
contains the relevant attributes) exist on both the source and destination nodes. The
events generated from a ‘read attributes’ request are further described in Section 4.7.

1. On Source Node (Client)

The function eZCL_SendReadAttributesRequest() is called to submit a request to
read one or more attributes on a cluster on a remote node. The information required
by this function includes the following:

 Source endpoint (from which the read request is to be sent)

 Address of destination node for request

 Destination endpoint (on destination node)

 Identifier of the cluster containing the attributes [enumerations provided]

 Number of attributes to be read

 Array of identifiers of attributes to be read [enumerations provided]

2. On Destination Node (Server)

On receiving the ‘read attributes’ request, the ZCL software on the destination node
performs the following steps:

1. Generates an E_ZCL_CBET_READ_REQUEST event for the destination
endpoint callback function which, if required, can update the shared device
structure that contains the attributes to be read, before the read takes place.

2. Generates an E_ZCL_CBET_LOCK_MUTEX event for the endpoint callback
function, which should lock the mutex that protects the shared device
structure - for information on mutexes, refer to the ZCL User Guide
(JN-UG-3077)

3. Reads the relevant attribute values from the shared device structure and
creates a ‘read attributes’ response message containing the read values.

4. Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

5. Sends the ‘read attributes’ response to the source node of the request.
44 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
3. On Source Node (Client)

On receiving the ‘read attributes’ response, the ZCL software on the source node
performs the following steps:

1. Generates an E_ZCL_CBET_LOCK_MUTEX event for the source endpoint
callback function, which should lock the mutex that protects the relevant
shared device structure on the source node.

2. Writes the new attribute values to the shared device structure on the source
node.

3. Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

4. For each attribute listed in the ‘read attributes’ response, it generates an
E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE message for
the source endpoint callback function, which may or may not take action on
this message.

5. On completion of the parsing of the ‘read attributes’ response, it generates a
single E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE message for the
source endpoint callback function, which may or may not take action on this
message.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 45

Chapter 4
ZLL Application Coding

Figure 4: ‘Read Attributes’ Request and Response

Note: The ‘read attributes’ requests and responses
arrive at their destinations as data messages. Such a
message triggers a stack event of the type
ZPS_EVENT_APS_DATA_INDICATION, which is
handled as described in Section 4.7.

Endpoint ZCL ZCL Endpoint

'Read Attributes' Message

READ_REQUEST
'Read Attributes' Request

LOCK_MUTEX

Read Attribute Values

UNLOCK_MUTEX

'Read Attributes' Response
LOCK_MUTEX

Write Attribute Values

UNLOCK_MUTEX

READ_INDIVIDUAL_
ATTRIBUTE_RESPONSE

READ_ATTRIBUTES
_RESPONSE

Source Node Destination Node

Shared
Structure

Local
Shared
Structure
46 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
4.6 Writing Attributes

The ability to write attribute values to a remote cluster is required by ZLL controller
devices. Normally, a ‘write attributes’ request is sent from a client cluster to a server
cluster, where the relevant attributes in the shared device structure are updated. Note
that write access to cluster attributes must be explicitly enabled at compile-time as
described in Section 3.5.1.

Three ‘write attributes’ functions are provided in the ZCL:

 eZCL_SendWriteAttributesRequest(): This function sends a ‘write attributes’
request to a remote device, which attempts to update the attributes in its shared
structure. The remote device generates a ‘write attributes’ response to the
source device, indicating success or listing error codes for any attributes that it
could not update.

 eZCL_SendWriteAttributesNoResponseRequest(): This function sends a
‘write attributes’ request to a remote device, which attempts to update the
attributes in its shared structure. However, the remote device does not
generate a ‘write attributes’ response, regardless of whether there are errors.

 eZCL_SendWriteAttributesUndividedRequest(): This function sends a ‘write
attributes’ request to a remote device, which checks that all the attributes can
be written to without error:

 If all attributes can be written without error, all the attributes are updated.

 If any attribute is in error, all the attributes are left at their existing values.

The remote device generates a ‘write attributes’ response to the source device,
indicating success or listing error codes for attributes that are in error.

The activities surrounding a ‘write attributes’ request on the source and destination
nodes are outlined below and illustrated in Figure 5. Note that instances of the shared
device structure (which contains the relevant attributes) must be maintained on both
the source and destination nodes. The events generated from a ‘write attributes’
request are further described in Section 4.7.

1. On Source Node (Client)

In order to send a ‘write attributes’ request, the application on the source node
performs the following steps:

1. Locks the mutex that protects the local instance of the shared device structure
that contains the attributes to be updated - for information on mutexes, refer to
the ZCL User Guide (JN-UG-3077).

2. Writes one or more updated attribute values to the local instance of the shared
device structure.

3. Unlocks the mutex that protects the local instance of the shared device
structure.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 47

Chapter 4
ZLL Application Coding

4. Calls one of the above ZCL ‘write attributes’ functions to submit a request to
update the relevant attributes on a cluster on a remote node. The information
required by this function includes the following:

 Source endpoint (from which the write request is to be sent)

 Address of destination node for request

 Destination endpoint (on destination node)

 Identifier of the cluster containing the attributes [enumerations provided]

 Number of attributes to be written

 Array of identifiers of attributes to be written [enumerations provided]

From the above information, the function is able to pick up the relevant attribute
values from the local instance of the shared structure and incorporate them in
the message for the remote node.

2. On Destination Node (Server)

On receiving the ‘write attributes’ request, the ZCL software on the destination node
performs the following steps:

1. For each attribute in the ‘write attributes’ request, generates an
E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE event for the destination
endpoint callback function. If required, the callback function can do either or
both of the following:

 check that the new attribute value is in the correct range - if the value is
out-of-range, the function should set the eAttributeStatus field of the
event to E_ZCL_ERR_ATTRIBUTE RANGE

 block the write by setting the the eAttributeStatus field of the event to
E_ZCL_DENY_ATTRIBUTE_ACCESS

In the case of an out-of-range value or a blocked write, there is no further
processing for that particular attribute following the ‘write attributes’ request.

2. Generates an E_ZCL_CBET_LOCK_MUTEX event for the endpoint callback
function, which should lock the mutex that protects the relevant shared device
structure - for more on mutexes, refer to the ZCL User Guide (JN-UG-3077).

3. Writes the relevant attribute values to the shared device structure - an
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE event is generated for
each individual attempt to write an attribute value, which the endpoint callback
function can use to keep track of the successful and unsuccessful writes.

Note that if an ‘undivided write attributes’ request was received, an individual
failed write will render the whole update process unsuccessful.

4. Generates an E_ZCL_CBET_WRITE_ATTRIBUTES event to indicate that all
relevant attributes have been processed and, if required, creates a ‘write
attributes’ response message for the source node.

5. Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

6. If required, sends a ‘write attributes’ response to the source node of the
request.
48 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
3. On Source Node (Client)

On receiving an optional ‘write attributes’ response, the ZCL software on the source
node performs the following steps:

1. For each attribute listed in the ‘write attributes’ response, it generates an
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE message for
the source endpoint callback function, which may or may not take action on
this message. Only attributes for which the write has failed are included in the
response and will therefore result in one of these events.

2. On completion of the parsing of the ‘write attributes’ response, it generates a
single E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE message for the
source endpoint callback function, which may or may not take action on this
message.

Figure 5: ‘Write Attributes’ Request and Response

Note: The ‘write attributes’ requests and responses
arrive at their destinations as data messages. Such a
message triggers a stack event of the type
ZPS_EVENT_APS_DATA_INDICATION, which is
handled as described in Section 4.7.

Endpoint ZCL ZCL Endpoint

'Write Attributes' Message

CHECK_ATTRIBUTE_RANGE

'Write Attributes' Request

LOCK_MUTEX

Write Attribute Value

UNLOCK_MUTEX

'Write Attributes' Response

WRITE_INDIVIDUAL_
ATTRIBUTE_RESPONSE

WRITE_ATTRIBUTES
_RESPONSE

Source Node Destination Node

Lock mutex for
local shared structure

Write attribute values

Unlock mutex for
local shared structure

WRITE_INDIVIDUAL_ATTRIBUTE

WRITE_ATTRIBUTES

Shared
Structure

Local
Shared
Structure
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 49

Chapter 4
ZLL Application Coding

4.7 Handling Stack and Timer Events

This section outlines the event handling framework which allows a ZLL application to
deal with stack-related and timer-related events. A stack event is triggered by a
message arriving in a message queue and a timer event is triggered when a JenOS
timer expires.

The event handling framework for ZigBee Light Link is provided by the ZCL. The event
must be wrapped in a tsZCL_CallBackEvent structure by the application, which
then passes this event structure into the ZCL using the function
vZCL_EventHandler(). The ZCL processes the event and, if necessary, invokes the
relevant endpoint callback function. This event structure and event handler function
are detailed in the ZCL User Guide (JN-UG-3077), which also provides more details
of event processing.

The events that are not cluster-specific are divided into four categories, as shown in
Table 17 below - these events are described in the ZCL User Guide (JN-UG-3077).
Cluster-specific events are covered in the chapter for the relevant cluster.

Category Event

Input Events E_ZCL_ZIGBEE_EVENT

E_ZCL_CBET_TIMER

Read Events E_ZCL_CBET_READ_REQUEST

E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

Write Events E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE

E_ZCL_CBET_WRITE_ATTRIBUTES

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE

General Events E_ZCL_CBET_LOCK_MUTEX

E_ZCL_CBET_UNLOCK_MUTEX

E_ZCL_CBET_DEFAULT_RESPONSE

E_ZCL_CBET_UNHANDLED_EVENT

E_ZCL_CBET_ERROR

Table 17: Events (Not Cluster-Specific)

Note: ZCL error events and default responses may be
generated when problems occur in receiving
commands. The possible ZCL status codes contained in
the events and responses are detailed in the ZCL User
Guide (JN-UG-3077).
50 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
4.8 Servicing Timing Requirements

Some clusters used by a ZLL application may have timing requirements which
demand periodic updates. The function eZLL_Update100mS() is provided to service
these requirements and should be called repeatedly every 100 ms. Invocation of this
function can be prompted using a 100-ms software timer.

The function eZLL_Update100mS() calls the external function vIdEffectTick(), which
must be defined in the application. This user-defined function can be used to
implement an identify effect on the node, if required. Otherwise, it should be defined
but left empty.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 51

Chapter 4
ZLL Application Coding

52 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Part II:
ZLL Clusters
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 53

54 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
5. ZCL Clusters

The ZLL application profile uses certain clusters that are provided in the ZigBee
Cluster Library (ZCL):

 Basic - see Section 5.1

 Identify - see Section 5.2

 Groups - see Section 5.3

 Scenes - see Section 5.4

 On/Off - see Section 5.5

 Level Control - see Section 5.6

 Colour Control - see Section 5.7

These clusters are briefly introduced below and are fully detailed in the ZCL User
Guide (JN-UG-3077).

Note: The above clusters contain special
enhancements for ZigBee Light Link but can also be
used with other ZigBee application profiles, such as
Home Automation.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 55

Chapter 5
ZCL Clusters

5.1 Basic Cluster

The Basic cluster is mandatory for all ZLL devices as a server-side cluster.

It has a Cluster ID of 0x0000.

5.1.1 Mandatory Attributes for ZLL

The following Basic cluster server-side attributes are mandatory for ZigBee Light Link:

* This is an additional attribute for ZigBee Light Link

5.1.2 Compile-Time Options

You must include the header file Basic.h in your application.

The Basic cluster is enabled in the zcl_options.h file by means of the definition:

#define CLD_BASIC

In addition, you must enable the cluster as a server using:

#define BASIC_SERVER

The ZLL-specific attribute SWBuildID can be enabled using:

#define CLD_BAS_ATTR_SW_BUILD_ID

Other compile-time options are also available for the Basic cluster and are described
in the ZCL User Guide (JN-UG-3077).

Attribute Structure Field(s)

ZCLVersion u8ZCLVersion

ApplicationVersion u8ApplicationVersion

StackVersion u8StackVersion

HWVersion u8HardwareVersion

ManufacturerName sManufacturerName
au8ManufacturerName[32]

ModelIdentifier sModelIdentifier
au8ModelIdentifier[32]

DateCode sDateCode
au8DateCode[16]

PowerSource ePowerSource

SWBuildID * sSWBuildID
au8SWBuildID[16]

Table 18: Mandatory Server-side Attributes
56 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
5.2 Identify Cluster

The Identify cluster allows a device to identify itself (for example, by flashing a LED on
the node).

It has a Cluster ID of 0x0003.

5.2.1 Mandatory Attribute for ZLL

The following Identify cluster server-side attribute is mandatory for ZigBee Light Link:

5.2.2 Enhanced Functionality for ZLL

The Identify cluster contains extra functionality for ZLL. This is the ‘Trigger Effect’
command - a function is provided to issues this command. This feature and the
associated function are described in the ZCL User Guide (JN-UG-3077).

5.2.3 Compile-Time Options

To use the Identify cluster, you must include the header file Identify.h in your
application.

The Identify cluster is enabled in the zcl_options.h file by means of the definition:

#define CLD_IDENTIFY

In addition, you must enable the cluster as a server or client, using one of:

#define IDENTIFY_SERVER

#define IDENTIFY_CLIENT

To enable the enhanced cluster functionality for ZLL (see Section 5.2.2), you must
include:

#define CLD_IDENTIFY_SUPPORT_ZLL_ENHANCED_COMMANDS

Attribute Structure Field

IdentifyTime u16IdentifyTime

Table 19: Mandatory Server-side Attribute
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 57

Chapter 5
ZCL Clusters

5.3 Groups Cluster

The Groups cluster allows the management of the Group table concerned with group
addressing.

It has a Cluster ID of 0x0004.

5.3.1 Mandatory Attribute for ZLL

The following Groups cluster server-side attribute is mandatory for ZigBee Light Link:

Name support must be disabled for ZLL by setting the NameSupport attribute to zero.
This setting can be pre-configured at compile-time - see Section 5.3.2 below.

5.3.2 Compile-Time Options

To use the Groups cluster, you must include the header file Groups.h in your
application.

The Groups cluster is enabled in the zcl_options.h file by means of the definition:

#define CLD_GROUPS

In addition, you must enable the cluster as a server or client, using one of:

#define GROUPS_SERVER

#define GROUPS_CLIENT

Name support must be disabled for ZLL, which can be done using:

#define CLD_GROUPS_DISABLE_NAME_SUPPORT

Attribute Structure Field

NameSupport u8NameSupport

Table 20: Mandatory Server-side Attribute
58 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
5.4 Scenes Cluster

The Groups cluster allows the management of ‘scenes’, where a scene corresponds
to particular level settings for a set of lights (usually in a group).

It has a Cluster ID of 0x0005.

5.4.1 Mandatory Attributes for ZLL

The following Scenes cluster server-side attributes are mandatory for ZigBee Light
Link:

* This is an additional attribute for ZigBee Light Link

Name support must be disabled for ZLL by setting the NameSupport attribute to zero.
This setting can be pre-configured at compile-time - see Section 5.4.3 below.

5.4.2 Enhanced Functionality for ZLL

The Scenes cluster contains extra functionality for ZLL. This is the ‘Copy Scene’
command - a function is provided to issues this command. This feature and the
associated function are described in the ZCL User Guide (JN-UG-3077).

5.4.3 Compile-Time Options

To use the Scenes cluster, you must include the header file Scenes.h in your
application.

The Scenes cluster is enabled in the zcl_options.h file by means of the definition:

#define CLD_SCENES

In addition, you must enable the cluster as a server or client, using one of:

#define SCENES_SERVER

#define SCENES_CLIENT

Attribute Structure Field

SceneCount u8SceneCount

CurrentScene u8CurrentScene

CurrentGroup u16CurrentGroup

SceneValid bSceneValid

NameSupport u8NameSupport

TransitionTime100ms * u8TransitionTime100ms

Table 21: Mandatory Server-side Attributes
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 59

Chapter 5
ZCL Clusters

To enable the enhanced cluster functionality for ZLL (see Section 5.4.2), you must
include:

#define CLD_SCENES_SUPPORT_ZLL_ENHANCED_COMMANDS

Name support must be disabled for ZLL, which can be done using:

#define CLD_SCENES_DISABLE_NAME_SUPPORT
60 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
5.5 On/Off Cluster

The On/Off cluster allows allows a device to be put into the ‘on’ and ‘off’ states, or
toggled between the two states.

It has a Cluster ID of 0x0006.

5.5.1 Mandatory Attributes for ZLL

The following On/Off cluster server-side attributes are mandatory for ZigBee Light
Link:

* These are additional attributes for ZigBee Light Link

5.5.2 Enhanced Functionality for ZLL

The On/Off cluster contains extra functionality for ZLL. This includes the 'Off With
Effect' and 'On With Timed Off' commands - functions are provided to issue these
commands. In addition, a facility is provided to save the current lights settings when
the lights are switched off (and recall the settings when the lights are switched on).
These features and the associated functions are described in the ZCL User Guide
(JN-UG-3077).

5.5.3 Compile-Time Options

To use the On/Off cluster, you must include the header file OnOff.h in your
application.

The On/Off cluster is enabled in the zcl_options.h file by means of the definition:

#define CLD_ONOFF

In addition, you must enable the cluster as a server or client, using one of:

#define ONOFF_SERVER

#define ONOFF_CLIENT

Attribute Structure Field

OnOff bOnOff

GlobalSceneControl * bGlobalSceneControl

OnTime * u16OnTime

OffWaitTime * u16OffWaitTime

Table 22: Mandatory Server-side Attributes
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 61

Chapter 5
ZCL Clusters

To enable the enhanced cluster functionality for ZLL (see Section 5.5.2), you must
include:

#define CLD_ONOFF_SUPPORT_ZLL_ENHANCED_COMMANDS

The ZLL-specific attribute GlobalSceneControl can be enabled using:

#define CLD_ONOFF_ATTR_GLOBAL_SCENE_CONTROL

The ZLL-specific attribute OnTime can be enabled using:

#define CLD_ONOFF_ATTR_ON_TIME

The ZLL-specific attribute OffWaitTime can be enabled using:

#define CLD_ONOFF_ATTR_OFF_WAIT_TIME
62 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
5.6 Level Control Cluster

The Level Control cluster allows control of the level of a physical quantity on a device,
where this physical quantity is device-dependent - in the case of ZLL, it is normally
light level.

It has a Cluster ID of 0x0008.

5.6.1 Mandatory Attributes for ZLL

The following Level Control cluster server-side attributes are mandatory for ZigBee
Light Link:

5.6.2 Compile-Time Options

To use the Level Control cluster, you must include the header file LevelControl.h in
your application.

The Level Control cluster is enabled in the zcl_options.h file by means of the
definition:

#define CLD_LEVEL_CONTROL

In addition, you must enable the cluster as a server or client, using one of:

#define LEVEL_CONTROL_SERVER

#define LEVEL_CONTROL_CLIENT

Attribute Structure Field

CurrentLevel u8CurrentLevel

RemainingTime u16RemainingTime

Table 23: Mandatory Server-side Attributes
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 63

Chapter 5
ZCL Clusters

5.7 Colour Control Cluster

The Colour Control cluster allows the colour of a light to be controlled (note that it does
not govern the overall luminance of the light, as this is controlled using the Level
Control cluster).

It has a Cluster ID of 0x0300.

5.7.1 Mandatory Attributes for ZLL

The following Colour Control cluster server-side attributes are mandatory for ZigBee
Light Link:

Attribute Structure Field

CurrentHue u8CurrentHue

CurrentStaturation u8CurrentSaturation

RemainingTime u16RemainingTime

CurrentX u16CurrentX

CurrentY u16CurrentY

ColorTemperature u16ColourTemperature

ColorMode u8ColourMode

NumberOfPrimaries u8NumberOfPrimaries

Primary1X u16Primary1X

Primary1Y u16Primary1Y

Primary1Intensity u8Primary1Intensity

Primary2X u16Primary2X

Primary2Y u16Primary2Y

Primary2Intensity u8Primary2Intensity

Primary3X u16Primary3X

Primary3Y u16Primary3Y

Primary3Intensity u8Primary3Intensity

Primary4X u16Primary4X

Primary4Y u16Primary4Y

Primary4Intensity u8Primary4Intensity

Primary5X u16Primary5X

Primary5Y u16Primary5Y

Table 24: Mandatory Server-side Attributes
64 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
* These are additional attributes for ZigBee Light Link

5.7.2 Enhanced Functionality for ZLL

The Colour Control cluster contains extra functionality for ZLL. This includes all the
enhanced hue commands ('Enhanced Move to Hue', 'Enhanced Move Hue' and
'Enhanced Step Hue'), the ‘Move Colour Temperature’ and ‘Step Colour Temperature’
commands, and the 'Colour Loop Set' command - functions are provided to issue
these commands. These features and the associated functions are described in the
ZCL User Guide (JN-UG-3077).

5.7.3 Compile-Time Options

To use the Colour Control cluster, you must include the header file ColourControl.h
in your application.

The Colour Control cluster is enabled in the zcl_options.h file by means of the
definition:

#define CLD_COLOUR_CONTROL

In addition, you must enable the cluster as a server or client, using one of:

#define COLOUR_CONTROL_SERVER

#define COLOUR_CONTROL_CLIENT

Primary5Intensity u8Primary5Intensity

Primary6X u16Primary6X

Primary6Y u16Primary6Y

Primary6Intensity u8Primary6Intensity

EnhancedCurrentHue * u16EnhancedCurrentHue

EnhancedColorMode * u8EnhancedColourMode

ColorLoopActive * u8ColourLoopActive

ColorLoopDirection * u8ColourLoopDirection

ColorLoopTime * u16ColourLoopTime

ColorLoopStartEnhancedHue * u16ColourLoopStartEnhancedHue

ColorLoopStoredEnhancedHue * u16ColourLoopStoredEnhancedHue

ColorCapabilities * u16ColourCapabilities

ColorTempPhysicalMin * u16ColourTemperaturePhyMin

ColorTempPhysicalMax * u16ColourTemperaturePhyMax

Attribute Structure Field

Table 24: Mandatory Server-side Attributes
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 65

Chapter 5
ZCL Clusters

To enable the enhanced cluster functionality for ZLL (see Section 5.7.2), you must
include:

#define CLD_COLOUR_CONTROL_SUPPORT_ZLL_ENHANCED_COMMANDS

To enable the colour temperature functionality for ZLL, you must include:

#define CLD_COLOUR_CONTROL_SUPPORT_ZLL_COLOUR_TEMPERATURE_COMMANDS

The ZLL-specific attribute EnhancedCurrentHue can be enabled using:

#define CLD_COLOURCONTROL_ATTR_ENHANCED_CURRENT_HUE

The ZLL-specific attribute EnhancedColorMode can be enabled using:

#define CLD_COLOURCONTROL_ATTR_ENHANCED_COLOUR_MODE

The ZLL-specific attribute ColorLoopActive can be enabled using:

#define CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_ACTIVE

The ZLL-specific attribute ColorLoopDirection can be enabled using:

#define CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_DIRECTION

The ZLL-specific attribute ColorLoopTime can be enabled using:

#define CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_TIME

The ZLL-specific attribute ColorLoopStartEnhancedHue can be enabled using:

#define CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_START_ENHANCED_HUE

The ZLL-specific attribute ColorLoopStoredEnhancedHue can be enabled using:

#define CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_STORED_ENHANCED_HUE

The ZLL-specific attribute ColorCapabilities can be enabled using:

#define CLD_COLOURCONTROL_ATTR_COLOUR_CAPABILITIES

The ZLL-specific attribute ColorTempPhysicalMin can be enabled using:

#define CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_PHY_MIN

The ZLL-specific attribute ColorTempPhysicalMax can be enabled using:

#define CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_PHY_MAX
66 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6. ZLL Commissioning Cluster

This chapter describes the ZLL Commissioning cluster which is defined in the ZigBee
Light Link profile, and is used when forming a ZLL network or adding a new node to
an existing ZLL network. This cluster facilitates the Touchlink feature of ZigBee Light
Link (see Section 1.4).

The ZLL Commissioning cluster has a Cluster ID of 0x1000.

6.1 Overview

The ZLL Commissioning cluster is associated with a ZLL node as a whole, rather than
with individual ZLL devices on the node. It must be used on nodes that incorporate one
or more of the ZLL devices indicated in Table 25 below, which shows the supported
devices when the ZLL Commissioning cluster acts as a client, server and combined
client/server.

This cluster supports two sets of functionality, corresponding to two distinct
commands sets:

 Touchlink

 Commissioning Utility

The ZLL API provides functions for implementing both sets of commands. These
functions are referenced in Section 6.4 and Section 6.5, and detailed in Section 6.7.

The Commissioning Utility functionality is not required on ZLL Lighting devices.

For the compile-time options for enabling the ZLL Commissioning cluster for Touchlink
and the Commissioning Utility, refer to Section 6.10.

Client Client/Server Server

Colour Controller
Colour Scene Controller
Non-Colour Controller
Non-Colour Scene Controller
Control Bridge
On/Off Sensor

Colour Controller
Colour Scene Controller
Non-Colour Controller
Non-Colour Scene Controller
Control Bridge
On/Off Sensor
On/Off Light
On/Off Plug-in Unit
Dimmable Light
Dimmable Plug-in Unit
Colour Light
Extended Colour Light
Colour Temperature Light

Colour Controller
Colour Scene Controller
Non-Colour Controller
Non-Colour Scene Controller
Control Bridge
On/Off Sensor
On/Off Light
On/Off Plug-in Unit
Dimmable Light
Dimmable Plug-in Unit
Colour Light
Extended Colour Light
Colour Temperature Light

Table 25: ZLL Commissioning Cluster in Devices
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 67

Chapter 6
ZLL Commissioning Cluster

6.2 ZLL Commissioning Cluster Structure and Attributes

This cluster has no attributes, as a server or a client. Therefore, the cluster structure
tsCLD_ZllCommission is referred to using a null pointer.

6.3 Commissioning Operations

ZLL commissioning involves forming a ZLL network or adding a new node to an
existing ZLL network. A node from which commissioning can be initiated is referred to
as an ‘initiator’ - this may be a remote control unit, but could also be a lamp.

 An ‘initiator’ node must support the ZLL Commissioning cluster as a client.

 A node to be added to the network must support the ZLL Commissioning
cluster as a server (or as both a server and client).

Note that commissioning a new network involves adding at least one node to the new
network (as well as the initiator).

Commissioning may involve two stages, depending on the type of node added to the
network by the initiator:

1. The node is added to the network using the Touchlink commands of the ZLL
Commissioning cluster. In practice for the user, this typically involves bringing
the initiator node physically close to the target node and pressing a button.

2. If the initiator node and the new node will both be used to control lights in the
network, the new node must learn certain information (such as controlled
endpoints and configured groups) from the initiator. This exchange of
information uses the Commissioning Utility commands of the ZLL
Commissioning cluster.

Commissioning using the supplied functions for Touchlink and the Commissioning
Utilty is described in Section 6.4 and Section 6.5.

Note: The ZLL Commissioning cluster instance for
Touchlink must reside on its own endpoint on a node.
Therefore, a Touchlink commissioning application must
be provided which is distinct from the main ZLL
application. However, the cluster instance for the
Commissioning Utility can reside on the same endpoint
as the main application (and be used in this application).
68 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.4 Using Touchlink

Touchlink is used for the basic commissioning of a new network or adding a new node
to an existing network. A dedicated Touchlink application (which is distinct from the
main ZLL application on the node) must reside on its own endpoint. This requires:

 a ZLL Commissioning cluster instance as a client to be created on the endpoint
on the initiator node

 a ZLL Commissioning cluster instance as a server to be created on the
endpoint on the target node

The initiator node will also require a ZLL Commissioning cluster instance as a server
(on the same endpoint), since the node also needs the capability to join an existing
ZLL network.

An endpoint is registered for Touchlink (on both nodes) using the function
eZLL_RegisterCommissionEndPoint(). This function also creates a ZLL
Commissioning cluster instance of the type (server, client or both) determined by the
compile-time options in the header file zcl_options.h (see Section 6.10).

The initiator must then send a sequence of request commands to the target node. The
Touchlink request command set is summarised in Table 26. Touchlink functions for
issuing these commands are provided in the ZLL API and detailed in Section 6.7.1.

* These commands have corresponding responses.

Command Identifier Description

Scan Request * 0x00 Requests other devices (potential nodes) in the
local neighbourhood to respond. A scan request is
first performed on channel 11, up to five times until
a response is received. If no response is received,
a scan request is then performed once on each of
channels 15, 20 and 25, and then the remaining
channels (12, 13, 14, 16, etc) until a response is
detected.

Device Information Request * 0x02 Requests information about the devices on a
remote node

Identify Request 0x06 Requests a remote node to physically identify itself
(e.g. visually by flashing a LED)

Reset To Factory New Request 0x07 Requests a factory reset of a remote node

Network Start Request * 0x10 Requests a new network to be created comprising
the initiator and a detected Router

Network Join Router Request * 0x12 Requests a Router to join the network

Network Join End Device
Request *

0x14 Requests an End Device to join the network

Network Update Request * 0x16 Requests an update of the network settings on a
remote node (if the supplied Network Update Iden-
tifier is more recent than the one on the node)

Table 26: Touchlink Request Commands
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 69

Chapter 6
ZLL Commissioning Cluster

All Touchlink commands are sent as inter-PAN messages.

Use of the above commands and associated functions is described in the sub-sections
below.

6.4.1 Creating a ZLL Network

A ZLL network is formed from an initiator node and a Router node (usually the initiator
is an End Device and will have no routing capability in the network). The Touchlink
network creation process is described below and is illustrated in Figure 6 (also refer
to the command list in Table 26 on page 69).

1. Scan Request: The initiator sends a Scan Request to nodes in its vicinity.
The required function is:

eCLD_ZllCommissionCommandScanReqCommandSend()

2. Scan Response: A receiving node replies to the Scan Request by sending a
Scan Response, which includes the device type of the responding node (e.g.
Router). The required function is:

eCLD_ZllCommissionCommandScanRspCommandSend()

3. Device Information Request: The initiator sends a Device Information
Request to the detected Routers that are of interest. The required function is:

eCLD_ZllCommissionCommandDeviceInfoReqCommandSend()

4. Device Information Response: A receiving Router replies to the Device
Information Request by sending a Device Information Response. The required
function is:

eCLD_ZllCommissionCommandDeviceInfoRspCommandSend()

5. Identify Request (Optional): The initiator may send an Identify Request to
the node which has been chosen as the first Router of the new network, in
order to confirm that the correct physical node is being commissioned. The
required function is:

eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend()

6. Network Start Request: The intiator sends a Network Start Request to the
chosen Router in order to create and start the network. The required function
is:

eCLD_ZllCommissionCommandNetworkStartReqCommandSend()

7. Network Start Response: The Router replies to the Network Start Request
by sending a Network Start Response. The required function is:

eCLD_ZllCommissionCommandNetworkStartRspCommandSend()

Once the Router has started the network, the initiator joins the network (Router). The
initiator then collects endpoint and cluster information from the Lighting device(s) on
the Router node, and stores this information in a local lighting database.

Note: Received Touchlink requests and responses are
handled as ZigBee PRO events. The event handling is
not detailed below but is outlined in Section 6.6.
70 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Once the network (consisting of the initiator and one Router) is up and running, further
nodes may be added as described in Section 6.4.2.

Figure 6: Creating a ZLL Network

Initiator Router

Scan Request

Scan Response

Device Information Request

Device Information Response

Identify Request

Network Start Request

Network Start Response
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 71

Chapter 6
ZLL Commissioning Cluster

6.4.2 Adding to an Existing Network

A ZLL network (which has been set up as described in Section 6.4.1) can be extended
by adding a node. The Touchlink extension process is described below and illustrated
in Figure 7 (also refer to the command list in Table 26 on page 69).

1. Scan Request: The initiator sends a Scan Request to nodes in its vicinity.
The required function is:

eCLD_ZllCommissionCommandScanReqCommandSend()

2. Scan Response: A receiving ZLL node replies to the Scan Request by
sending a Scan Response. The required function is:

eCLD_ZllCommissionCommandScanRspCommandSend()

3. Device Information Request: The initiator sends a Device Information
Request to those detected nodes that are of interest. The required function is:

eCLD_ZllCommissionCommandDeviceInfoReqCommandSend()

4. Device Information Response: A receiving node replies to the Device
Information Request by sending a Device Information Response. The required
function is:

eCLD_ZllCommissionCommandDeviceInfoRspCommandSend()

5. Identify Request (Optional): The initiator may send an Identify Request to
the node which has been chosen to be added to the network, in order to
confirm that the correct physical node is being commissioned. The required
function is:

eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend()

6. Network Join Request: Depending on the target node type, the initiator
sends a Network Join Router Request or Network Join End Device Request,
as appropriate, to the target node. The required function is one of:

eCLD_ZllCommissionCommandNetworkJoinRouterReqCommandSend()
eCLD_ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend()

7. Network Join Response: Depending on the receiving node type, the node
replies to the join request by sending a Network Join Router Response or
Network Join End Device Response. The required function is one of:

eCLD_ZllCommissionCommandNetworkJoinRouterRspCommandSend()
eCLD_ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend()

The node should now be a member of the network. The initiator then collects endpoint
and cluster information from any Lighting device(s) on the new node, and stores this
information in its local lighting database.

If the new node is to be used to control the light nodes of the network then it will need
to learn certain information (such as controlled endpoints and configured groups) from
the initiator - this is done using the Commissioning Utility commands, as described in
Section 6.5.

Note: Received Touchlink requests and responses are
handled as ZigBee PRO events. The event handling is
not detailed below but is outlined in Section 6.6.
72 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.4.3 Updating Network Settings

If one or more of the network settings change (e.g. the radio channel used), all nodes
of the network need to be updated with the new settings.

To allow nodes to keep track of the status of the network settings, the Network Update
Identifier is used. This identifier takes a value in the range 0x00 to 0xFF and is
incremented when a network update has occurred (the value wraps around at 0xFF).

A node can be instructed to update its network settings by sending a Network Update
Request to it. The required function is:

eCLD_ZllCommissionCommandNetworkUpdateReqCommandSend()

The payload of the sent command contains the latest network settings and the current
value of the Network Update Identifier (see Section 6.8.17). If the payload value is
more recent than the value held by the target node, the node should update its network
settings with those in the payload.

Figure 7: Extending a ZLL Network (Adding a Node)

Initiator Router or End Device

Scan Request

Scan Response

Device Information Request

Device Information Response

Identify Request

Network Join (Router or End Device) Request

Network Join (Router or End Device) Response
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 73

Chapter 6
ZLL Commissioning Cluster

6.4.4 Stealing a Node

A node that is already part of a ZLL network can be taken or ‘stolen’ by another ZLL
network using Touchlink (in which case, the stolen node will cease to be a member of
its previous network). This transfer can only be performed on a node which supports
one or more Lighting devices (and not Controller devices).

The node is stolen using an initiator in the new network, e.g. from a remote control unit.
The ‘stealing’ process is as follows:

1. The initiator sends a Scan Request to nodes in its vicinity. The required
function is:

eCLD_ZllCommissionCommandScanReqCommandSend()

2. A receiving ZLL node replies to the Scan Request by sending a Scan
Response. The required function is:

eCLD_ZllCommissionCommandScanRspCommandSend()

3. The initiator receives Scan Responses from one or more nodes and, based on
these responses, selects a node (containing a Lighting device) that is already
a member of another ZLL network.

4. The initiator then sends a Reset To Factory New Request to the desired node.
The required function is:

eCLD_ZllCommissionCommandFactoryResetReqCommandSend()

5. On receiving this request on the target node, the event
E_CLD_COMMISSION_CMD_FACTORY_RESET_REQ is generated and the
function ZPS_eAplZdoLeaveNetwork() should be called. In addition, all
persistent data should be reset.

6. The node can then be commissioned into the new network by following the
process in Section 6.4.2 from Step3.

Alternatively, instead of following the above process, a node can be stolen by either:

 Following the full process for creating a network in Section 6.4.1 and calling
ZPS_eAplZdoLeaveNetwork() on the target node when a Network Start
Request is received.

 Following the full process for adding a node in Section 6.4.2 and calling
ZPS_eAplZdoLeaveNetwork() on the target node when a Network Join
Router Request or Network Join End Device Request is received.

Note: If a node containing a Controller device (e.g. a
remote control unit) is to be used in another ZLL
network, it must first be reset using a Reset To Factory
New Request. It can then used to create a new network
(see Section 6.4.1) or to learn the control information of
an existing network (see Section 6.5).
74 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.5 Using the Commissioning Utility

The Commissioning Utility is used when a ZLL network node needs to learn lighting
control information (such as controlled endpoints and configured groups) from another
node in the network. It is typically used when a new remote control unit is introduced
into the network and needs to learn information from an existing remote control unit.

Unlike Touchlink, the Commissioning Utility can be incorporated in the main ZLL
application on the node (and therefore use the same endpoint). This requires:

 a ZLL Commissioning cluster instance as a client to be created on the endpoint
on the ‘learner’ node

 a ZLL Commissioning cluster instance as a server to be created on the
endpoint on the ‘teacher’ node

A ZLL Commissioning cluster instance for the Commissioning Utility can be created
using the function eCLD_ZllUtilityCreateUtility(), on both nodes.

It is the responsibility of the learner node to request the required information from the
teacher node. The Commissioning Utility command set is summarised in Table 27.
Commissioning Utility functions for issuing these commands are provided in the ZLL
API and detailed in Section 6.7.2.

Use of the above commands and associated functions is described below and is
illustrated in Figure 8.

Command Identifier Description

Endpoint information 0x40 Sends information about local endpoint
(from teacher to learner)

Get Group Identifiers Request 0x41 Requests Group information from a remote node
(from learner to teacher)

Get Endpoint List Request 0x42 Requests endpoint information from a remote node
(from learner to teacher)

Table 27: Commissioning Utility Commands

Note: Received Commissioning Utility requests and
responses are handled as ZigBee PRO events by the
ZLL profile library (this event handling is therefore
transparent to the application).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 75

Chapter 6
ZLL Commissioning Cluster

1. Endpoint Information command: The teacher node first sends an Endpoint
Information command containing basic information about its local endpoint
(IEEE address, network address endpoint number, Profile ID, Device ID) to
the learner node. The required function is:

eCLD_ZllUtilityCommandEndpointInformationCommandSend()

Note that the teacher node will already have the relevant target endpoint on the
learner node from the joining process (described in Section 6.4).

2. Get Endpoint List Request: The learner node then sends a Get Endpoint
List Request to the teacher node to request information about the remote
endpoints that the teacher node controls. The required function is:

eCLD_ZllUtilityCommandGetEndpointListReqCommandSend()

The teacher node automatically replies to the Get Endpoint List Request by
sending a Get Endpoint List Response containing the requested information.

3. Get Group Identifiers Request: The learner node then sends a Get Group
Identifiers Request to the teacher node to request a list of the lighting groups
configured on the teacher node. The required function is:

eCLD_ZllUtilityCommandGetGroupIdReqCommandSend()

The teacher node automatically replies to the Get Group Identifiers Request by
sending a Get Group Identifiers Response containing the requested
information.

To complete the learning process, the learner node may need other information which
can be acquired using commands/functions of the relevant cluster (described in the
ZCL User Guide (JN-UG-3077)).

Figure 8: Learning Process

Teacher Learner

Endpoint Information

Get Endpoint List Request

Get Endpoint List Response

Get Group Identifiers Request

Get Group Identifiers Response
76 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.6 ZLL Commissioning Events (Touchlink)

ZLL Commissioning cluster events that result from receiving Touchlink requests and
responses must be handled at the application level (while events that result from
Commissioning Utility requests and responses are handled by the ZLL profile library).

When a Touchlink request or response command (e.g. a Scan Request) is received
by a node, a stack event is generated which is wrapped in a tsZCL_CallBackEvent
structure by the ZLL profile. In this structure:

 eEventType field is set to E_ZCL_CBET_CLUSTER_CUSTOM

 sClusterCustomMessage field’s tsZCL_ClusterCustomMessage
structure is filled in by:

 setting u16ClusterId to ZLL_CLUSTER_ID_COMMISSIONING

 pointing pvCustomData to the payload data of the received command

For details of the above structures, refer to the ZCL User Guide (JN-UG-3077).

The payload data contains a command ID, which uses one of the enumerations listed
in Section 6.6.1. The ZLL profile passes the event to the ZCL event handler to check
that the command ID is valid for the target endpoint. If it is valid, the ZLL profile invokes
the user-defined callback function that was specified through the function
eZLL_RegisterCommissionEndPoint(). The callback function can access the
payload through the tsCLD_ZllCommissionCustomDataStructure structure,
which is created when the above function is called.

Thus, the above user-defined callback function must be designed to handle the
relevant Touchlink events:

 For a request, the callback function may need to populate a structure with the
required data and send a response using the appropriate response function,
e.g. by calling eCLD_ZllCommissionCommandScanRspCommandSend()
to respond to a Scan Request.

 For a response, the callback function may just need to extract the returned data
from the event.

Alternatively, the callback function may simply notify the main application of the
received command and provide the payload, so that the application can process the
command.

The handling of Touchlink events is illustrated in Figure 9.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 77

Chapter 6
ZLL Commissioning Cluster

Figure 9: Touchlink Event Handling

ZigBee Cluster Library (ZCL)

Validates command
for target endpoint

ZigBee Light Link (ZLL)

Application (Endpoint)
Endpoint callback function invoked to process request or response

Request or response
command

Request or response
event

Validated event

Validated event

Response to request
(if required)

Response command
78 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.6.1 Touchlink Command Events

The events that can be generated for Touchlink are listed and described below (the
enumerations are defined in the structure teCLD_ZllCommission_Command,
shown in Section 6.9.1).

Event Description

E_CLD_COMMISSION_CMD_SCAN_REQ A Scan Request has been received (by server)

E_CLD_COMMISSION_CMD_SCAN_RSP A Scan Response has been received (by client)

E_CLD_COMMISSION_CMD_DEVICE_INFO_REQ A Device Information Request has been received (by
server)

E_CLD_COMMISSION_CMD_DEVICE_INFO_RSP A Device Information Response has been received
(by client)

E_CLD_COMMISSION_CMD_IDENTIFY_REQ An Identify Request has been received (by server)

E_CLD_COMMISSION_CMD_FACTORY_RESET_REQ A Reset To Factory New Request has been received
(by server)

E_CLD_COMMISSION_CMD_NETWORK_START_REQ A Network Start Request has been received (by
server)

E_CLD_COMMISSION_CMD_NETWORK_START_RSP A Network Start Response has been received (by cli-
ent)

E_CLD_COMMISSION_CMD_NETWORK_JOIN_
ROUTER_REQ

A Network Join Router Request has been received
(by server)

E_CLD_COMMISSION_CMD_NETWORK_JOIN_
ROUTER_RSP

A Network Join Router Response has been received
(by client)

E_CLD_COMMISSION_CMD_NETWORK_JOIN_
END_DEVICE_REQ

A Network Join End Device Request has been
received (by server)

E_CLD_COMMISSION_CMD_NETWORK_JOIN_
END_DEVICE_RSP

A Network Join End Device Response has been
received (by client)

E_CLD_COMMISSION_CMD_NETWORK_UPDATE_REQ A Network Update Request has been received (by
server)

Table 28: Touchlink Events
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 79

Chapter 6
ZLL Commissioning Cluster

6.6.2 Commissioning Utility Command Events

The events that can be generated for the Commissioning Utility are listed and
described below (the enumerations are defined in the structure
teCLD_ZllUtility_Command, shown in Section 6.9.2).

6.7 Functions

The functions of the ZLL Commissioning cluster are divided into two categories:

 Touchlink functions, detailed in Section 6.7.1

 Commissioning Utility functions, detailed in Section 6.7.2

Event Description

E_CLD_UTILITY_CMD_ENDPOINT_INFO An Endpoint Information command has been
received (by client)

E_CLD_UTILITY_CMD_GET_GROUP_ID_REQ_RSP A Get Group Identifiers Request has been received
(by server) or a Get Group Identifiers Response
has been received (by client)

E_CLD_UTILITY_CMD_GET_ENDPOINT_LIST_REQ_RSP A Get Endpoint List Request has been received (by
server) or a Get Endpoint List Response has been
received (by client)

Table 29: Touchlink Events
80 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.7.1 Touchlink Functions

The following Touchlink functions are provided in the ZLL API:

Function Page

eZLL_RegisterCommissionEndPoint 82

eCLD_ZllCommissionCreateCommission 83

eCLD_ZllCommissionCommandScanReqCommandSend 84

eCLD_ZllCommissionCommandScanRspCommandSend 85

eCLD_ZllCommissionCommandDeviceInfoReqCommandSend 86

eCLD_ZllCommissionCommandDeviceInfoRspCommandSend 87

eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend 88

eCLD_ZllCommissionCommandFactoryResetReqCommandSend 89

eCLD_ZllCommissionCommandNetworkStartReqCommandSend 90

eCLD_ZllCommissionCommandNetworkStartRspCommandSend 91

eCLD_ZllCommissionCommandNetworkJoinRouterReqCommandSend 92

eCLD_ZllCommissionCommandNetworkJoinRouterRspCommandSend 93

eCLD_ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend 94

eCLD_ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend 95

eCLD_ZllCommissionCommandNetworkUpdateReqCommandSend 96
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 81

Chapter 6
ZLL Commissioning Cluster

eZLL_RegisterCommissionEndPoint

Description

This function registers a ‘commissioning’ endpoint for Touchlink and creates a ZLL
Commissioning cluster instance on the endpoint.

Touchlink must have its own application (separate from the main ZLL application) on
its own endpoint.

This function uses eCLD_ZllCommissionCreateCommission() to create the
cluster instance. The type of cluster instance to be created (server or client, or both)
is determined using the compile-time options in the header file zcl_options.h (refer
to Section 6.10).

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Touchlink endpoint
information (see Section 6.8.1)

Returns

E_ZCL_SUCCESS

teZCL_Status eZLL_RegisterCommissionEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsZLL_CommissionEndpoint *psDeviceInfo);
82 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
eCLD_ZllCommissionCreateCommission

Description

This function creates a ZLL Commissioning cluster instance for Touchlink on the
endpoint of the calling application. The type of cluster instance (server or client) to be
created must be specified.

In practice, this function does not need to be called explicitly by the application, as
the function eZLL_RegisterCommissionEndPoint() calls this function to create the
cluster instance.

Parameters

psClusterInstance Pointer to cluster instance structure on local endpoint

bIsServer Type of cluster instance (server or client) to be created:
TRUE - server
FALSE - client

psClusterDefinition Pointer to cluster definition structure containing
information about the cluster

pvSharedStructPtr Pointer to structure containing the shared storage for
the cluster

psAttributeStatus Pointer to a structure containing the storage for each
attribute's status

psCustomDataStructure Pointer to custom data to be provided to the cluster (see
Section 6.8.3)

Returns

E_ZCL_SUCCESS

teZCL_Status eCLD_ZllCommissionCreateCommission(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvSharedStructPtr,
tsZCL_AttributeStatus *psAttributeStatus,
tsCLD_ZllCommissionCustomDataStructure

 *psCustomDataStructure);
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 83

Chapter 6
ZLL Commissioning Cluster

eCLD_ZllCommissionCommandScanReqCommandSend

Description

This function is used to send a Scan Request command to initiate a scan for other
nodes in the local neighbourhood. The command is sent as an inter-PAN message.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node(s)

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to structure containing payload data
for the Scan Request command (see Section
6.8.5)

Returns

E_ZCL_SUCCESS

teZCL_Status
eCLD_ZllCommissionCommandScanReqCommandSend(

ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_ScanReqCommandPayload

 *psPayload);
84 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
eCLD_ZllCommissionCommandScanRspCommandSend

Description

This function is used to send a Scan Response command containing information
about the local node in reply to a received Scan Request from a remote node. The
command is sent as an inter-PAN message.

A pointer must be provided to a structure containing the data to be returned.

The specified Transaction Sequence Number (TSN) of the response must match the
TSN of the corresponding request, as this will allow the response to be paired with
the request at the destination.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to location containing the Transaction
Sequence Number (TSN) of the response

psPayload Pointer to structure containing payload data
for the Scan Response command (see
Section 6.8.6)

Returns

E_ZCL_SUCCESS

PUBLIC teZCL_Status
eCLD_ZllCommissionCommandScanRspCommandSend(

ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_ScanRspCommandPayload

 *psPayload);
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 85

Chapter 6
ZLL Commissioning Cluster

eCLD_ZllCommissionCommandDeviceInfoReqCommandSend

Description

This function is used to send a Device Information Request command to obtain
information about the devices on a remote node. The command is sent as an inter-
PAN message.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to structure containing payload data
for the Device Information Request command
(see Section 6.8.7)

Returns

E_ZCL_SUCCESS

teZCL_Status
eCLD_ZllCommissionCommandDeviceInfoReqCommandSend(
ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_DeviceInfoReqCommandPayload
 *psPayload);
86 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
eCLD_ZllCommissionCommandDeviceInfoRspCommandSend

Description

This function is used to send a Device Information Response command containing
information about the devices on the local node in reply to a received Device
Information Request from a remote node. The command is sent as an inter-PAN
message.

A pointer must be provided to a structure containing the data to be returned.

The specified Transaction Sequence Number (TSN) of the response must match the
TSN of the corresponding request, as this will allow the response to be paired with
the request at the destination.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to location containing the Transaction
Sequence Number (TSN) of the response

psPayload Pointer to structure containing payload data
for the Device Information Response
command (see Section 6.8.8)

Returns

E_ZCL_SUCCESS

PUBLIC teZCL_Status
eCLD_ZllCommissionCommandDeviceInfoRspCommandSend(

ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_DeviceInfoRspCommandPayload

 *psPayload);
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 87

Chapter 6
ZLL Commissioning Cluster

eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend

Description

This function is used to send an Identify Request command to ask a remote node to
identify itself by entering ‘identify mode’ (this is a visual indication, such as flashing a
LED). The command is sent as an inter-PAN message.

The command payload contains a value indicating the length of time, in seconds, that
the target device should remain in identify mode. It is also possible to use this
command to instruct the target node to immediately exit identify mode (if it is already
in this mode).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to structure containing payload data
for the Identify Request command (see
Section 6.8.9)

Returns

E_ZCL_SUCCESS

teZCL_Status
eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend(

ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_IdentifyReqCommandPayload

 *psPayload);
88 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
eCLD_ZllCommissionCommandFactoryResetReqCommandSend

Description

This function is used to send a Reset to Factory New Request command to ask a
remote node to return to its ‘factory new’ state. The command is sent as an inter-PAN
message.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to structure containing payload data
for the Reset to Factory New Request
command (see Section 6.8.10)

Returns

E_ZCL_SUCCESS

teZCL_Status
eCLD_ZllCommissionCommandFactoryResetReqCommandSend(

ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_FactoryResetReqCommandPayload

 *psPayload);
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 89

Chapter 6
ZLL Commissioning Cluster

eCLD_ZllCommissionCommandNetworkStartReqCommandSend

Description

This function is used to send a Network Start Request command to create a new
network with a detected Router. The command is sent as an inter-PAN message.

The function is called once the results of a Scan Request command have been
received and a detected Router has been selected.

The command payload contains information about the network and the local node,
as well as certain data for the target node. This payload information is detailed in
Section 6.8.11.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to structure containing payload data
for the Network Start Request command (see
Section 6.8.11)

Returns

E_ZCL_SUCCESS

teZCL_Status
eCLD_ZllCommissionCommandNetworkStartReqCommandSend(

ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_NetworkStartReqCommandPayload

 *psPayload);
90 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
eCLD_ZllCommissionCommandNetworkStartRspCommandSend

Description

This function is used to send a Network Start Response command to confirm that the
local (Router) node is ready to be the first node to join a newly created network in
reply to a received Network Start Request from a remote node. The command is sent
as an inter-PAN message.

A pointer must be provided to a structure containing the data to be returned.

The specified Transaction Sequence Number (TSN) of the response must match the
TSN of the corresponding request, as this will allow the response to be paired with
the request at the destination.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to location containing the Transaction
Sequence Number (TSN) of the response

psPayload Pointer to structure containing payload data
for the Network Start Response command
(see Section 6.8.12)

Returns

E_ZCL_SUCCESS

PUBLIC teZCL_Status
eCLD_ZllCommissionCommandNetworkStartRspCommandSend(

ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_NetworkStartRspCommandPayload

 *psPayload);
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 91

Chapter 6
ZLL Commissioning Cluster

eCLD_ZllCommissionCommandNetworkJoinRouterReqCommandSend

Description

This function is used to send a Network Join Router Request command to allow a
detected Router to join the created network. The command is sent as an inter-PAN
message.

The function can be called once a network has been created. The target Router is
distinct from the Router that was included when network was created.

The command payload contains information about the network and the local node,
as well as certain data for the target node. This payload information is detailed in
Section 6.8.13.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to structure containing payload data
for the Network Join Router Request
command (see Section 6.8.13)

Returns

E_ZCL_SUCCESS

teZCL_Status
eCLD_ZllCommissionCommandNetworkJoinRouterReqCommandSend(

ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_NetworkJoinRouterReqCommandPayload

 *psPayload);
92 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
eCLD_ZllCommissionCommandNetworkJoinRouterRspCommandSend

Description

This function is used to send a Network Join Router Response command to confirm
that the local (Router) node is ready to join a network in reply to a received Network
Join Router Request from a remote node. The command is sent as an inter-PAN
message.

A pointer must be provided to a structure containing the data to be returned.

The specified Transaction Sequence Number (TSN) of the response must match the
TSN of the corresponding request, as this will allow the response to be paired with
the request at the destination.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to location containing the Transaction
Sequence Number (TSN) of the response

psPayload Pointer to structure containing payload data
for the Network Join Router Response
command (see Section 6.8.14)

Returns

E_ZCL_SUCCESS

PUBLIC teZCL_Status
eCLD_ZllCommissionCommandNetworkJoinRouterRspCommandSend(

ZPS_tsInterPanAddress psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_NetworkJoinRouterRspCommandPayload

 *psPayload);
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 93

Chapter 6
ZLL Commissioning Cluster

eCLD_ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend

Description

This function is used to send a Network Join End Device Request command to allow
a detected End Device to join the created network. The command is sent as an inter-
PAN message.

The function can be called once a network has been created.

The command payload contains information about the network and the local node,
as well as certain data for the target node. This data includes a range of network
addresses and a range of group IDs from which the target End Device can assign
values to the other nodes - in this case, the End Device would typically be a remote
control unit. This payload information is detailed in Section 6.8.15.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to structure containing payload data
for the Network Join End Device Request
command (see Section 6.8.15)

Returns

E_ZCL_SUCCESS

teZCL_Status
eCLD_ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend(

ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_NetworkJoinEndDeviceReqCommandPayload

 *psPayload);
94 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
eCLD_ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend

Description

This function is used to send a Network Join End Device Response command to
confirm that the local (End Device) node is ready to join a network in reply to a
received Network Join End Device Request from a remote node. The command is
sent as an inter-PAN message.

A pointer must be provided to a structure containing the data to be returned.

The specified Transaction Sequence Number (TSN) of the response must match the
TSN of the corresponding request, as this will allow the response to be paired with
the request at the destination.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to location containing the Transaction
Sequence Number (TSN) of the response

psPayload Pointer to structure containing payload data
for the Network Join End Device Response
command (see Section 6.8.16)

Returns

E_ZCL_SUCCESS

PUBLIC teZCL_Status
eCLD_ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend(

ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_NetworkJoinEndDeviceRspCommandPayload

 *psPayload);
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 95

Chapter 6
ZLL Commissioning Cluster

eCLD_ZllCommissionCommandNetworkUpdateReqCommandSend

Description

This function is used to send a Network Update Request command to bring a node
that has missed a network update back into the network. The command is sent as an
inter-PAN message.

The command payload contains information about the network, including the current
value of the Network Update Identifier. This identifier takes a value in the range 0x00
to 0xFF and is incremented when a network update has occurred (the value wraps
around at 0xFF). Thus, if this value in the payload is more recent than the value of
this identifier held by the target node, the node should update its network settings
using the values in the rest of the payload. The payload information is detailed in
Section 6.8.17.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

psDestinationAddress Pointer to stucture containing PAN ID and
address information for target node

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to structure containing payload data
for the Network Update Request command
(see Section 6.8.17)

Returns

E_ZCL_SUCCESS

teZCL_Status
eCLD_ZllCommissionCommandNetworkUpdateReqCommandSend(

ZPS_tsInterPanAddress *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllCommission_NetworkUpdateReqCommandPayload

 *psPayload);
96 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.7.2 Commissioning Utility Functions

The following Commissioning Utility functions are provided in the ZLL API:

Function Page

eCLD_ZllUtilityCreateUtility 98

eCLD_ZllUtilityCommandEndpointInformationCommandSend 99

eCLD_ZllUtilityCommandGetGroupIdReqCommandSend 100

eCLD_ZllUtilityCommandGetGroupIdRspCommandSend 101

eCLD_ZllUtilityCommandGetEndpointListReqCommandSend 102

eCLD_ZllUtilityCommandGetEndpointListRspCommandSend 103

eCLD_ZllUtilityCommandHandler 104
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 97

Chapter 6
ZLL Commissioning Cluster

eCLD_ZllUtilityCreateUtility

Description

This function creates a ZLL Commissioning cluster instance for the Commissioning
Utility. The cluster instance is created on the endpoint of the calling application, which
should be the main ZLL application on the node. The type of cluster instance (server
or client) to be created must be specified.

Parameters

psClusterInstance Pointer to cluster instance structure on local endpoint

bIsServer Type of cluster instance (server or client) to be created:
TRUE - server
FALSE - client

psClusterDefinition Pointer to cluster definition structure containing
information about the cluster

pvSharedStructPtr Pointer to structure containing the shared storage for
the cluster

psAttributeStatus Pointer to a structure containing the storage for each
attribute's status

psCustomDataStructure Pointer to custom data to be provided to the cluster (see
Section 6.8.20)

Returns

E_ZCL_SUCCESS

teZCL_Status eCLD_ZllUtilityCreateUtility(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvSharedStructPtr,
tsZCL_AttributeStatus psAttributeStatus,
tsCLD_ZllUtilityCustomDataStructure

 *psCustomDataStructure);
98 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
eCLD_ZllUtilityCommandEndpointInformationCommandSend

Description

This function is used to send an Endpoint Information command to provide a remote
endpoint with general information about the local endpoint (this may prompt the
remote endpoint to request further information about the local endpoint). The function
would typically be used to send local endpoint information from a ‘teacher’ node to a
‘learner’ node, in order to facilitate two-way communication between the
Commissioning Utilities on the two nodes.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the command. The TSN in the response will be set to match the
specified TSN, allowing an incoming response to be paired with the original
command. This is useful when sending more than one command to the same
destination endpoint.

Parameters

u8SrcEndpoint Number of local endpoint (1-240)

u8DstEndpoint Number of destination endpoint (1-240)

psDestinationAddress Pointer to stucture containing address
information for target node

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the command

psPayload Pointer to structure to contain payload data for
the Endpoint Information command (see Section
6.8.20)

Returns

E_ZCL_SUCCESS

teZCL_Status
eCLD_ZllUtilityCommandEndpointInformationCommandSend(

uint8 u8SrcEndpoint,
uint8 u8DstEndpoint,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ZllUtility_EndpointInformationCommandPayload

 *psPayload);
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 99

Chapter 6
ZLL Commissioning Cluster

eCLD_ZllUtilityCommandGetGroupIdReqCommandSend

Description

This function is used to send a Get Group Identifiers Request command to obtain
information about the groups (of lights) that have been configured on a remote
endpoint. The function would typically be used on a ‘learner’ node to request the
groups that have been configured on a ‘teacher’ node.

The first group from the groups list to be included in the returned information must be
specified in terms of an index.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SrcEndpoint Number of local endpoint (1-240)

u8DstEndpoint Number of destination endpoint (1-240)

psDestinationAddress Pointer to stucture containing address
information for target node

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u8StartIndex Index in group list of the first group to include in
the returned information

Returns

E_ZCL_SUCCESS

teZCL_Status
eCLD_ZllUtilityCommandGetGroupIdReqCommandSend(

uint8 u8Srcendpoint,
uint8 u8DstEndpoint,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8StartIndex);
100 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
eCLD_ZllUtilityCommandGetGroupIdRspCommandSend

Description

This function is used to send a Get Group Identifiers Response command containing
information about the groups (of lights) that have been configured on the local
endpoint. The function would typically be used on a ‘teacher’ node to respond to a
Get Group Identifiers Request from a ‘learner’ node.

The first group from the groups list to be included in the returned information must be
specified in terms of an index. The returned information includes this index, the
number of (consecutive) groups included and the identifier of each group.

The specified Transaction Sequence Number (TSN) of the response must match the
TSN of the corresponding request, as this will allow the response to be paired with
the request at the destination.

Parameters

u8SrcEndpoint Number of local endpoint (1-240)

u8DstEndpoint Number of destination endpoint (1-240)

psDestinationAddress Pointer to stucture containing address
information for target node

pu8TransactionSequenceNumber Pointer to location containing the Transaction
Sequence Number (TSN) of the response

u8StartIndex Index in group list of the first group to include in
the returned information

Returns

E_ZCL_SUCCESS

PUBLIC teZCL_Status
eCLD_ZllUtilityCommandGetGroupIdRspCommandSend(

uint8 u8SrcEndpoint,
uint8 u8DstEndpoint,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8StartIndex);
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 101

Chapter 6
ZLL Commissioning Cluster

eCLD_ZllUtilityCommandGetEndpointListReqCommandSend

Description

This function is used to send a Get Endpoint List Request command to obtain
information about controlled endpoints. The function would typically be used on a
‘learner’ node to request the remote endpoints that a ‘teacher’ node controls.

The first endpoint from the endpoints list to be included in the returned information
must be specified in terms of an index.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SrcEndpoint Number of local endpoint (1-240)

u8DstEndpoint Number of destination endpoint (1-240)

psDestinationAddress Pointer to stucture containing address
information for target node

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u8StartIndex Index in endpoint list of the first endpoint to
include in the returned information

Returns

E_ZCL_SUCCESS

teZCL_Status
eCLD_ZllUtilityCommandGetEndpointListReqCommandSend(

uint8 u8SrcEndpoint,
uint8 u8DstEndpoint,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8StartIndex);
102 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
eCLD_ZllUtilityCommandGetEndpointListRspCommandSend

Description

This function is used to send a Get Endpoint List Response command containing
information about controlled endpoints. The function would typically be used on a
‘teacher’ node to respond to a Get Endpoint List Request from a ‘learner’ node.

The first endpoint from the endpoints list to be included in the returned information
must be specified in terms of an index. The returned information will include this
index, the number of (consecutive) endpoints included and the information about
each endpoint (including endpoint number, identifier of supported application profile,
identifier of resident ZLL device and version of this device).

The specified Transaction Sequence Number (TSN) of the response must match the
TSN of the corresponding request, as this will allow the response to be paired with
the request at the destination.

Parameters

u8SrcEndpoint Number of local endpoint (1-240)

u8DstEndpoint Number of destination endpoint (1-240)

psDestinationAddress Pointer to stucture containing address
information for target node

pu8TransactionSequenceNumber Pointer to location containing the Transaction
Sequence Number (TSN) of the response

u8StartIndex Index in endpoint list of the first endpoint to
include in the returned information

Returns

E_ZCL_SUCCESS

PUBLIC teZCL_Status
eCLD_ZllUtilityCommandGetEndpointListRspCommandSend(

uint8 u8SrcEndpoint,
uint8 u8DstEndpoint,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8StartIndex);
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 103

Chapter 6
ZLL Commissioning Cluster

eCLD_ZllUtilityCommandHandler

Description

This function parses a ZigBee PRO event and invokes the user-defined callback
function that has been registered for the device (using the relevant endpoint
registration function, described in Chapter 7).

The registered user-defined callback function must be designed to handle events
associated with the Commissioning Utility.

Parameters

pZPSevent Pointer to received ZigBee PRO event

psEndPointDefinition Pointer to structure which defines endpoint on which
ZLL Commissioning cluster (utility) resides

psClusterInstance Pointer to ZLL Commissioning cluster (utility) instance
structure

Returns

E_ZCL_SUCCESS

teZCL_Status eCLD_ZllUtilityCommandHandler(
ZPS_tsAfEvent *pZPSevent,
tsZCL_EndPointDefinition *psEndPointDefinition,
tsZCL_ClusterInstance *psClusterInstance);
104 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.8 Structures

This section details the structures used in the ZLL Commissioning cluster (both
Touchlink and Commissioning Utility parts).

6.8.1 tsZLL_CommissionEndpoint

This structure is used to hold endpoint information for a Touchlink application.

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 tsZLL_CommissionEndpointClusterInstances sClusterInstance;

#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

#endif

#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)

 tsCLD_ZllCommission sZllCommissionClientCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionClientCustomDataStructure;

#endif

} tsZLL_CommissionEndpoint;

where:

 sEndPoint is a ZCL structure containing information about the endpoint (refer
to the ZCL User Guide (JN-UG-3077)).

 sClusterInstance is a structure containing information about the ZLL
Commissioning cluster instance on the endpoint (see Section 6.8.2).

 For a Touchlink server, the following fields are used:

 sZllCommissionServerCluster is the ZLL Commissioning cluster
structure (which contains no attributes).

 sZllCommissionServerCustomDataStructure is a structure
containing custom data for the cluster server (see Section 6.8.3).

 For a Touchlink client, the following fields are used:

 sZllCommissionClientCluster is the ZLL Commissioning cluster
structure (which contains no attributes).

 sZllCommissionClientCustomDataStructure is a structure
containing custom data for the cluster client (see Section 6.8.3).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 105

Chapter 6
ZLL Commissioning Cluster

6.8.2 tsZLL_CommissionEndpointClusterInstances

This structure holds information about the ZLL Commissioning cluster instance on an
endpoint.

typedef struct PACK

{

#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsZCL_ClusterInstance sZllCommissionServer;

#endif

#if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)

 tsZCL_ClusterInstance sZllCommissionClient;

#endif

} tsZLL_CommissionEndpointClusterInstances;

where:

 For a Touchlink server, the following field is used:

 sZllCommissionServer is a ZCL structure containing information
about the ZLL Commissioning cluster server instance (refer to the ZCL
User Guide (JN-UG-3077)).

 For a Touchlink client, the following field is used:

 sZllCommissionClient is a ZCL structure containing information
about the ZLL Commissioning cluster client instance (refer to the ZCL
User Guide (JN-UG-3077)).

6.8.3 tsCLD_ZllCommissionCustomDataStructure

This structure is used to hold the data for a Touchlink command received by a node.

typedef struct

{

 tsZCL_ReceiveEventAddressInterPan sRxInterPanAddr;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_ZllCommissionCallBackMessage sCallBackMessage;

} tsCLD_ZllCommissionCustomDataStructure;

where:

 RxInterPanAddr is a ZCL structure containing the Inter-PAN addresses of
the source and destination nodes of the command.

 sCustomCallBackEvent is the ZCL event structure for the command.
106 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
 sCallBackMessage is a structure containing the command ID and payload
(see Section 6.8.4).

6.8.4 tsCLD_ZllCommissionCallBackMessage

This structure contains the command ID and payload for a received Touchlink
command.

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_ZllCommission_ScanReqCommandPayload
 *psScanReqPayload;

 tsCLD_ZllCommission_ScanRspCommandPayload
 *psScanRspPayload;

 tsCLD_ZllCommission_IdentifyReqCommandPayload
 *psIdentifyReqPayload;

 tsCLD_ZllCommission_DeviceInfoReqCommandPayload
 *psDeviceInfoReqPayload;

 tsCLD_ZllCommission_DeviceInfoRspCommandPayload
 *psDeviceInfoRspPayload;

 tsCLD_ZllCommission_FactoryResetReqCommandPayload
 *psFactoryResetPayload;

 tsCLD_ZllCommission_NetworkStartReqCommandPayload
 *psNwkStartReqPayload;

 tsCLD_ZllCommission_NetworkStartRspCommandPayload
 *psNwkStartRspPayload;

 tsCLD_ZllCommission_NetworkJoinRouterReqCommandPayload
 *psNwkJoinRouterReqPayload;

 tsCLD_ZllCommission_NetworkJoinRouterRspCommandPayload
 *psNwkJoinRouterRspPayload;

 tsCLD_ZllCommission_NetworkJoinEndDeviceReqCommandPayload
 *psNwkJoinEndDeviceReqPayload;

 tsCLD_ZllCommission_NetworkJoinEndDeviceRspCommandPayload
 *psNwkJoinEndDeviceRspPayload;

 tsCLD_ZllCommission_NetworkUpdateReqCommandPayload
 *psNwkUpdateReqPayload;

 } uMessage;

} tsCLD_ZllCommissionCallBackMessage;

where:

 u8CommandId is the command ID - enumerations are provided, as detailed in
Section 6.6.1.

 uMessage contains the payload of the command, where the structure used
depends on the command ID (the structures are detailed in the sections below).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 107

Chapter 6
ZLL Commissioning Cluster

6.8.5 tsCLD_ZllCommission_ScanReqCommandPayload

This structure is used to hold the payload data for a Touchlink Scan Request
command.

typedef struct

{

 uint32 u32TransactionId;

 uint8 u8ZigbeeInfo;

 uint8 u8ZllInfo;

} tsCLD_ZllCommission_ScanReqCommandPayload;

where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
request. This is a random number generated and inserted by the ZLL library.

 u8ZigbeeInfo is a bitmap of ZigBee information which indicates the ZigBee
device type of the sending node and whether the radio receiver remains on
when the node is idle. This information is inserted by the ZigBee stack.

 u8ZllInfo is a bitmap indicating the ZLL properties of the sending node,
including whether the node is factory new, whether the node is able to assign
addresses to other nodes and whether the node is able to initiate a link
operation (supports ZLL Commissioning cluster on the client side). This
information is inserted by the ZLL library.

6.8.6 tsCLD_ZllCommission_ScanRspCommandPayload

This structure is used to hold the payload data for a Touchlink Scan Response
command.

typedef struct

{

 uint32 u32TransactionId;

 uint8 u8RSSICorrection;

 uint8 u8ZigbeeInfo;

 uint8 u8ZllInfo;

 uint16 u16KeyMask;

 uint32 u32ResponseId;

 uint64 u64ExtPanId;

 uint8 u8NwkUpdateId;

 uint8 u8LogicalChannel;

 uint16 u16PanId;

 uint16 u16NwkAddr;

 uint8 u8NumberSubDevices;

 uint8 u8TotalGroupIds;

 uint8 u8Endpoint;
108 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
 uint16 u16ProfileId;

 uint16 u16DeviceId;

 uint8 u8Version;

 uint8 u8GroupIdCount;

} tsCLD_ZllCommission_ScanRspCommandPayload;

where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
response, which must take the same value as the identifier in the
corresponding request.

 u8RSSICorrection is the 8-bit RSSI correction offset for the node, in the
range 0x00 to 0x20.

 u8ZigbeeInfo is an 8-bit field containing the following ZigBee-related
information:

 Bits 1-0: Node type (00 - Co-ordinator, 01 - Router, 10 - End Device)

 Bit 2: Rx on when idle (1 - On, 0 - Off)

 Bits 7-3: Reserved

 u8ZllInfo is an 8-bit field containing the following ZLL-related information:

 Bit 0: Factory new (1 - Yes, 0 - No)

 Bit 1: Address assignment capability (1 - Yes, 0 - No)

 Bits 3-2: Reserved

 Bit 4: Touchlink initiator (1 - Yes, 0 - No)

 Bit 5: Touchlink priority request (1 - Yes, 0 - No)

 Bits 7-6: Reserved

 u16KeyMask is a 16-bit bitmap indicating which link key is installed on the
node - only one bit should be set to ‘1’, corresponding to the key that is in use.
The possible values and keys are:

 0x0001 (bit 0 set): Development key (defined by developer for use during
application development)

 0x0010 (bit 4 set): Master key (obtained from the ZigBee Alliance after
successful certification and agreement with the terms of the ‘ZLL Security
Key Licence and Confidentialty Agreement’)

 0x8000 (bit 15 set): Certification key (defined in the ZLL Specification for
use during development and during certification at test houses)

 u32ResponseId is a 32-bit random identifier for the response, used during
network key transfer.

 u64ExtPanId is the 64-bit Extended PAN ID of a network to which the node
already belongs, if any (a zero value indicates no network membership).

 u8NwkUpdateId is the current value of the Network Update Identifier on the
node (see Section 6.4.3).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 109

Chapter 6
ZLL Commissioning Cluster

 u8LogicalChannel is the number of the IEEE 802.15.4 radio channel used
by a network to which the node already belongs, if any (a zero value indicates
no network membership and therefore that no particular channel is used).

 u16PanId is the 16-bit PAN ID of a network to which the node already belongs,
if any (a zero value indicates no network membership).

 u16NwkAddr is the 16-bit network address currently assigned to the node (the
value 0xFFFF indicates that the node is ‘factory new’ and has no assigned
network address).

 u8NumberSubDevices is the number of ZigBee devices on the node.

 u8TotalGroupIds is the total number of groups (of lights) supported on the
node (across all devices).

 u8Endpoint is number of the endpoint (in the range 1-240) on which the
ZigBee device is resident (this field is only used when there is only one ZigBee
device on the node).

 u16ProfileId is the 16-bit identifier of the ZigBee application profile that is
supported by the device (this field is only used when there is only one ZigBee
device on the node).

 u16DeviceId is the 16-bit Device Identifier supported by the device (this field
is only used when there is only one ZigBee device on the node).

 u8Version is an 8-bit version number for the device - the four least significant
bits are from the Application Device Version field of the appropriate Simple
Descriptor and the four most significant bits are zero (this field is only used
when there is only one ZigBee device on the node).

 u8GroupIdCount is the number of groups (of lights) supported by the device
(this field is only used when there is only one ZigBee device on the node).

6.8.7 tsCLD_ZllCommission_DeviceInfoReqCommandPayload

This structure is used to hold the payload data for a Touchlink Device Information
Request command.

typedef struct

{

 uint32 u32TransactionId;

 uint8 u8StartIndex;

} tsCLD_ZllCommission_DeviceInfoReqCommandPayload;

where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
request. This is a random number generated and inserted by the ZLL library.

 u8StartIndex specifies the index (starting from 0) of the first entry in the
device table from which device information should be obtained.
110 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.8.8 tsCLD_ZllCommission_DeviceInfoRspCommandPayload

This structure is used to hold the payload data for a Touchlink Device Information
Response command.

typedef struct

{

 uint32 u32TransactionId;

 uint8 u8NumberSubDevices;

 uint8 u8StartIndex;

 uint8 u8DeviceInfoRecordCount;

 tsCLD_ZllDeviceRecord asDeviceRecords[ZLL_MAX_DEVICE_RECORDS];

} tsCLD_ZllCommission_DeviceInfoRspCommandPayload;

where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
response, which must take the same value as the identifier in the
corresponding request.

 u8NumberSubDevices is the number of ZigBee devices on the node (as
reported in the Scan Response).

 u8StartIndex is the index (starting from 0) of the first entry in the device
table from which device information has been obtained (this value should be as
specified in the corresponding request).

 u8DeviceInfoRecordCount indicates the number of device information
records included in the response (in the range 0 to 5).

 asDeviceRecords[] is an array, where each array element is a
tsCLD_ZllDeviceRecord structure containing a device information record
for one ZigBee device on the node (see Section 8.2.1).

6.8.9 tsCLD_ZllCommission_IdentifyReqCommandPayload

This structure is used to hold the payload data for a Touchlink Identify Request
command.

typedef struct

{

 uint32 u32TransactionId;

 uint16 u16Duration;

} tsCLD_ZllCommission_IdentifyReqCommandPayload;

where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
request. This is a random number generated and inserted by the ZLL library.

 u16Duration specifies the length of time (in seconds) that the target node is
to remain in identify mode. The possible values are:
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 111

Chapter 6
ZLL Commissioning Cluster

 0x0000: Exit identify mode immediately

 0x0001–0xFFFE: Number of seconds to remain in identify mode

 0xFFFF: Remain in identify mode for the default time for the target node

If the target node is unable to provide accurate timings, it will attempt to remain
in identify mode for as close to the requested time as possible

6.8.10 tsCLD_ZllCommission_FactoryResetReqCommandPayload

This structure is used to hold the payload data for a Touchlink Reset to Factory New
Request command.

typedef struct

{

 uint32 u32TransactionId;

} tsCLD_ZllCommission_FactoryResetReqCommandPayload;

where u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
request. This is a random number generated and inserted by the ZLL library.

6.8.11 tsCLD_ZllCommission_NetworkStartReqCommandPayload

This structure is used to hold the payload data for a Touchlink Network Start Request
command.

typedef struct

{

 uint32 u32TransactionId;

 uint64 u64ExtPanId;

 uint8 u8KeyIndex;

 uint8 au8NwkKey[16];

 uint8 u8LogicalChannel;

 uint16 u16PanId;

 uint16 u16NwkAddr;

 uint16 u16GroupIdBegin;

 uint16 u16GroupIdEnd;

 uint16 u16FreeNwkAddrBegin;

 uint16 u16FreeNwkAddrEnd;

 uint16 u16FreeGroupIdBegin;

 uint16 u16FreeGroupIdEnd;

 uint64 u64InitiatorIEEEAddr;

 uint16 u16InitiatorNwkAddr;

} tsCLD_ZllCommission_NetworkStartReqCommandPayload;
112 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
request. This is a random number generated and inserted by the ZLL library.

 u64ExtPanId is the Extended PAN ID (EPID) of the new network (if set to
zero, the target node will choose the EPID).

 u8KeyIndex is a value indicating the type of security key used to encrypt the
randomly generated network key in au8NwkKey. The valid values are as
follows (all other values are reserved for future use):

 0: Development key, used during development before ZLL certification

 4: Master key, used after successful ZLL certification

 15: Certification key, used during ZLL certification testing

 au8NwkKey[16] is the 128-bit randomly generated network key encrypted
using the key specified in u8KeyIndex.

 u8LogicalChannel is the number of the IEEE 802.15.4 radio channel to be
used by the network (if set to zero, the target node will choose the channel).

 u16PanId is the PAN ID of the new network (if set to zero, the target node will
choose the PAN ID).

 u16NwkAddr is the 16-bit network (short) address assigned to the target node

 u16GroupIdBegin is the start value of the range of group identifiers that the
target node can use for its own endpoints (if set to zero, no range of group
identifiers has been allocated).

 u16GroupIdEnd is the end value of the range of group identifiers that the
target node can use for its own endpoints (if set to zero, no range of group
identifiers has been allocated).

 u16FreeNwkAddrBegin is the start address of the range of network
addresses that the target node can assign to other nodes (if set to zero, no
range of network addresses has been allocated).

 u16FreeNwkAddrEnd is the end address of the range of network addresses
that the target node can assign to other nodes (if set to zero, no range of
network addresses has been allocated).

 u16FreeGroupIdBegin is the start value of the range of free group identifiers
that the target node can assign to other nodes (if set to zero, no range of free
group identifiers has been allocated).

 u16FreeGroupIdEnd is the end value of the range of free group identifiers
that the target node can assign to other nodes (if set to zero, no range of free
group identifiers has been allocated).

 u64InitiatorIEEEAddr is the IEEE (MAC) address of the local node
(network initiator)

 u16InitiatorNwkAddr is the network (short) address of the local node
(network initiator)
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 113

Chapter 6
ZLL Commissioning Cluster

6.8.12 tsCLD_ZllCommission_NetworkStartRspCommandPayload

This structure is used to hold the payload data for a Touchlink Network Start Response
command.

typedef struct

{

 uint32 u32TransactionId;

 uint8 u8Status;

 uint64 u64ExtPanId;

 uint8 u8NwkUpdateId;

 uint8 u8LogicalChannel;

 uint16 u16PanId;

} tsCLD_ZllCommission_NetworkStartRspCommandPayload;

where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
response, which must take the same value as the identifier in the
corresponding request.

 u8Status indicates the outcome of the corresponding Network Start Request:
0x00 for success, 0x01 for failure.

 u64ExtPanId is the Extended PAN ID (EPID) of the new network (this will be
the value specified in the corresponding request or a value chosen by the local
node).

 u8NwkUpdateId is the current value of the Network Update Identifier, which
will be set to zero for a new network (see Section 6.4.3).

 u8LogicalChannel is the number of the IEEE 802.15.4 radio channel to be
used by the network (this will be the value specified in the corresponding
request or a value chosen by the local node).

 u16PanId is the PAN ID of the new network (this will be the value specified in
the corresponding request or a value chosen by the local node).
114 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.8.13 tsCLD_ZllCommission_NetworkJoinRouterReqCommandPa
yload

This structure is used to hold the payload data for a Touchlink Network Join Router
Request command.

typedef struct

{

 uint32 u32TransactionId;

 uint64 u64ExtPanId;

 uint8 u8KeyIndex;

 uint8 au8NwkKey[16];

 uint8 u8NwkUpdateId;

 uint8 u8LogicalChannel;

 uint16 u16PanId;

 uint16 u16NwkAddr;

 uint16 u16GroupIdBegin;

 uint16 u16GroupIdEnd;

 uint16 u16FreeNwkAddrBegin;

 uint16 u16FreeNwkAddrEnd;

 uint16 u16FreeGroupIdBegin;

 uint16 u16FreeGroupIdEnd;

} tsCLD_ZllCommission_NetworkJoinRouterReqCommandPayload;

where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
request. This is a random number generated and inserted by the ZLL library.

 u64ExtPanId is the Extended PAN ID (EPID) of the network.

 u8KeyIndex is a value indicating the type of security key used to encrypt the
network key in au8NwkKey. The valid values are as follows (all other values
are reserved for future use):

 0: Development key, used during development before ZLL certification

 4: Master key, used after successful ZLL certification

 15: Certification key, used during ZLL certification testing

 au8NwkKey[16] is the 128-bit network key encrypted using the key specified
in u8KeyIndex.

 u8NwkUpdateId is the current value of the Network Update Identifier. This
identifier takes a value in the range 0x00 to 0xFF and is incremented when a
network update has occurred which requires the network settings on the nodes
to be changed.

 u8LogicalChannel is the number of the IEEE 802.15.4 radio channel used
by the network.

 u16PanId is the PAN ID of the network
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 115

Chapter 6
ZLL Commissioning Cluster

 u16NwkAddr is the 16-bit network (short) address assigned to the target node

 u16GroupIdBegin is the start value of the range of group identifiers that the
target node can use for its own endpoints (if set to zero, no range of group
identifiers has been allocated).

 u16GroupIdEnd is the end value of the range of group identifiers that the
target node can use for its own endpoints (if set to zero, no range of group
identifiers has been allocated).

 u16FreeNwkAddrBegin is the start address of the range of network
addresses that the target node can assign to other nodes (if set to zero, no
range of network addresses has been allocated).

 u16FreeNwkAddrEnd is the end address of the range of network addresses
that the target node can assign to other nodes (if set to zero, no range of
network addresses has been allocated).

 u16FreeGroupIdBegin is the start value of the range of free group identifiers
that the target node can assign to other nodes (if set to zero, no range of free
group identifiers has been allocated).

 u16FreeGroupIdEnd is the end value of the range of free group identifiers
that the target node can assign to other nodes (if set to zero, no range of free
group identifiers has been allocated).

6.8.14 tsCLD_ZllCommission_NetworkJoinRouterRspCommandPa
yload

This structure is used to hold the payload data for a Touchlink Network Join Router
Response command.

typedef struct

{

 uint32 u32TransactionId;

 uint8 u8Status;

} tsCLD_ZllCommission_NetworkJoinRouterRspCommandPayload;

where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
response, which must take the same value as the identifier in the
corresponding request.

 u8Status indicates the outcome of the corresponding Network Join Router
Request: 0x00 for success, 0x01 for failure.
116 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.8.15 tsCLD_ZllCommission_NetworkJoinEndDeviceReqComman
dPayload

This structure is used to hold the payload data for a Touchlink Network Join End
Device Request command.

typedef struct

{

 uint32 u32TransactionId;

 uint64 u64ExtPanId;

 uint8 u8KeyIndex;

 uint8 au8NwkKey[16];

 uint8 u8NwkUpdateId;

 uint8 u8LogicalChannel;

 uint16 u16PanId;

 uint16 u16NwkAddr;

 uint16 u16GroupIdBegin;

 uint16 u16GroupIdEnd;

 uint16 u16FreeNwkAddrBegin;

 uint16 u16FreeNwkAddrEnd;

 uint16 u16FreeGroupIdBegin;

 uint16 u16FreeGroupIdEnd;

} tsCLD_ZllCommission_NetworkJoinEndDeviceReqCommandPayload;

where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
request. This is a random number generated and inserted by the ZLL library.

 u64ExtPanId is the Extended PAN ID (EPID) of the network.

 u8KeyIndex is a value indicating the type of security key used to encrypt the
network key in au8NwkKey. The valid values are as follows (all other values
are reserved for future use):

 0: Development key, used during development before ZLL certification

 4: Master key, used after successful ZLL certification

 15: Certification key, used during ZLL certification testing

 au8NwkKey[16] is the 128-bit network key encrypted using the key specified
in u8KeyIndex.

 u8NwkUpdateId is the current value of the Network Update Identifier. This
identifier takes a value in the range 0x00 to 0xFF and is incremented when a
network update has occurred which requires the network settings on the nodes
to be changed.

 u8LogicalChannel is the number of the IEEE 802.15.4 radio channel used
by the network.

 u16PanId is the PAN ID of the network.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 117

Chapter 6
ZLL Commissioning Cluster

 u16NwkAddr is the 16-bit network (short) address assigned to the target node.

 u16GroupIdBegin is the start value of the range of group identifiers that the
target node can use for its own endpoints (if set to zero, no range of group
identifiers has been allocated).

 u16GroupIdEnd is the end value of the range of group identifiers that the
target node can use for its own endpoints (if set to zero, no range of group
identifiers has been allocated).

 u16FreeNwkAddrBegin is the start address of the range of network
addresses that the target node can assign to other nodes (if set to zero, no
range of network addresses has been allocated).

 u16FreeNwkAddrEnd is the end address of the range of network addresses
that the target node can assign to other nodes (if set to zero, no range of
network addresses has been allocated).

 u16FreeGroupIdBegin is the start value of the range of free group identifiers
that the target node can assign to other nodes (if set to zero, no range of free
group identifiers has been allocated).

 u16FreeGroupIdEnd is the end value of the range of free group identifiers
that the target node can assign to other nodes (if set to zero, no range of free
group identifiers has been allocated).

6.8.16 tsCLD_ZllCommission_NetworkJoinEndDeviceRspComman
dPayload

This structure is used to hold the payload data for a Touchlink Network Join End
Device Response command.

typedef struct

{

 uint32 u32TransactionId;

 uint8 u8Status;

} tsCLD_ZllCommission_NetworkJoinEndDeviceRspCommandPayload;

where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
response, which must take the same value as the identifier in the
corresponding request.

 u8Status indicates the outcome of the corresponding Network Join End
Device Request: 0x00 for success, 0x01 for failure.
118 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.8.17 tsCLD_ZllCommission_NetworkUpdateReqCommandPayloa
d

This structure is used to hold the payload data for a Touchlink Network Update
Request command.

typedef struct

{

 uint32 u32TransactionId;

 uint64 u64ExtPanId;

 uint8 u8NwkUpdateId;

 uint8 u8LogicalChannel;

 uint16 u16PanId;

 uint16 u16NwkAddr;

} tsCLD_ZllCommission_NetworkUpdateReqCommandPayload;

where:

 u32TransactionId is the 32-bit Inter-PAN Transaction Identifier of the
request. This is a random number generated and inserted by the ZLL library.

 u64ExtPanId is the Extended PAN ID (EPID) of the network.

 u8NwkUpdateId is the current value of the Network Update Identifier (see
Section 6.4.3).

 u8LogicalChannel is the number of the IEEE 802.15.4 radio channel used
by the network.

 u16PanId is the PAN ID of the network.

 u16NwkAddr is the 16-bit network (short) address assigned to the target node.

6.8.18 tsCLD_ZllUtilityCustomDataStructure

This structure is used to hold custom data for a Commissioning Utility instance of the
ZLL Commissioning cluster.

typedef struct

{

 tsZCL_ReceiveEventAddress sRxAddr;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_ZllUtilityCallBackMessage sCallBackMessage;

} tsCLD_ZllUtilityCustomDataStructure;

where:

 sRxAddr is a ZCL structure containing the destination address of the
command.

 sCustomCallBackEvent is the ZCL event structure for the command.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 119

Chapter 6
ZLL Commissioning Cluster

 sCallBackMessage is a structure containing the command ID and payload
(see Section 6.8.19).

6.8.19 tsCLD_ZllUtilityCallBackMessage

This structure contains the command ID and payload for a received Commissioning
Utility command.

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_ZllUtility_EndpointInformationCommandPayload
 *psEndpointInfoPayload;

 tsCLD_ZllUtility_GetGroupIdReqCommandPayload
 *psGetGroupIdReqPayload;

 tsCLD_ZllUtility_GetGroupIdRspCommandPayload
 *psGetGroupIdRspPayload;

 tsCLD_ZllUtility_GetEndpointListReqCommandPayload
 *psGetEndpointlistReqPayload;

 tsCLD_ZllUtility_GetEndpointListRspCommandPayload
 *psGetEndpointListRspPayload;

 } uMessage;

} tsCLD_ZllUtilityCallBackMessage;

where:

 u8CommandId is the command ID - enumerations are provided, as detailed in
Section 6.6.2.

 uMessage contains the payload of the command, where the structure used
depends on the command ID (the structures are detailed in the sections below).
120 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.8.20 tsCLD_ZllUtility_EndpointInformationCommandPayload

This structure is used to hold the payload data for a Commissioning Utility Endpoint
Information command.

typedef struct

{

 uint64 u64IEEEAddr;

 uint16 u16NwkAddr;

 uint8 u8Endpoint;

 uint16 u16ProfileID;

 uint16 u16DeviceID;

 uint8 u8Version;

} tsCLD_ZllUtility_EndpointInformationCommandPayload;

where:

 u64IEEEAddr is the IEEE (MAC) address of the local node.

 u16NwkAddr is the network (short) address of the local node.

 u8Endpoint is the number of the local endpoint (1-240).

 u16ProfileID is the identifier of the ZigBee application profile supported on
the local endpoint.

 u16DeviceID is identifier of the ZLL device on the local endpoint.

 u8Version specifies the version number of the ZLL device on the local
endpoint.
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 121

Chapter 6
ZLL Commissioning Cluster

6.9 Enumerations

6.9.1 Touchlink Event Enumerations

The event types generated by the Touchlink part of the ZLL Commissioning cluster are
enumerated in the teCLD_ZllCommission_Command structure below:

typedef enum PACK

{

 E_CLD_COMMISSION_CMD_SCAN_REQ = 0x00,

 E_CLD_COMMISSION_CMD_SCAN_RSP,

 E_CLD_COMMISSION_CMD_DEVICE_INFO_REQ,

 E_CLD_COMMISSION_CMD_DEVICE_INFO_RSP,

 E_CLD_COMMISSION_CMD_IDENTIFY_REQ = 0x06,

 E_CLD_COMMISSION_CMD_FACTORY_RESET_REQ,

 E_CLD_COMMISSION_CMD_NETWORK_START_REQ = 0x10,

 E_CLD_COMMISSION_CMD_NETWORK_START_RSP,

 E_CLD_COMMISSION_CMD_NETWORK_JOIN_ROUTER_REQ,

 E_CLD_COMMISSION_CMD_NETWORK_JOIN_ROUTER_RSP,

 E_CLD_COMMISSION_CMD_NETWORK_JOIN_END_DEVICE_REQ,

 E_CLD_COMMISSION_CMD_NETWORK_JOIN_END_DEVICE_RSP,

 E_CLD_COMMISSION_CMD_NETWORK_UPDATE_REQ,

} teCLD_ZllCommission_Command;

6.9.2 Commissioning Utility Event Enumerations

The event types generated by the Commissioning Utility part of the ZLL
Commissioning cluster are enumerated in the teCLD_ZllUtility_Command
structure below:

typedef enum PACK

{

 E_CLD_UTILITY_CMD_ENDPOINT_INFO = 0x40,

 E_CLD_UTILITY_CMD_GET_GROUP_ID_REQ_RSP,

 E_CLD_UTILITY_CMD_GET_ENDPOINT_LIST_REQ_RSP,

} teCLD_ZllUtility_Command;
122 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
6.10 Compile-Time Options

This section describes the compile-time options that may be enabled in the
zcl_options.h file of an application that uses the ZLL Commissioning cluster.

The ZLL Commissioning cluster is enabled as follows:

 Touchlink - To enable the cluster, define CLD_ZLL_COMMISSION, then:

 to enable the cluster as a server, define ZLL_COMMISSION_SERVER

 to enable the cluster as a client, define ZLL_COMMISSION_CLIENT

 Commissioning Utility - To enable the cluster, define CLD_ZLL_UTILITY,
then:

 to enable the cluster as a server, define ZLL_UTILITY_SERVER

 to enable the cluster as a client, define ZLL_UTILITY_CLIENT
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 123

Chapter 6
ZLL Commissioning Cluster

124 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Part III:
General Reference Information
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 125

126 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
7. ZLL Core Functions

This chapter details the core functions of the ZigBee Light Link API. These comprise
the following initialisation function, timing update function and device-specific endpoint
registration functions:

Function Page

eZLL_Initialise 128

eZLL_Update100mS 129

eZLL_RegisterOnOffLightEndPoint 130

eZLL_RegisterOnOffPlugEndPoint 132

eZLL_RegisterDimmableLightEndPoint 134

eZLL_RegisterDimmablePlugEndPoint 136

eZLL_RegisterColourLightEndPoint 138

eZLL_RegisterExtendedColourLightEndPoint 140

eZLL_RegisterColourTemperatureLightEndPoint 142

eZLL_RegisterColourRemoteEndPoint 144

eZLL_RegisterColourSceneRemoteEndPoint 146

eZLL_RegisterNonColourRemoteEndPoint 148

eZLL_RegisterNonColourSceneRemoteEndPoint 150

eZLL_RegisterControlBridgeEndPoint 152

eZLL_RegisterOnOffSensorEndPoint 154

Note 1: For guidance on using these functions in your
application code, refer to Chapter 4.

Note 2: The return codes for these functions are
described in the ZCL User Guide (JN-UG-3077).

Note 3: ZLL initialisation must also be performed
through definitions in the header file zcl_options.h -
see Section 3.5.1. In addition, JenOS resources for ZLL
must also be pre-configured using the JenOS
Configuration Editor - refer to the JenOS User Guide
(JN-UG-3075).
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 127

Chapter 7
ZLL Core Functions

eZLL_Initialise

Description

This function initialises the ZCL and ZLL libraries. It should be called before
registering any endpoints (using one of the device-specific endpoint registration
functions from this chapter) and before starting the ZigBee PRO stack.

As part of this function call, you must specify a user-defined callback function that will
be invoked when a ZigBee PRO stack event occurs that is not associated with an
endpoint (the callback function for events associated with an endpoint is specified
when the endpoint is registered using one of the registration functions). This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a local pool of Application Protocol Data Units
(APDUs) that will be used by the ZCL to hold messages to be sent and received.

Parameters

cbCallBack Pointer to a callback function to handle stack events that are
not associated with a registered endpoint

hAPdu Pointer to a pool of APDUs for holding messages to be sent
and received

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_HEAP_FAIL

E_ZCL_ERR_PARAMETER_NULL

teZCL_Status eZLL_Initialise(
 tfpZCL_ZCLCallBackFunction cbCallBack,
 PDUM_thAPdu hAPdu);
128 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
eZLL_Update100mS

Description

This function is used to service all the timing needs of the clusters used by the ZLL
application and should be called every 100 ms - this can be achieved by using a 100-
ms software timer to periodically prompt execution of this function.

The function calls the external user-defined function vIdEffectTick(), which can be
used to implement an identify effect on the node. This function must be defined in the
application, irrespective of whether identify effects are needed (and thus, may be
empty). The function prototype is:

void vIdEffectTick(void)

Parameters

None

Returns

E_ZCL_SUCCESS

teZCL_Status eZLL_Update100mS(void);
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 129

Chapter 7
ZLL Core Functions

eZLL_RegisterOnOffLightEndPoint

Description

This function is used to register an endpoint which will support an On/Off Light
device. The function must be called after the eZLL_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_OnOffLightDevice structure (see
Section 8.1.1) which will be used to store all variables relating to the On/Off Light
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Light device is housed in the same hardware,
sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold On/Off Light device
variables

teZCL_Status eZLL_RegisterOnOffLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_OnOffLightDevice *psDeviceInfo);
130 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 131

Chapter 7
ZLL Core Functions

eZLL_RegisterOnOffPlugEndPoint

Description

This function is used to register an endpoint which will support an On/Off Plug-in Unit
device. The function must be called after the eZLL_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_OnOffPlugDevice structure (see
Section 8.1.2) which will be used to store all variables relating to the On/Off Plug-in
Unit device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Plug-in Unit device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold On/Off Plug-in Unit
device variables

teZCL_Status eZLL_RegisterOnOffPlugEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_OnOffPlugDevice *psDeviceInfo);
132 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 133

Chapter 7
ZLL Core Functions

eZLL_RegisterDimmableLightEndPoint

Description

This function is used to register an endpoint which will support a Dimmable Light
device. The function must be called after the eZLL_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_DimmableLightDevice structure
(see Section 8.1.3) which will be used to store all variables relating to the Dimmable
Light device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Dimmable Light device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Dimmable Light
device variables

teZCL_Status eZLL_RegisterDimmableLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_DimmableLightDevice *psDeviceInfo);
134 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 135

Chapter 7
ZLL Core Functions

eZLL_RegisterDimmablePlugEndPoint

Description

This function is used to register an endpoint which will support a Dimmable Plug-in
Unit device. The function must be called after the eZLL_Initialise() function and
before starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_DimmablePlugDevice structure (see
Section 8.1.4) which will be used to store all variables relating to the Dimmable Plug-
in Unit device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Dimmable Plug-in Unit device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Dimmable Plug-in
Unit device variables

teZCL_Status eZLL_RegisterDimmablePlugEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_DimmablePlugDevice *psDeviceInfo);
136 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 137

Chapter 7
ZLL Core Functions

eZLL_RegisterColourLightEndPoint

Description

This function is used to register an endpoint which will support a Colour Light device.
The function must be called after the eZLL_Initialise() function and before starting
the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_ColourLightDevice structure (see
Section 8.1.5) which will be used to store all variables relating to the Colour Light
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Colour Light device is housed in the same hardware,
sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Colour Light device
variables

teZCL_Status eZLL_RegisterColourLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_ColourLightDevice *psDeviceInfo);
138 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 139

Chapter 7
ZLL Core Functions

eZLL_RegisterExtendedColourLightEndPoint

Description

This function is used to register an endpoint which will support an Extended Colour
Light device. The function must be called after the eZLL_Initialise() function and
before starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_ExtendedColourLightDevice
structure (see Section 8.1.6) which will be used to store all variables relating to the
Extended Colour Light device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Extended Colour Light device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Extended Colour
Light device variables

teZCL_Status eZLL_RegisterExtendedColourLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_ExtendedColourLightDevice *psDeviceInfo);
140 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 141

Chapter 7
ZLL Core Functions

eZLL_RegisterColourTemperatureLightEndPoint

Description

This function is used to register an endpoint which will support a Colour Temperature
Light device. The function must be called after the eZLL_Initialise() function and
before starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_ColourTemperatureLightDevice
structure (see Section 8.1.7) which will be used to store all variables relating to the
Colour Temperature Light device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Colour Temperature Light device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Colour
Temperature Light device variables

teZCL_Status
eZLL_RegisterColourTemperatureLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_ColourTemperatureLightDevice *psDeviceInfo);
142 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 143

Chapter 7
ZLL Core Functions

eZLL_RegisterColourRemoteEndPoint

Description

This function is used to register an endpoint which will support a Colour Controller
device. The function must be called after the eZLL_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_ColourRemoteDevice structure (see
Section 8.1.8) which will be used to store all variables relating to the Colour Controller
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Colour Controller device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Colour Controller
device variables

teZCL_Status eZLL_RegisterColourRemoteEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_ColourRemoteDevice *psDeviceInfo);
144 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 145

Chapter 7
ZLL Core Functions

eZLL_RegisterColourSceneRemoteEndPoint

Description

This function is used to register an endpoint which will support a Colour Scene
Controller device. The function must be called after the eZLL_Initialise() function
and before starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_ColourSceneRemoteDevice
structure (see Section 8.1.9) which will be used to store all variables relating to the
Colour Scene Controller device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Colour Scene Controller device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Colour Scene
Controller device variables

teZCL_Status eZLL_RegisterColourSceneRemoteEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_ColourSceneRemoteDevice *psDeviceInfo);
146 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 147

Chapter 7
ZLL Core Functions

eZLL_RegisterNonColourRemoteEndPoint

Description

This function is used to register an endpoint which will support a Non-Colour
Controller device. The function must be called after the eZLL_Initialise() function
and before starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_NonColourRemoteDevice structure
(see Section 8.1.10) which will be used to store all variables relating to the Non-
Colour Controller device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Non-Colour Controller device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Non-Colour
Controller device variables

teZCL_Status eZLL_RegisterNonColourRemoteEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_NonColourRemoteDevice *psDeviceInfo);
148 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 149

Chapter 7
ZLL Core Functions

eZLL_RegisterNonColourSceneRemoteEndPoint

Description

This function is used to register an endpoint which will support a Non-Colour Scene
Controller device. The function must be called after the eZLL_Initialise() function
and before starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_NonColourSceneRemoteDevice
structure (see Section 8.1.11) which will be used to store all variables relating to the
Non-Colour Scene Controller device associated with the endpoint. The sEndPoint
and sClusterInstance fields of this structure are set by this function and must not
be directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Non-Colour Scene Controller device is housed in the
same hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Non-Colour Scene
Controller device variables

teZCL_Status
eZLL_RegisterNonColourSceneRemoteEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_NonColourSceneRemoteDevice
 *psDeviceInfo);
150 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 151

Chapter 7
ZLL Core Functions

eZLL_RegisterControlBridgeEndPoint

Description

This function is used to register an endpoint which will support a Control Bridge
device. The function must be called after the eZLL_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_ControlBridgeDevice structure
(see Section 8.1.12) which will be used to store all variables relating to the Control
Bridge device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Control Bridge device is housed in the same hardware,
sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Control Bridge
device variables

teZCL_Status eZLL_RegisterControlBridgeEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_ControlBridgeDevice *psDeviceInfo);
152 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 153

Chapter 7
ZLL Core Functions

eZLL_RegisterOnOffSensorEndPoint

Description

This function is used to register an endpoint which will support an On/Off Sensor
device. The function must be called after the eZLL_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). ZLL endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
ZLL_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for ZLL.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLL_OnOffSensorDevice structure (see
Section 8.1.13) which will be used to store all variables relating to the On/Off Sensor
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Sensor device is housed in the same hardware,
sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold On/Off Sensor
device variables

teZCL_Status eZLL_RegisterOnOffSensorEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLL_OnOffSensorDevice *psDeviceInfo);
154 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 155

Chapter 7
ZLL Core Functions

156 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
8. ZLL Structures

This chapter presents general ZLL structures (that is, not associated with any
particular cluster). ZLL Commissioning cluster structures are detailed in Chapter 6.

8.1 Device Structures

The shared device structures for the ZLL devices supported by the ZLL API are
presented below. Within each shared device structure, there is a section for each
cluster supported by the device, where each of these sections has one or more of the
following elements:

 Pointer to the cluster

 Data structure(s) for the cluster

The section for each optional cluster is enabled by a corresponding enumeration
defined in the zcl_options.h file (e.g. CLD_SCENES for the Scenes cluster). Another
enumeration is also used which determines whether the cluster will act as a server or
client (e.g. SCENES_SERVER for a Scenes cluster server). Refer to Section 3.5.1.

8.1.1 tsZLL_OnOffLightDevice

The following tsZLL_OnOffLightDevice structure is the shared structure for an
On/Off Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_OnOffLightDeviceClusterInstances sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure
sOnOffServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 157

Chapter 8
ZLL Structures

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

} tsZLL_OnOffLightDevice;

8.1.2 tsZLL_OnOffPlugDevice

The following tsZLL_OnOffPlugDevice structure is the shared structure for an On/
Off Plug-in Unit device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_OnOffPlugDeviceClusterInstances sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif
158 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
#if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure
sOnOffServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif

} tsZLL_OnOffPlugDevice;
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 159

Chapter 8
ZLL Structures

8.1.3 tsZLL_DimmableLightDevice

The following tsZLL_DimmableLightDevice structure is the shared structure for a
Dimmable Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_DimmableLightDeviceClusterInstances sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure
sOnOffServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif
160 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlServerCustomDataStructure;

#endif

} tsZLL_DimmableLightDevice;

8.1.4 tsZLL_DimmablePlugDevice

The following tsZLL_DimmablePlugDevice structure is the shared structure for a
Dimmable Plug-in Unit device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_DimmablePlugDeviceClusterInstances sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure
sOnOffServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 161

Chapter 8
ZLL Structures

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlServerCustomDataStructure;

#endif

} tsZLL_DimmablePlugDevice;

8.1.5 tsZLL_ColourLightDevice

The following tsZLL_ColourLightDevice structure is the shared structure for a
Colour Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_ColourLightDeviceClusterInstances sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */
162 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure
sOnOffServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlServerCustomDataStructure;

#endif

#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_SERVER)

 /* Colour Control Cluster - Server */

 tsCLD_ColourControl sColourControlServerCluster;

 tsCLD_ColourControlCustomDataStructure
sColourControlServerCustomDataStructure;

#endif

} tsZLL_ColourLightDevice;

8.1.6 tsZLL_ExtendedColourLightDevice

The following tsZLL_ExtendedColourLightDevice structure is the shared
structure for a Extended Colour Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 163

Chapter 8
ZLL Structures

 tsZLL_ExtendedColourLightDeviceClusterInstances
sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure
sOnOffServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlServerCustomDataStructure;

#endif

#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_SERVER)
164 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
 /* Colour Control Cluster - Server */

 tsCLD_ColourControl sColourControlServerCluster;

 tsCLD_ColourControlCustomDataStructure
sColourControlServerCustomDataStructure;

#endif

} tsZLL_ExtendedColourLightDevice;
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 165

Chapter 8
ZLL Structures

8.1.7 tsZLL_ColourTemperatureLightDevice

The following tsZLL_ColourTemperatureLightDevice structure is the shared
structure for a Colour Temperature Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_ColourTemperatureLightDeviceClusterInstances
sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure
sOnOffServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif
166 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlServerCustomDataStructure;

#endif

#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_SERVER)

 /* Colour Control Cluster - Server */

 tsCLD_ColourControl sColourControlServerCluster;

 tsCLD_ColourControlCustomDataStructure
sColourControlServerCustomDataStructure;

#endif

} tsZLL_ColourTemperatureLightDevice;

8.1.8 tsZLL_ColourRemoteDevice

The following tsZLL_ColourRemoteDevice structure is the shared structure for a
Colour Controller device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_ColourRemoteDeviceClusterInstances sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

 /* Mandatory client clusters */

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 167

Chapter 8
ZLL Structures

 tsCLD_OnOff sOnOffClientCluster;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;

#endif

#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)

 /* Colour Control Cluster - Client */

 tsCLD_ColourControl sColourControlClientCluster;

 tsCLD_ColourControlCustomDataStructure
sColourControlClientCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

#endif

#if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_SERVER)

 /* Utility Cluster - Server */

 tsCLD_ZllUtility sZllUtilityServerCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityServerCustomDataStructure;

#endif

#if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_CLIENT)

 /* Utility Cluster - Client */

 tsCLD_ZllUtility sZllUtilityClientCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityClientCustomDataStructure;

#endif

} tsZLL_ColourRemoteDevice;
168 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
8.1.9 tsZLL_ColourSceneRemoteDevice

The following tsZLL_ColourSceneRemoteDevice structure is the shared structure
for a Colour Scene Controller device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_ColourSceneRemoteDeviceClusterInstances sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_BASIC) && (defined BASIC_CLIENT)

 /* Basic Cluster - Client */

 tsCLD_Basic sBasicClientCluster;

#endif

#if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_SERVER)

 tsCLD_ZllUtility sZllUtilityServerCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityServerCustomDataStructure;

#endif

#if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_CLIENT)

 tsCLD_ZllUtility sZllUtilityClientCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityClientCustomDataStructure;

#endif

 /* Mandatory client clusters */

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 169

Chapter 8
ZLL Structures

 tsCLD_OnOff sOnOffClientCluster;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;

#endif

#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)

 /* Colour Control Cluster - Client */

 tsCLD_ColourControl sColourControlClientCluster;

 tsCLD_ColourControlCustomDataStructure
sColourControlClientCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure
sScenesClientCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

#endif

} tsZLL_ColourSceneRemoteDevice;

8.1.10 tsZLL_NonColourRemoteDevice

The following tsZLL_NonColourRemoteDevice structure is the shared structure
for a Non-Colour Controller device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_NonColourRemoteDeviceClusterInstances sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)
170 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_SERVER)

 /* Utility Cluster - Server */

 tsCLD_ZllUtility sZllUtilityServerCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityServerCustomDataStructure;

#endif

#if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_CLIENT)

 /* Utility Cluster - Client */

 tsCLD_ZllUtility sZllUtilityClientCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityClientCustomDataStructure;

#endif

 /* Mandatory client clusters */

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

#endif
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 171

Chapter 8
ZLL Structures

} tsZLL_NonColourRemoteDevice;

8.1.11 tsZLL_NonColourSceneRemoteDevice

The following tsZLL_NonColourSceneRemoteDevice structure is the shared
structure for a Non-Colour Scene Controller device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_NonColourSceneRemoteDeviceClusterInstances
sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_SERVER)

 /* Utility Cluster - Server */

 tsCLD_ZllUtility sZllUtilityServerCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityServerCustomDataStructure;

#endif

#if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_CLIENT)

 /* Utility Cluster - Client */

 tsCLD_ZllUtility sZllUtilityClientCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityClientCustomDataStructure;

#endif

 /* Mandatory client clusters */

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */
172 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
 tsCLD_OnOff sOnOffClientCluster;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure
sScenesClientCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

#endif

} tsZLL_NonColourSceneRemoteDevice;

8.1.12 tsZLL_ControlBridgeDevice

The following tsZLL_ControlBridgeDevice structure is the shared structure for a
Control Bridge device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_ControlBridgeDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_SERVER)
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 173

Chapter 8
ZLL Structures

 /* Utility Cluster - Server */

 tsCLD_ZllUtility sZllUtilityServerCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityServerCustomDataStructure;

 #endif

 #if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_CLIENT)

 /* Utility Cluster - Client */

 tsCLD_ZllUtility sZllUtilityClientCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityClientCustomDataStructure;

 #endif

 /*

 * Mandatory client clusters

 */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined
LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure
sScenesClientCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)
174 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_COLOUR_CONTROL) && (defined
COLOUR_CONTROL_CLIENT)

 /* Colour Control Cluster - Client */

 tsCLD_ColourControl sColourControlClientCluster;

 tsCLD_ColourControlCustomDataStructure
sColourControlClientCustomDataStructure;

 #endif

 /* Mandatory client clusters */

 #if (defined CLD_DOOR_LOCK) && (defined DOOR_LOCK_CLIENT)

 /* Door Lock Cluster - Client */

 tsCLD_DoorLock sDoorLockClientCluster;

 #endif

} tsZLL_ControlBridgeDevice;

8.1.13 tsZLL_OnOffSensorDevice

The following tsZLL_OnOffSensorDevice structure is the shared structure for a
On/Off Sensor device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLL_OnOffSensorDeviceClusterInstances sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_SERVER)

 /* Utility Cluster - Server */

 tsCLD_ZllUtility sZllUtilityServerCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityServerCustomDataStructure;

#endif
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 175

Chapter 8
ZLL Structures

#if (defined CLD_ZLL_UTILITY) && (defined ZLL_UTILITY_CLIENT)

 /* Utility Cluster - Client */

 tsCLD_ZllUtility sZllUtilityClientCluster;

 tsCLD_ZllUtilityCustomDataStructure
sZllUtilityClientCustomDataStructure;

#endif

 /*

 * Mandatory client clusters

 */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined
LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure
sScenesClientCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

 #endif
176 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)

 /* Colour Control Cluster - Client */

 tsCLD_ColourControl sColourControlClientCluster;

 tsCLD_ColourControlCustomDataStructure
sColourControlClientCustomDataStructure;

#endif

} tsZLL_OnOffSensorDevice;
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 177

Chapter 8
ZLL Structures

8.2 Other Structures

8.2.1 tsCLD_ZllDeviceRecord

The following tsCLD_ZllDeviceRecord structure is used to store a device
information record about a ZigBee device on a node:

typedef struct

{

 uint64 u64IEEEAddr;

 uint16 u16ProfileId;

 uint16 u16DeviceId;

 uint8 u8Endpoint;

 uint8 u8Version;

 uint8 u8NumberGroupIds;

 uint8 u8Sort;

} tsCLD_ZllDeviceRecord;

where:

 u64IEEEAddr is the 64-bit IEEE (MAC) address of the node.

 u16ProfileId is the 16-bit identifier of the ZigBee application profile that is
supported by the device.

 u16DeviceId is the 16-bit Device Identifier supported by the device.

 u8Endpoint is number of the endpoint (in the range 1-240) on which the
device is located

 u8Version is an 8-bit version number for the device - the four least significant
bits are from the Application Device Version field of the appropriate Simple
Descriptor and the four most significant bits are zero.

 u8NumberGroupIds is the number of groups (of lights) supported by the
device.

 u8Sort indicates the position of the device in a sorted list of devices, e.g. for a
remote control unit (a zero value indicates that there is no sorted list).
178 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

 ZigBee Light Link
User Guide
Revision History

Version Date Comments

1.0 24-Jan-2013 First release

1.1 14-Aug-2013 Various updates for new ZigBee Light Link release
JN-UG-3091 v1.1 © NXP Laboratories UK 2013 179

ZigBee Light Link
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951

For the contact details of your local NXP office or distributor, refer to:

www.nxp.com

For online support resources, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity
180 © NXP Laboratories UK 2013 JN-UG-3091 v1.1

	Contents
	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks
	Chip Compatibility

	1. Introduction to ZigBee Light Link (ZLL)
	1.1 ZLL Objectives
	1.2 ZLL Functionality
	1.3 Wireless Networking
	1.4 Touchlink Installation
	1.5 Energy Saving
	1.6 Interoperability and Certification
	1.7 Software Architecture
	1.8 Network Addresses
	1.9 Security
	1.10 Internet Connectivity

	2. ZLL Devices
	2.1 Clusters
	2.2 Lighting Devices
	2.2.1 On/Off Light
	2.2.2 On/Off Plug-in Unit
	2.2.3 Dimmable Light
	2.2.4 Dimmable Plug-in Unit
	2.2.5 Colour Light
	2.2.6 Extended Colour Light
	2.2.7 Colour Temperature Light

	2.3 Controller Devices
	2.3.1 Colour Controller
	2.3.2 Colour Scene Controller
	2.3.3 Non-Colour Controller
	2.3.4 Non-Colour Scene Controller
	2.3.5 Control Bridge
	2.3.6 On/Off Sensor

	3. ZLL Application Development
	3.1 Development Resources and Installation
	3.2 ZLL Programming Resources
	3.2.1 Core Resources
	3.2.2 Cluster-specific Resources

	3.3 Function Prefixes
	3.4 Development Phases
	3.5 Building an Application
	3.5.1 Compile-Time Options
	3.5.2 ZigBee Network Parameters
	3.5.3 Building and Loading the Application Binary

	4. ZLL Application Coding
	4.1 ZLL Programming Concepts
	4.1.1 Shared Device Structures
	4.1.2 Addressing
	4.1.3 OS Resources

	4.2 Initialisation
	4.3 Callback Functions
	4.4 Network Formation/Joining
	4.5 Reading Attributes
	4.6 Writing Attributes
	4.7 Handling Stack and Timer Events
	4.8 Servicing Timing Requirements

	5. ZCL Clusters
	5.1 Basic Cluster
	5.1.1 Mandatory Attributes for ZLL
	5.1.2 Compile-Time Options

	5.2 Identify Cluster
	5.2.1 Mandatory Attribute for ZLL
	5.2.2 Enhanced Functionality for ZLL
	5.2.3 Compile-Time Options

	5.3 Groups Cluster
	5.3.1 Mandatory Attribute for ZLL
	5.3.2 Compile-Time Options

	5.4 Scenes Cluster
	5.4.1 Mandatory Attributes for ZLL
	5.4.2 Enhanced Functionality for ZLL
	5.4.3 Compile-Time Options

	5.5 On/Off Cluster
	5.5.1 Mandatory Attributes for ZLL
	5.5.2 Enhanced Functionality for ZLL
	5.5.3 Compile-Time Options

	5.6 Level Control Cluster
	5.6.1 Mandatory Attributes for ZLL
	5.6.2 Compile-Time Options

	5.7 Colour Control Cluster
	5.7.1 Mandatory Attributes for ZLL
	5.7.2 Enhanced Functionality for ZLL
	5.7.3 Compile-Time Options

	6. ZLL Commissioning Cluster
	6.1 Overview
	6.2 ZLL Commissioning Cluster Structure and Attributes
	6.3 Commissioning Operations
	6.4 Using Touchlink
	6.4.1 Creating a ZLL Network
	6.4.2 Adding to an Existing Network
	6.4.3 Updating Network Settings
	6.4.4 Stealing a Node

	6.5 Using the Commissioning Utility
	6.6 ZLL Commissioning Events (Touchlink)
	6.6.1 Touchlink Command Events
	6.6.2 Commissioning Utility Command Events

	6.7 Functions
	6.7.1 Touchlink Functions
	eZLL_RegisterCommissionEndPoint
	eCLD_ZllCommissionCreateCommission
	eCLD_ZllCommissionCommandScanReqCommandSend
	eCLD_ZllCommissionCommandScanRspCommandSend
	eCLD_ZllCommissionCommandDeviceInfoReqCommandSend
	eCLD_ZllCommissionCommandDeviceInfoRspCommandSend
	eCLD_ZllCommissionCommandDeviceIdentifyReqCommandSend
	eCLD_ZllCommissionCommandFactoryResetReqCommandSend
	eCLD_ZllCommissionCommandNetworkStartReqCommandSend
	eCLD_ZllCommissionCommandNetworkStartRspCommandSend
	eCLD_ZllCommissionCommandNetworkJoinRouterReqCommandSend
	eCLD_ZllCommissionCommandNetworkJoinRouterRspCommandSend
	eCLD_ZllCommissionCommandNetworkJoinEndDeviceReqCommandSend
	eCLD_ZllCommissionCommandNetworkJoinEndDeviceRspCommandSend
	eCLD_ZllCommissionCommandNetworkUpdateReqCommandSend

	6.7.2 Commissioning Utility Functions
	eCLD_ZllUtilityCreateUtility
	eCLD_ZllUtilityCommandEndpointInformationCommandSend
	eCLD_ZllUtilityCommandGetGroupIdReqCommandSend
	eCLD_ZllUtilityCommandGetGroupIdRspCommandSend
	eCLD_ZllUtilityCommandGetEndpointListReqCommandSend
	eCLD_ZllUtilityCommandGetEndpointListRspCommandSend
	eCLD_ZllUtilityCommandHandler

	6.8 Structures
	6.8.1 tsZLL_CommissionEndpoint
	6.8.2 tsZLL_CommissionEndpointClusterInstances
	6.8.3 tsCLD_ZllCommissionCustomDataStructure
	6.8.4 tsCLD_ZllCommissionCallBackMessage
	6.8.5 tsCLD_ZllCommission_ScanReqCommandPayload
	6.8.6 tsCLD_ZllCommission_ScanRspCommandPayload
	6.8.7 tsCLD_ZllCommission_DeviceInfoReqCommandPayload
	6.8.8 tsCLD_ZllCommission_DeviceInfoRspCommandPayload
	6.8.9 tsCLD_ZllCommission_IdentifyReqCommandPayload
	6.8.10 tsCLD_ZllCommission_FactoryResetReqCommandPayload
	6.8.11 tsCLD_ZllCommission_NetworkStartReqCommandPayload
	6.8.12 tsCLD_ZllCommission_NetworkStartRspCommandPayload
	6.8.13 tsCLD_ZllCommission_NetworkJoinRouterReqCommandPa yload
	6.8.14 tsCLD_ZllCommission_NetworkJoinRouterRspCommandPa yload
	6.8.15 tsCLD_ZllCommission_NetworkJoinEndDeviceReqComman dPayload
	6.8.16 tsCLD_ZllCommission_NetworkJoinEndDeviceRspComman dPayload
	6.8.17 tsCLD_ZllCommission_NetworkUpdateReqCommandPayloa d
	6.8.18 tsCLD_ZllUtilityCustomDataStructure
	6.8.19 tsCLD_ZllUtilityCallBackMessage
	6.8.20 tsCLD_ZllUtility_EndpointInformationCommandPayload

	6.9 Enumerations
	6.9.1 Touchlink Event Enumerations
	6.9.2 Commissioning Utility Event Enumerations

	6.10 Compile-Time Options

	7. ZLL Core Functions
	eZLL_Initialise
	eZLL_Update100mS
	eZLL_RegisterOnOffLightEndPoint
	eZLL_RegisterOnOffPlugEndPoint
	eZLL_RegisterDimmableLightEndPoint
	eZLL_RegisterDimmablePlugEndPoint
	eZLL_RegisterColourLightEndPoint
	eZLL_RegisterExtendedColourLightEndPoint
	eZLL_RegisterColourTemperatureLightEndPoint
	eZLL_RegisterColourRemoteEndPoint
	eZLL_RegisterColourSceneRemoteEndPoint
	eZLL_RegisterNonColourRemoteEndPoint
	eZLL_RegisterNonColourSceneRemoteEndPoint
	eZLL_RegisterControlBridgeEndPoint
	eZLL_RegisterOnOffSensorEndPoint

	8. ZLL Structures
	8.1 Device Structures
	8.1.1 tsZLL_OnOffLightDevice
	8.1.2 tsZLL_OnOffPlugDevice
	8.1.3 tsZLL_DimmableLightDevice
	8.1.4 tsZLL_DimmablePlugDevice
	8.1.5 tsZLL_ColourLightDevice
	8.1.6 tsZLL_ExtendedColourLightDevice
	8.1.7 tsZLL_ColourTemperatureLightDevice
	8.1.8 tsZLL_ColourRemoteDevice
	8.1.9 tsZLL_ColourSceneRemoteDevice
	8.1.10 tsZLL_NonColourRemoteDevice
	8.1.11 tsZLL_NonColourSceneRemoteDevice
	8.1.12 tsZLL_ControlBridgeDevice
	8.1.13 tsZLL_OnOffSensorDevice

	8.2 Other Structures
	8.2.1 tsCLD_ZllDeviceRecord

